Chapter 14: External Diffusion Effects on Heteregeneous Reactions


More on Mole Balance with Diffusion and Reactions in 3-D

We can also apply the mole balance of an element of value DxDyDz to obtain the variation of flow rates in three dimensions

             Control volume cube labeled with coordinates at each corner, such as (x, y, z) and (x + Δx, y + Δy, z + Δz). Arrows represent fluxes entering and leaving the cube: FAx, FAy, FAz entering, and FAy+Δy, FAz+Δz exiting. Used to illustrate mass or momentum balance in three dimensions.

                               

\( \left[ F_{Az} = W_{Az} \, \Delta x \, \Delta y \right] \)

\( \left[ \text{Molar Flow Rate In} \right] - \left[ \text{Molar Flow Rate Out} \right] + \left[ \text{Molar Flow Rate In} \right] - \left[ \text{Molar Flow Rate Out} \right] \)

\( \Delta x \Delta y W_{Az}\big|_z - \Delta x \Delta y W_{Az}\big|_{z+\Delta z} + \Delta x \Delta z W_{Ay}\big|_y - \Delta x \Delta z W_{Ay}\big|_{y+\Delta y} \)

\( \left[ \text{Molar Flow Rate In} \right] - \left[ \text{Molar Flow Rate Out} \right] + \left[ \text{Rate of Generation} \right] = \left[ \text{Rate of Accumulation} \right] \)

\( \Delta z \Delta y W_{Ax}\big|_x - \Delta z \Delta y W_{Ax}\big|_{x+\Delta x} + r_A \Delta x \Delta y \Delta z = \Delta x \Delta y \Delta z \frac{\partial C_A}{\partial t} \)

Dividing by DxDyDz and taking the limit as they go to zero

\( - \frac{\partial W_{Ax}}{\partial x} - \frac{\partial W_{Ay}}{\partial y} - \frac{\partial W_{Az}}{\partial z} + r_A = \frac{\partial C_A}{\partial t} \)

Equations for Figure

\( \begin{array}{cccc} F_{Ay+\Delta y} & \big| & x+\Delta x,\ y+\Delta y,\ z+\Delta z & \big| \ x,\ y+\Delta y,\ z \\ y+\Delta y,\ z+\Delta z & \big| & F_{Az} & \big| \ F_{Az+\Delta z} \ \big| \ F_{Ax} \\ x,\ y,\ z & \big| & F_z & \big| \ x+\Delta x,\ y,\ z+\Delta z & \big| \ x,\ y,\ z+\Delta z \end{array} \)

Back to Chapter