This is the list of current and historical course offerings in combinatorics at the University of Michigan.
Combinatorics courses offered in a typical year |
|---|
| level | course number | term | name | comment |
| introductory undergraduate | Math 465 | Fall & Winter | Introduction to Combinatorics |
rigorous, proof-based |
| introductory graduate/ advanced undergraduate |
Math 565 | Fall | Combinatorics and Graph Theory | |
| introductory graduate/ advanced undergraduate |
Math 566 | Winter |
Combinatorial Theory (Algebraic and Enumerative Combinatorics) |
|
| graduate | Math 668 | Fall | Advanced Combinatorics | topics vary, cf. below |
| graduate | Math 669 | Winter | Topics in Combinatorial Theory | topics vary, cf. below |
Combinatorics courses, 2000-present |
|---|
| year | fall term | winter term |
| 00-01 |
565 (Fomin)
669 (Stembridge): Representations of Sn and GL(n) |
566 (Skandera)
669 (Barvinok): Convexity |
| 01-02 |
565 (Skandera)
664 (Stembridge): Enumerative combinatorics |
665 (Fomin): Schubert calculus |
| 02-03 |
565 (Skandera)
665 (Stembridge): Coxeter groups |
566 (Fomin)
669 (Barvinok): Polytopes |
| 03-04 |
565 (Hersh)
665 (Fomin): Combinatorial matrix theory |
566 (Stembridge)
669 (Barvinok): Lattice points |
| 04-05 |
565 (Reading)
665 (Stembridge): Representations of Sn and GL(n) |
664 (Fomin): Symmetric functions |
| 05-06 |
565 (Reading)
665 (Fomin): Root systems |
669 (Barvinok): Topics in convexity |
| 06-07 |
565 (Blass)
664 (Stembridge): Enumerative combinatorics |
669 (Speyer): Perfect matchings |
| 07-08 |
565 (Fomin)
669 (Barvinok): Integer points and polyhedra |
669 (Stembridge): Coxeter groups and root systems |
| 08-09 |
565 (Pylyavskyy) 665 (Fomin): Schubert calculus |
465 (Fomin)
566 (Pylyavskyy) 669 (Stembridge): Combinatorial representation theory |
| 09-10 |
565 (Pylyavskyy) 665 (Fomin): Combinatorial matrix theory |
465 (Fomin)
566 (Pylyavskyy) 669 (Barvinok): Polytopes |
| 10-11 |
565 (Speyer)
665 (Lam): Symmetric functions |
669 (Barvinok): Integer points |
| 11-12 |
465 (Fomin)
565 (Blasiak) 665 (Stembridge): Coxeter groups and root systems |
566 (Blasiak) 669 (Fomin): Schubert calculus |
| 12-13 |
465 (Liu)
565 (Blasiak) 665 (Speyer): Combinatorics of GLn representation theory |
566 (Stembridge) 669 (Barvinok): Topics in convexity |
| 13-14 |
465 (Fomin)
565 (Speyer) 665 (Lam): Total positivity |
465 (Liu)
566 (Lam) 669 (Barvinok): Integer points and polytopes |
| 14-15 |
465 (Lam)
565 (Blass) 665 (Fomin): Cluster algebras |
465 (Muller)
566 (Fomin) 669 (Stembridge): Coxeter groups and root systems |
| 15-16 |
465 (Muller)
565 (Mustaţă) 665 (Fomin): Symmetric functions |
465 (Muller)
566 (Fomin) 669 (Stembridge): Combinatorial representation theory |
| 16-17 |
465 (Zerbib Gelaki)
565 (Lam) 665 (Lam): Schubert calculus |
465 (Blass)
566 (Fomin) 669 (Barvinok): Combinatorics and complexity of partition functions |
| 17-18 |
465 (Lam)
565 (Lam) 665 (Speyer): Coxeter groups |
465 (Lam)
566 (Karp) 669 (Fomin): Cluster algebras |
| 18-19 |
465 (Fomin x 2)
565 (Nguyen) 665 (Stembridge): Combinatorial representation theory |
465 (Bibby x 2)
566 (Stembridge) 669 (Fomin): Combinatorial matrix theory |
| 19-20 |
465 (Bibby x 2, Blass)
565 (Pechenik) 665 (Speyer): Bruhat orders |
465 (Bibby x 2)
566 (Stembridge) 669 (Barvinok): Integer points |
| 20-21 |
465 (Fomin x 2)
565 (Mustaţă) 665 (Speyer): Total positivity |
465 (George x 2)
566 (Lam) 669 (Barvinok): Topics in convexity |
| 21-22 |
465 (Laudone, Pixton)
565 (Lam) 665 (Fomin): Cluster algebras |
465 (George x 2)
566 (Fomin) 669 (Lam): Combinatorics and geometry of amplitudes |
| 22-23 |
465 (Fomin x 2)
565 (Lam) 668 (Speyer): Combinatorics of GLn representation theory |
465 (George x 2)
566 (Seelinger) 669 (Barvinok): Integer points |
| 23-24 |
465 (Xue x 2)
565 (Altman) 668 (Fomin): Combinatorial matrix theory |
465 (Yun x 2)
566 (Fomin) 669 (Lam): Symmetric functions |
| 24-25 |
465 (Xue x 2)
565 (Seelinger) 668 (Fomin): Coxeter groups and root systems |
465 (Wang x 2, Sack)
566 (Fomin) 669 (Barvinok): Topics in convexity |
| 25-26 |
465 (Wang x 2, Fomin)
565 (Lam) 668 (Speyer): Combinatorics of GLn representation theory |
465 (Seelinger x 2)
566 (Li) 669 (Lam): Total positivity |