This is the list of current and historical course offerings in combinatorics at the University of Michigan.
Combinatorics courses offered in a typical year  | 
|---|
| level | course number | term | name | comment | 
| introductory undergraduate | Math 465 | Fall & Winter | Introduction to Combinatorics | 
rigorous,  proof-based  | 
| introductory graduate/ advanced undergraduate  | 
Math 565 | Fall | Combinatorics and Graph Theory | |
| introductory graduate/ advanced undergraduate  | 
Math 566 | Winter | 
Combinatorial Theory  (Algebraic and Enumerative Combinatorics)  | 
|
| graduate | Math 668 | Fall | Advanced Combinatorics |  topics vary,  cf. below  | 
| graduate | Math 669 | Winter | Topics in Combinatorial Theory |  topics vary,  cf. below  | 
Combinatorics courses, 2000-present  | 
|---|
| year | fall term | winter term | 
| 00-01 | 
565 (Fomin)
 669 (Stembridge): Representations of Sn and GL(n)  | 
566 (Skandera)
 669 (Barvinok): Convexity  | 
| 01-02 | 
565 (Skandera)
 664 (Stembridge): Enumerative combinatorics  | 
 665 (Fomin): Schubert calculus  | 
| 02-03 | 
565 (Skandera)
 665 (Stembridge): Coxeter groups  | 
566 (Fomin)
 669 (Barvinok): Polytopes  | 
| 03-04 | 
565 (Hersh)
 665 (Fomin): Combinatorial matrix theory  | 
566 (Stembridge)
 669 (Barvinok): Lattice points  | 
| 04-05 | 
565 (Reading)
 665 (Stembridge): Representations of Sn and GL(n)  | 
 664 (Fomin): Symmetric functions  | 
| 05-06 | 
565 (Reading)
 665 (Fomin): Root systems  | 
 669 (Barvinok): Topics in convexity  | 
| 06-07 | 
565 (Blass)
 664 (Stembridge): Enumerative combinatorics  | 
 669 (Speyer): Perfect matchings  | 
| 07-08 | 
565 (Fomin)
 669 (Barvinok): Integer points and polyhedra  | 
 669 (Stembridge): Coxeter groups and root systems  | 
| 08-09 | 
 565 (Pylyavskyy) 665 (Fomin): Schubert calculus  | 
465 (Fomin)
 566 (Pylyavskyy) 669 (Stembridge): Combinatorial representation theory  | 
| 09-10 | 
 565 (Pylyavskyy) 665 (Fomin): Combinatorial matrix theory  | 
465 (Fomin)
 566 (Pylyavskyy) 669 (Barvinok): Polytopes  | 
| 10-11 | 
565 (Speyer)
 665 (Lam): Symmetric functions  | 
 669 (Barvinok): Integer points  | 
| 11-12 | 
465 (Fomin)
 565 (Blasiak) 665 (Stembridge): Coxeter groups and root systems  | 
 566 (Blasiak) 669 (Fomin): Schubert calculus  | 
| 12-13 | 
465 (Liu)
 565 (Blasiak) 665 (Speyer): Combinatorics of GLn representation theory  | 
 566 (Stembridge) 669 (Barvinok): Topics in convexity  | 
| 13-14 | 
465 (Fomin)
 565 (Speyer) 665 (Lam): Total positivity  | 
465 (Liu)
 566 (Lam) 669 (Barvinok): Integer points and polytopes  | 
| 14-15 | 
465 (Lam)
 565 (Blass) 665 (Fomin): Cluster algebras  | 
465 (Muller)
 566 (Fomin) 669 (Stembridge): Coxeter groups and root systems  | 
| 15-16 | 
465 (Muller)
 565 (Mustaţă) 665 (Fomin): Symmetric functions  | 
465 (Muller)
 566 (Fomin) 669 (Stembridge): Combinatorial representation theory  | 
| 16-17 | 
465 (Zerbib Gelaki)
 565 (Lam) 665 (Lam): Schubert calculus  | 
465 (Blass)
 566 (Fomin) 669 (Barvinok): Combinatorics and complexity of partition functions  | 
| 17-18 | 
465 (Lam)
 565 (Lam) 665 (Speyer): Coxeter groups  | 
465 (Lam)
 566 (Karp) 669 (Fomin): Cluster algebras  | 
| 18-19 | 
465 (Fomin x 2)
 565 (Nguyen) 665 (Stembridge): Combinatorial representation theory  | 
465 (Bibby x 2)
 566 (Stembridge) 669 (Fomin): Combinatorial matrix theory  | 
| 19-20 | 
465 (Bibby x 2, Blass)
 565 (Pechenik) 665 (Speyer): Bruhat orders  | 
465 (Bibby x 2)
 566 (Stembridge) 669 (Barvinok): Integer points  | 
| 20-21 | 
465 (Fomin x 2)
 565 (Mustaţă) 665 (Speyer): Total positivity  | 
465 (George x 2)
 566 (Lam) 669 (Barvinok): Topics in convexity  | 
| 21-22 | 
465 (Laudone, Pixton)
 565 (Lam) 665 (Fomin): Cluster algebras  | 
465 (George x 2)
 566 (Fomin) 669 (Lam): Combinatorics and geometry of amplitudes  | 
| 22-23 | 
465 (Fomin x 2)
 565 (Lam) 668 (Speyer): Combinatorics of GLn representation theory  | 
465 (George x 2)
 566 (Seelinger) 669 (Barvinok): Integer points  | 
| 23-24 | 
465 (Xue x 2)
 565 (Altman) 668 (Fomin): Combinatorial matrix theory  | 
465 (Yun x 2)
 566 (Fomin) 669 (Lam): Symmetric functions  | 
| 24-25 | 
465 (Xue x 2)
 565 (Seelinger) 668 (Fomin): Coxeter groups and root systems  | 
465 (Wang x 2, Sack)
 566 (Fomin) 669 (Barvinok): Topics in convexity  | 
| 25-26 | 
465 (Wang x 2, Fomin)
 565 (Lam) 668 (Speyer): Combinatorics of GLn representation theory  | 
465 (Seelinger x 2)
 566 (Li) 669 (Lam): Total positivity  |