Chapter 8: Multiple Reactions
Derivation for Series Reaction:
\((1) \quad \frac{dC_B}{dt} + k_2 C_B = k_1 C_{A0} \exp(-k_1 t)\)
\(\text{i.f.} = \exp(k_2 t)\)
\((2) \quad \frac{d\left[C_B \exp(k_2 t)\right]}{dt} = k_1 C_{A0} \exp\left[(k_2 - k_1)t\right]\)
Differentiating the rhs of Equation (2):
\(\exp(k_2 t) \frac{dC_B}{dt} + C_B k_2 \exp(k_2 t) = k_1 C_{A0} \exp\left[-k_1 t\right] \exp(k_2 t)\)
\(\exp(k_2 t)\) we see we arrive back at Equation (1):
\(\frac{dC_B}{dt} + k_2 C_B = k_1 C_{A0} \exp(-k_1 t)\)
Now integrating Equation (2):
\(\frac{d\left[C_B \exp(k_2 t)\right]}{dt} = k_1 C_{A0} \exp\left[(k_2 - k_1)t\right]\)
\(C_B \exp(k_2 t) = \frac{k_1 C_{A0} \exp(-k_1 t)}{k_2 - k_1} + K_1 \exp(-k_2 t)\)
Evaluating the constant of integration \(K_1:\)
When \(t = 0, \quad C_B = 0 \quad \therefore \quad K_1 = -\frac{k_1 C_{A0}}{k_2 - k_1}\)
Substituting for \(K_1\) and rearranging:
\(C_B = \frac{k_1 C_{A0}}{k_2 - k_1} \left[\exp(-k_1 t) - \exp(-k_2 t)\right]\)