Chapter 14: External Diffusion Effects on Heteregeneous Reactions


Derivation

Diffusion through stagnant gas

Mole Balance

\( \frac{dW_{Az}}{dz} = 0 \)

Diagram showing vertical flow with a downward arrow labeled WAZ between two horizontal lines. At z=0, concentrations CA0 and YA0 are indicated. At z=δ, concentrations CAδ and YAδ are indicated.

\( W_{Az} = K_1 \)

\( W_{Az} = -c D_{AB} \frac{dy_A}{dz} + y_A \left( W_{Az} + W_{Bz} \right) \)

Stagnant gas WBz = 0

\( W_{Az} = -c D_{AB} \frac{dy_A}{dz} + y_A \left( W_{Az} + 0 \right) \)

Rearranging

\( W_{Az} = \frac{-c D_{AB}}{1 - y_A} \frac{dy_A}{dz} = \frac{c D_{AB} d \ln(1 - y_A)}{dz} \)

\( W_{Az} = c D_{AB} \ln(1 - y_A) + K_2 \)

\( z = 0 \quad y_A = y_{A0} \)

\( K_2 = -c D_{AB} \ln(1 - y_{A0}) \)

\( z = \delta \quad y_A = y_{As} \)

\( K_1 \delta = c D_{AB} \ln(1 - y_{As}) - c D_{AB} \ln(1 - y_{A0}) \)

\( W_{Az} = K_1 \)

\( W_{Az} = \frac{c D_{AB}}{\delta} \ln\left( \frac{1 - y_{As}}{1 - y_{A0}} \right) \)

Concentration Profile

\( W_{Az} = c D_{AB} \frac{d \ln(1 - y_A)}{dz} = \frac{c D_{AB}}{\delta} \left( \frac{1 - y_{As}}{1 - y_{A0}} \right) \)

\( \frac{d \ln(1 - y_A)}{dz} = \left( \frac{1 - y_{As}}{1 - y_{A0}} \right) \)

\( z = 0 \quad y_A = y_{A0} \)

\( \ln(1 - y_{A0}) = \frac{z}{\delta} \ln\left( \frac{1 - y_{As}}{1 - y_{A0}} \right) + \ln(1 - y_{A0}) \)

\( \left( \frac{1 - y_A}{1 - y_{A0}} \right) = \left( \frac{1 - y_{As}}{1 - y_{A0}} \right)^{z/\delta} \)


Return to Chapter