Chapter 8: Multiple Reactions


Writing Net Rates of Formation

The reactions:

(1) \( A + 2B \rightarrow 2C \)

(2) \( 2C + \frac{1}{2} B \rightarrow 3D \)

are elementary. Write the net rates of formation for A, B, C and D.

\( k_{1A} = 0.1 \left( \text{dm}^3/\text{mol} \right)^2 / \text{min} \)

\( k_{2D} = 2 \left( \text{dm}^3/\text{mol} \right)^{3/2} / \text{min} \)

 

Hint 1: What is the net rate of formation of A?

$ (a) r_{A} = k_{1A}C_{A}{C_{B}}^2$

$ (b) r_{A} = -k_{1A}C_{A}{C_{B}}^2$

Hint 2: What is the net rate of formation of B?

$ (a) r_{B} = -k_{1A}C_{A}{C_{B}}^2-k_{2D}{C_{c}}^2{C_{B}}^{\frac{1}{2}}$

$ (b) r_{B} = -k_{1A}C_{A}{C_{B}}^2-6k_{2D}{C_{c}}^2{C_{B}}^{\frac{1}{2}}$

$ (c) r_{B} = -k_{1A}C_{A}{C_{B}}^2-\frac{1}{6}k_{2D}{C_{c}}^2{C_{B}}^{\frac{1}{2}}$

Hint 3: What is the net rate of formation of C?

$ (a) r_{C} = 2k_{1A}C_{A}{C_{B}}^2-\frac{2}{3}k_{2D}{C_{c}}^2{C_{B}}^{\frac{1}{2}} $

$ (b) r_{C} = 2k_{1A}C_{A}{C_{B}}^2-\frac{3}{2}k_{2D}{C_{c}}^2{C_{B}}^{\frac{1}{2}} $

$ (c) r_{C} = k_{1A}C_{A}{C_{B}}^2-\frac{2}{3}k_{2D}{C_{c}}^2{C_{B}}^{\frac{1}{2}} $

Full Solution

Hint 1

A.

\( r_A = r_{1A} + r_{2A} = r_{1A} + 0 \)

\( r_{1A} = -k_{1A} C_A C_B^2 \)

\( \boxed{ r_A = -k_{1A} C_A C_B^2 } \)

Back to Problem










































Hint 2

B.

\( r_B = r_{1B} + r_{2B} \)

\(\frac{r_{1B}}{-2} = \frac{r_{1A}}{-1} \)

\( r_{1B} = 2r_{1A} = -2k_{1A} C_A C_B^2 \)

\(\frac{r_{2B}}{-1/2} = \frac{r_{2D}}{3} \)

\( r_{2B} = -\frac{1}{6} r_{2D} \)

\( r_{2D} = k_{2D} C_B^{1/2} C_C^2 \)

\( r_{2B} = -\frac{1}{6} k_{2D} C_B^{1/2} C_C^2 \)

\( \boxed{ r_B = -2k_{1A} C_A C_B^2 - \frac{1}{6} k_{2D} C_B^{1/2} C_C^2 } \)

Back to Problem










































Hint 3

C.

\( r_C = r_{1C} + r_{2C} \)

\(\frac{r_{1C}}{2} = \frac{r_{1A}}{-1} \)

\( r_{1C} = 2k_{1A} C_A C_B^2 \)

\(\frac{r_{2C}}{-2} = \frac{r_{2D}}{3} \)

\( r_{2C} = -\frac{2}{3} k_{2D} C_C^2 C_B^{1/2} \)

\( \boxed{ r_C = 2k_{1A} C_A C_B^2 - \frac{2}{3} k_{2D} C_C^2 C_B^{1/2} } \)

Back to Problem










































The reactions:

(1) \( A + 2B \rightarrow 2C \)

(2) \( 2C + \frac{1}{2} B \rightarrow 3D \)

are elementary. Write the net rates of formation for A, B, C and D.

\( k_{1A} = 0.1 \left( \text{dm}^3/\text{mol} \right)^2 / \text{min} \)

\( k_{2D} = 2 \left( \text{dm}^3/\text{mol} \right)^{3/2} / \text{min} \)

Solution

A.

\( r_A = r_{1A} + r_{2A} = r_{1A} + 0 \)

\( r_{1A} = -k_{1A} C_A C_B^2 \)

\( \boxed{ r_A = -k_{1A} C_A C_B^2 } \)


B.

\( r_B = r_{1B} + r_{2B} \)

\(\frac{r_{1B}}{-2} = \frac{r_{1A}}{-1} \)

\( r_{1B} = 2r_{1A} = -2k_{1A} C_A C_B^2 \)

\(\frac{r_{2B}}{-1/2} = \frac{r_{2D}}{3} \)

\( r_{2B} = -\frac{1}{6} r_{2D} \)

\( r_{2D} = k_{2D} C_B^{1/2} C_C^2 \)

\( r_{2B} = -\frac{1}{6} k_{2D} C_B^{1/2} C_C^2 \)

\( \boxed{ r_B = -2k_{1A} C_A C_B^2 - \frac{1}{6} k_{2D} C_B^{1/2} C_C^2 } \)


C.

\( r_C = r_{1C} + r_{2C} \)

\(\frac{r_{1C}}{2} = \frac{r_{1A}}{-1} \)

\( r_{1C} = 2k_{1A} C_A C_B^2 \)

\(\frac{r_{2C}}{-2} = \frac{r_{2D}}{3} \)

\( r_{2C} = -\frac{2}{3} k_{2D} C_C^2 C_B^{1/2} \)

\( \boxed{ r_C = 2k_{1A} C_A C_B^2 - \frac{2}{3} k_{2D} C_C^2 C_B^{1/2} } \)


D.

\( r_D = r_{1D} + r_{2D} = r_{2D} \)

\( \boxed{ r_D = k_{2D} C_C^2 C_B^{1/2} } \)

These net rates of reaction are now coupled with the appropriate mole balance of A, B, C, and D and solved using a numerical software package.

For example for a PFR:

\(\frac{dF_A}{dV} = -k_{1A} C_A C_B^2 \)

\(\frac{dF_B}{dV} = -2k_{1A} C_A C_B^2 - \frac{1}{6} C_B^{1/2} C_C^2 \)

etc.

Back to Chapter 8