Figures

This page contains figures from the book Computational Physics, 2nd edition, by Mark Newman. You can also download all figures in a single ZIP file here. A few figures are not included because of licensing limitations.


Chapter 2: Python programming for physicists

FormatFigureDescription
PNG2.1Jupyter notebook
PDFPNGPotential step

Chapter 3: Graphics and visualization

FormatFigureDescription
PDFPNGExample graph 1
PDFPNGExample graph 2
PNG3.1Matplotlib graph window
PDFPNG3.2Graph of sine function
PDFPNG3.3Graph of data from a file
PDFPNG3.4aSine function, version 1
PDFPNG3.4bSine function, version 2
PDFPNG3.4cSine function, version 3
PDFPNG3.4dSine and cosine functions
PDFPNGScatter plot
PDFPNG3.5Hertzsprung-Russell diagram
PDFPNG3.6Density plot example
PDFPNG3.7aDensity plot, version 1
PDFPNG3.7bDensity plot, version 2
PDFPNG3.7cDensity plot, version 3
PDFPNG3.7dDensity plot, version 4
PDFPNG3.8Wave interference
PNG3.9Qdraw graphics window
PNG3.10Atoms in a square lattice
PDFPNG3.11Spirograph

Chapter 4: Accuracy and speed

FormatFigureDescription
PDFPNG4.1Area under a semicircle

Chapter 5: Integrals and derivatives

FormatFigureDescription
PDFPNG5.1Estimating the area under a curve
PDFPNG5.2Simpson's rule
PDFPNGDiffraction pattern
PDFPNG5.3Doubling the number of steps
PDFPNG5.4Sample points for Gaussian quadrature
PDFPNGAnharmonic potential well
PDFPNGDiffraction at a straight edge
PDFPNG5.5Gaussian quadrature in 2D
PDFPNG5.6Sobol sequence
PDFPNG5.7Non-rectangular integration domain
PDFPNG5.8Complicated integration domain
PDFPNGUniform sheet
PDFPNG5.9Forward and backward differences
PDFPNG5.10Derivative of a sampled function
PDFPNG5.11Derivative of noisy data
PDFPNG5.12Expanded view of noisy data
PDFPNG5.13Smoothed version of noisy data
PDFPNG5.14Linear interpolation
PDFPNG5.15Bilinear interpolation
PDFPNG5.16Interpolation in a triangle
PDFPNGDiffraction grating
PDFPNGDiffraction pattern
PDFPNGLight falling on a surface

Chapter 6: Solution of linear and nonlinear equations

FormatFigureDescription
PDFPNGCircuit of resistors
PDFPNGCircuit diagram
PDFPNGMasses and springs
PDFPNG6.1Vibration of masses and springs
PDFPNGChain of resistors
PDFPNGPotential well
PDFPNG6.2Magnetization against temperature
PDFPNG6.3Binary search
PDFPNG6.4Function with even number of roots
PDFPNG6.5A double root
PDFPNGSquare well
PDFPNG6.6Newton's method
PDFPNG6.7Failure of Newton's method
PDFPNG6.8Hyperbolic arctangent
PDFPNG6.9The secant method
PDFPNG6.10Lagrange point
PDFPNGCircuit with a diode
PDFPNG6.11Local and global minima
PDFPNG6.12Golden ratio search
PDFPNG6.13Buckingham potential
PDFPNGGrid of springs
PDFPNGVibrating bar

Chapter 7: Fourier transforms

FormatFigureDescription
PDFPNG7.1Creating a periodic function
PDFPNGFunctions with the same samples
PDFPNG7.2Example signal
PDFPNG7.3Fourier transform of Fig. 7.2
PDFPNG7.4aType-I DFT
PDFPNG7.4bType-II DFT
PDFPNG7.5Creating a symmetric function
PDFPNGPoint spread function

Chapter 8: Ordinary differential equations

FormatFigureDescription
PDFPNG8.1Solution using Euler's method
PDFPNG8.2Euler's method and 2nd-order RK
PDFPNG8.3Solutions using 2nd-order RK
PDFPNG8.4Solutions using 4th-order RK
PDFPNGLow-pass filter circuit
PDFPNG8.5Solution out to infinity
PDFPNGPendulum
PDFPNGBall bearing and rod
PDFPNGMasses and springs
PDFPNG8.6Adaptive step sizes
PDFPNG8.7Adaptive step size method
PDFPNG8.8Motion of nonlinear pendulum
PDFPNGOrbit of a comet
PDFPNG8.92nd-order RK and leapfrog method
PDFPNGOne swing of a pendulum
PDFPNG8.10Total energy of pendulum
PDFPNGAdaptive step sizes
PDFPNG8.11The shooting method
PDFPNG8.12Schrodinger equation in square well
PDFPNGDouble pendulum

Chapter 9: Partial differential equations

FormatFigureDescription
PDFPNG9.1Simple electrostatics problem
PDFPNG9.2A square grid
PDFPNGLaplacian diagram
PDFPNG9.3Solution of Laplace equation
PDFPNG9.4More complicated electrostatics problem
PDFPNG9.5Solution of Poisson equation
PDFPNGDirichlet boundary conditions
PDFPNGNeumann boundary conditions
PDFPNGVariant boundary conditions
PDFPNG9.6Solution of heat equation
PDFPNG9.7aTriangulation with three holes
PDFPNG9.7bTriangulation with one hole
PDFPNG9.8Laplacian on a triangulation
PDFPNGBoundary of a triangulation
PDFPNG9.9Delaunay triangulation
PDFPNGLaplace equation on non-square grid
PDFPNGThe Gauss-Seidel method
PDFPNGModel of a capacitor
PDFPNGHeat flow problem
PDFPNG9.10Solution of heat flow problem
PDFPNG9.11aInstability in FTCS solution 1
PDFPNG9.11bInstability in FTCS solution 2
PDFPNG9.11cInstability in FTCS solution 3
PDFPNGPiano hammer and string

Chapter 10: Random processes and Monte Carlo methods

FormatFigureDescription
PDFPNGBrownian motion
PDFPNG10.1Linear congruential generator
PDFPNG10.2Radioactive decay
PDFPNGDecay chain
PDFPNG10.3Rutherford scattering
PDFPNG10.4A pathological function
PDFPNGArea of a circle
PDFPNG10.5Integrand
PDFPNG10.6Internal energy of ideal gas
PDFPNGThe Ising model
PDFPNGLocal minimum
PDFPNG10.7The traveling salesman problem
PNG10.8aSolution 1 of the traveling salesman problem
PNG10.8bSolution 2 of the traveling salesman problem
PDFPNG10.9Function from Exercise 10.11
PDFPNGDimer covering
PDFPNG10.10Diffusion-limited aggregation

Chapter 11: Data science

FormatFigureDescription
PDFPNG11.1Atomic isotopes
PDFPNG11.2Radii of exoplanets
PDFPNG11.3Common kernels
PDFPNG11.4Kernel density estimation
PDFPNG11.5KDE for exoplanet radii
PDFPNG11.6Measurements of Z0 mass
PDFPNG11.7Beta distribution
PDFPNG11.8Heights of adult males
PDFPNG11.9Straight line fit
PDFPNG11.10Hooke's law
PDFPNG11.11Speed of sound
PDFPNG11.12Logistic regression
PDFPNG11.13Distribution with two peaks
PDFPNG11.14Earthquakes in California
PDFPNG11.15Jensen's inequality
PDFPNG11.16EM algorithm for exoplanet radii
PDFPNG11.17Density estimate using EM algorithm
PDFPNGBistable physical system

Appendix A: Technical results

FormatFigureDescription
PDFPNGA1aVoronoi cell
PDFPNGA1bBarycentric cell
PDFPNGA2Geometry of a triangle
PDFPNGA3Path independence