Chapter 14: External Diffusion Effects on Heteregeneous Reactions
Self Test: Comparing JA and BA for diffusion through a stagnant film
WA = JA + WA

Concentration Profiles \( (y_{AS} \equiv y_{AS}) \)
\(\text{EMCD:} \quad \frac{y_{A0} - y_A}{y_{A0} - y_{AS}} = \frac{z}{\delta} \)
\(\text{Stagnant Film:} \quad \frac{1 - y_A}{1 - y_{A0}} = \left( \frac{1 - y_{AS}}{1 - y_{A0}} \right)^{z / \delta} \)
Fluxes
\(\text{EMCD:} \quad W_{Az} = \frac{c D_{AB}}{\delta} \left[ y_{A0} - y_{AS} \right] \)
\(\text{Stagnant Film:} \quad W_{Az} = \frac{c D_{AB}}{\delta} \ln \left( \frac{1 - y_{AS}}{1 - y_{A0}} \right) \)
In what regions (i.e., z/d) does JA dominate and in what regions does BA dominate?
Solution
\( W_A = J_A + B_A \)
\( \boxed{ \text{Ratio} = \frac{J_A}{B_A} } \)
\( B_A = y_A W_A \)
\( J_A = -c D_{AB} \frac{\partial y_A}{\partial z} \)
also
\( J_A = W_A - B_A = W_A (1 - y_A) \)
\( \text{Ratio} = \frac{W_A (1 - y_A)}{W_A y_A} \)
\( \text{Ratio} = \frac{1 - y_A}{y_A} \)
when yA ~ 1 Ratio ~ 0 Bulk Flow Dominates
yA ~ 1 Molecular Diffusion Dominates
|
yA |
Ratio |
|
1 0.9 0.75 0.5 0.25 0.10 0 |
0 0.11 0.33 1 3 9 \( \infty \) |

