Chapter 8: Multiple Reactions


What is wrong with this solution?

Problem

Consider the elementary gas phase reactions

\( A \overset{k_{1A}}{\underset{k_{2A}}{\rightleftharpoons}} 2B \xrightarrow{k_{3B}} 3C \)

\( 2B \xrightarrow{k_{4B}} D \)

Set up the equations to calculate the concentration of each species as a function of time in a constant volume batch reactor. The reaction is carried out isothermally.



Solution

A combined mole balance(1) and rate laws(2)

\( \frac{dN_A}{dt} = -k_{1A} \left( C_A - \frac{C_B^2}{K_{e1}} \right) \)

\( \frac{dN_B}{dt} = 2k_{1A} \left( C_A - \frac{C_B^2}{K_{e1}} \right) - \frac{k_{3B}}{3} C_B^2 - \frac{k_{4B}}{2} C_B^2 \)

\( \frac{dN_C}{dt} = +\frac{2}{3} k_{3B} C_B^2 \)


(3)  Stoichiometry

\( \frac{dN_D}{dt} = 2k_{4B} C_B^2 \)

\( C_A = C_{T0} \frac{N_A}{N_T} \frac{P}{P_0} \)

\( C_B = C_{T0} \frac{N_B}{N_T} \frac{P}{P_0} \)

\( N_T = N_A + N_B + N_C + N_D \)

\( \frac{P}{P_0} = \frac{N_T}{N_{T0}} = \frac{N_T}{N_{A0} + N_{B0}} \)

at \( t = 0 \) then \( N_A = N_{A0} \) and \( N_{B0} = N_{C0} = N_{D0} = 0 \)

These equations will be typed into Polymath.

What five things are wrong with each of the first three steps of the multiple reaction algorithm?

Answer

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Answer

(1)Mole Balance:  V missing on right hand side of each of the combined mole balance and rate law equations (1) through (4).

(2)Stoiciometry:  The gas reaction occurs in a constant volume rigid container, V = V0. Therefore the equations [5) and (6)] for the concentration of the reacting species are not correct

\( C_A = \frac{N_A}{V} = \frac{N_A}{V_0} \)

(3)Rate laws, relative rates, and net rates:  The net rate of reaction is not correct for B,C, and D, i.e., equations (2), (3), and (4).

Correct Solutions

Since V = V0

\( \frac{1}{V_0} \frac{dN_A}{dt} = \frac{dC_A}{dt} \), etc.

(1) \( A \rightarrow 2B \quad -r_{1A} = k_{1A} C_A \)

(2) \( 2B \rightarrow A \quad -r_{2A} = k_{2A} C_B^2 \)

(3) \( 2B \rightarrow 3C \quad -r_{3B} = k_{3B} C_B^2 \)

(4) \( 2B \rightarrow D \quad -r_{4B} = k_{4B} C_B^2 \)


Mole Balance

(1) \( \frac{dC_A}{dt} = r_A \)

(2) \( \frac{dC_B}{dt} = r_B \)

(3) \( \frac{dC_C}{dt} = r_C \)

(4) \( \frac{dC_D}{dt} = r_D \)


Net Rates and Rate Laws

Net Rates

Species A

\( r_A = r_{1A} + r_{-1A} = -k_{1A} \left[ C_A - \frac{C_B^2}{K_{1e}} \right] \)

\( r_B = r_{1B} + r_{-1A} + r_{2B} + r_{3B} \)


Species B

\( \frac{r_{1B}}{2} = r_{1A}, \quad r_{1B} = 2k_{1A} C_A \)

\( \frac{r_{2B}}{2} = r_{2A}, \quad r_{2B} = 2k_{2A} C_B^2 \)

\( r_{3B} = -k_{3B} C_B^2 \)

\( r_{4B} = -k_{4B} C_B^2 \)

\( r_B = 2 \left[ k_{1A} C_A - k_{2A} C_B^2 \right] - k_{3B} C_B^2 - k_{4B} C_B^2 \)

\[ \boxed{ r_B = k_{1A} \left[ C_A - \frac{C_B^2}{K_{1e}} \right] - k_{3B} C_B^2 - k_{4B} C_B^2 } \]


Species C

\( r_C = r_{3C} \)

\( \frac{r_{3C}}{3} = \frac{-r_{3B}}{2} \)

\[ \boxed{ r_{3C} = \frac{3}{2} k_{3B} C_B^2 } \]


Species D

\( r_D = r_{4D} \)

\( \frac{r_{4D}}{1} = \frac{-r_{4B}}{2} \)

\[ \boxed{ r_{4D} = \frac{1}{2} k_{4D} C_B^2 } \]


Summary

\( \frac{dC_A}{dt} = -k_{1A} \left[ C_A - \frac{C_B^2}{K_{1e}} \right] \)

\( \frac{dC_B}{dt} = 2k_{1A} \left[ C_A - \frac{C_B^2}{K_{1e}} \right] - k_{3B} C_B^2 - k_{4B} C_B^2 \)

\( \frac{dC_C}{dt} = \frac{3}{2} k_{3B} C_B^2 \)

\( \frac{dC_D}{dt} = \frac{1}{2} k_{4B} C_B^2 \)

Stoichiometry

The pressure inside the vessel is

\( \frac{P}{P_0} = \frac{N_T}{N_{T0}} = \frac{V C_T}{V C_{T0}} = \frac{C_A + C_B + C_C + C_D}{C_{A0}} \)

Back to Chapter 8