This is the list of current and historical course offerings in combinatorics at the University of Michigan.

Combinatorics courses offered in a typical year

level course number term name comment
introductory undergraduate Math 465 Fall & Winter Introduction to Combinatorics rigorous,
proof-based
introductory graduate/
advanced undergraduate
Math 565 Fall Combinatorics and Graph Theory
introductory graduate/
advanced undergraduate
Math 566 Winter Combinatorial Theory
(Algebraic and Enumerative Combinatorics)
graduate Math 668 Fall Advanced Combinatorics topics vary,
cf. below
graduate Math 669 Winter Topics in Combinatorial Theory topics vary,
cf. below

Combinatorics courses, 2000-present

year fall term winter term
00-01 565 (Fomin)
669 (Stembridge): Representations of Sn and GL(n)
566 (Skandera)
669 (Barvinok): Convexity
01-02 565 (Skandera)
664 (Stembridge): Enumerative combinatorics

665 (Fomin): Schubert calculus
02-03 565 (Skandera)
665 (Stembridge): Coxeter groups
566 (Fomin)
669 (Barvinok): Polytopes
03-04 565 (Hersh)
665 (Fomin): Combinatorial matrix theory
566 (Stembridge)
669 (Barvinok): Lattice points
04-05 565 (Reading)
665 (Stembridge): Representations of Sn and GL(n)

664 (Fomin): Symmetric functions
05-06 565 (Reading)
665 (Fomin): Root systems

669 (Barvinok): Topics in convexity
06-07 565 (Blass)
664 (Stembridge): Enumerative combinatorics

669 (Speyer): Perfect matchings
07-08 565 (Fomin)
669 (Barvinok): Integer points and polyhedra

669 (Stembridge): Coxeter groups and root systems
08-09
565 (Pylyavskyy)
665 (Fomin): Schubert calculus
465 (Fomin)
566 (Pylyavskyy)
669 (Stembridge): Combinatorial representation theory
09-10
565 (Pylyavskyy)
665 (Fomin): Combinatorial matrix theory
465 (Fomin)
566 (Pylyavskyy)
669 (Barvinok): Polytopes
10-11 565 (Speyer)
665 (Lam): Symmetric functions

669 (Barvinok): Integer points
11-12 465 (Fomin)
565 (Blasiak)
665 (Stembridge): Coxeter groups and root systems

566 (Blasiak)
669 (Fomin): Schubert calculus
12-13 465 (Liu)
565 (Blasiak)
665 (Speyer): Combinatorics of GLn representation theory

566 (Stembridge)
669 (Barvinok): Topics in convexity
13-14 465 (Fomin)
565 (Speyer)
665 (Lam): Total positivity
465 (Liu)
566 (Lam)
669 (Barvinok): Integer points and polytopes
14-15 465 (Lam)
565 (Blass)
665 (Fomin): Cluster algebras
465 (Muller)
566 (Fomin)
669 (Stembridge): Coxeter groups and root systems
15-16 465 (Muller)
565 (Mustaţă)
665 (Fomin): Symmetric functions
465 (Muller)
566 (Fomin)
669 (Stembridge): Combinatorial representation theory
16-17 465 (Zerbib Gelaki)
565 (Lam)
665 (Lam): Schubert calculus
465 (Blass)
566 (Fomin)
669 (Barvinok): Combinatorics and complexity of partition functions
17-18 465 (Lam)
565 (Lam)
665 (Speyer): Coxeter groups
465 (Lam)
566 (Karp)
669 (Fomin): Cluster algebras
18-19 465 (Fomin x 2)
565 (Nguyen)
665 (Stembridge): Combinatorial representation theory
465 (Bibby x 2)
566 (Stembridge)
669 (Fomin): Combinatorial matrix theory
19-20 465 (Bibby x 2, Blass)
565 (Pechenik)
665 (Speyer): Bruhat orders
465 (Bibby x 2)
566 (Stembridge)
669 (Barvinok): Integer points
20-21 465 (Fomin x 2)
565 (Mustaţă)
665 (Speyer): Total positivity
465 (George x 2)
566 (Lam)
669 (Barvinok): Topics in convexity
21-22 465 (Laudone, Pixton)
565 (Lam)
665 (Fomin): Cluster algebras
465 (George x 2)
566 (Fomin)
669 (Lam): Combinatorics and geometry of amplitudes
22-23 465 (Fomin x 2)
565 (Lam)
668 (Speyer): Combinatorics of GLn representation theory
465 (George x 2)
566 (Seelinger)
669 (Barvinok): Integer points
23-24 465 (Xue x 2)
565 (Altman)
668 (Fomin): Combinatorial matrix theory
465 (Yun x 2)
566 (Fomin)
669 (Lam): Symmetric functions
24-25 465 (Xue x 2)
565 (Seelinger)
668 (Fomin): Coxeter groups and root systems
465 (Wang x 2, Sack)
566 (Fomin)
669 (Barvinok): Topics in convexity
25-26 465 (Wang x 2, Fomin)
565 (Lam)
668 (Speyer): Combinatorics of GLn representation theory
465 (TBA)
566 (TBA)
669 (Lam): TBA