
Visual Basic Programming for Excel

Zhenming Su, Ph.D.

Institute for Fisheries Research
212 Museums Annex Building

1109 N. University Ave.
Ann Arbor, MI 48109-1084

USA

Phone: (734) 663-3554 Ext. 123
Fax: (734) 663-9399

Email: SUZ@michigan.gov
Website: http://personal.www.umich.edu/~zsu/

 Copyright (c) 2007 by Zhenming Su

Permission is granted for anyone to copy, use, modify, or distribute this document and accompanying
programs for any purpose, provided this copyright notice is retained and prominently displayed, along with

a note saying that the original document are available from Zhenming Su's web page, and note is made of
any changes made to the document. This document is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. All use of these document is entirely at the user's own risk.

Part 1. Programming Basics
1. A Small VB program

Example 1 Demonstration of a VB program

Sub ASmallVBProg()
‘Input
x = Range(“A1”).Value
y = Range(“A2”).Value

‘Calculation
z = x+y

‘Output
Range(“A3”).Value = z
Range(“A3”).Interior.ColorIndex = 3 ‘Red
Range(“A3”).Font.ColorIndex = 4 ‘Green

End Sub

ANALYSIS This ‘sub’ program demonstrates the ease of using VB to solve simple problems. Any programs, large or small,
have three basic parts: (1) Input: Obtaining data from outside. Here we get data for x from cell “A1” and for y from cell “A2” of
an Excel spreadsheet “sheet1”. (2) Processing part: doing calculations. Here the calculation is z = x + y. (3) Output: exporting
your results to outside place. Here we put the value of z to the cell “A3” and change the color of that cell to highlight the result.

2. Writing, Editing, Running and debugging Code in the VB Editor

1

VB editor is a programming environment, using it we can create, edit, debug, and run our programs.

2.1 Open VB Editor
 In Excel, to enter the VB Editor, open the Tools menu, point to Macro, and then click Visual
Basic Editor.

2.2 Write and Edit your program in VB Editor

Find the Project Explorer window on the VB editor, double click “sheet1 (“Example1”)” in it.
This way you open a code window of this sheet. This code window is the place you enter you
programs.

Enter the program above line by line, watching what happens after you input each statement.

2.3 Run the code
(1) In Excel sheet1 “Example1”, put 10 in cell “A1”, and put 20 in cell “A2”;
(2) Open Tools menu, point to Macro, then click Macro… button;
(3) From Macro dialog box, run the program named ASmallVBProg.
Or
You can run a program in the VB Editor by placing the insertion point anywhere in the program you want to
run, and then press F5.

2.4 Edit and debug your program
(1) Click the left edge of the code window corresponding to a line you want to check, see what will

happen. (The shortcut for setting breakpoint is F9);
• You set a breakpoint to suspend execution at a specific statement in a procedure; for example, where you suspect

problems may exist. You clear breakpoints when you no longer need them to stop execution.
• To clear a breakpoint

Position the insertion point anywhere on a line of the procedure containing the breakpoint. From the Debug menu,
choose Toggle Breakpoint (F9), or click next to the statement in the Margin Indicator Bar (if visible.). The breakpoint
is cleared and highlighting is removed.

(2) Re-run the program in Excel following step 2.3 or run it in the VB editor by pressing F5. The
program will stop at the breakpoint and that line will be highlighted. Then you can run the
program line by line by pressing F8. Put the mouse pointer in a variable name and see what
happens.

(3) As you note in the last step, when you position the mouse pointer in a variable name, the present
value of that variable will show up. Combining breakpoint setting and this step, you can check
your program for possible bugs.

Part 2 Language

1. Variables, Constants, Arrays, Operators and built-in functions
(1) Data type

In VB, as in all high-level programming languages, you use variables and constants to store values of
different data type. Such as, a name is usually expressed as a string; a count will be a integer; the length of
a fish will be a real number and the answer to the question “Are you married?” will be “True” or “False”.
Data type is important, because we process each data type with particular operators, functions and
expressions and is stored in the computer by different ways. Each date type has its own syntax. The data
types provided by VB are :

Byte, Integer, Long, Single, Double, String, Boolean, Data, Currency, Object

(2) Declaring a Constant, Variable, or Array
Constant: When you first begin programming, you will find that some of your programs require you to use
the same value over and over, sometimes this value may be difficult to remember or too long to enter. Such
as when your program does some calculations on the area of some circles, you must use Pi values, for

2

instant for 8 times. You must put Pi value in your code for 8 times! You can make your code easier to read
and maintain using constants. A constant is a meaningful name that takes the place of a number or string
that does not change. The value of a constant cannot change during the execution of the program.

Declare a constant:

Const MyVar = 459

Const Pi=3.141596

Const NewYear=01/01/1999

Variable: A variable is similar to a constant in that it is a name given to a value, but with one big
difference. The value of a variable can change during the program execution.

Usually using keyword Dim to declare a variable:

Dim I,j,k as integer

Dim x,y,z as double

Dim aString as string

Dim myMoney as currency

Dim IsGraduateStudent as Boolean

(Also see: Private, Public, Static)

Array: An array is a data type that represents a bunch of data of the same data type. We use one name for
each array, using indexes to distinguish the elements of this bunch of data. For example:

For 15 Chinook caught in a trip, we may using w(1),w(2),w(3),…,w(15) to represent the weight of each
fish, instead of giving the weight of each fish a separate name.

The purpose of setting up an array type is simplifying the coding of these kinds of data.

Before you use an array in the code, you must define (or declare) it. Declaring an array is similar to that of
a variable, but here we must also need to indicate the size and the dimensions of an array. One-dimensional
arrays represent sets of data, such as the chinook weights. In math, they are called vectors. Two-
dimensional arrays represent data tables, such as the response of the fish to the combined changes of light
and temperature. In math, they are called matrixes. Multi-dimensional arrays represent changes with
multiple factors.

Declaring one-dimensional array:

Dim w(1 to 15) as double ‘Array w, one-dim, size 1 to 15, data type--double

Dim strArray(0 to 100) as string ‘String type array strArray, one-dim, size 0 to 100 (it can
contain 101 elements)

Dim x(10) as single ‘ Single type array, one-dim, can contain 11 elements (0 to 10)

Declaring two-dimensional array:

Dim fishResp(1 to 15, 1 to 100) as boolean ‘Array fishresp, two-dim; 1st dim--size 1 to 15, 2rd
dim 1 to 100; data type--boolean

Access elements of an array: you use the name of an array and an index to access an element. For example:

W(1) = 25.0 ‘Assign 25.0 to the 1st element of the array w

W(2) = 50.0

StrArray(9) = “A jack sockeye”

FishResp(2, 6) = true ‘Assign boolean value true to element (2,6) of the array fishResp

3

We will practice Example 2 through 14 in worksheet “Example2-14”
Example 2 Simple program using a one dimensional array

Sub ArrayDemo()

 Dim sum As Double

 Dim w(1 To 10) As Double

 w(1) = Sheets("Example2-14").Range("B2").Value

 w(2) = Sheets("Example2-14").Range("B3").Value

 w(3) = Sheets("Example2-14").Range("B4").Value

 w(4) = Sheets("Example2-14").Range("B5").Value

 sum = w(1) + w(2) + w(3)+w(4)

 Sheets("Example2-14").Range("E2").Value = sum

End Sub

ANALYSIS This program declared an array called w, it can hold 10 real values. Then we loaded data for its first four
elements: w(1), w(2), w(3), w(4) and calculate the sum. But see how ugly the program is! It uses 4 lines to express a repeated
action: load a value for an element of an array. As we learn how to use loops, we can use array more elegant.

(3) Operators: +, -, *, /, ^ (power), AND, OR
(4) Standard or Built-in functions: Four confusing functions

1) Int(x) Returns the integer portion of a number.
 Fix(x)

Eaxample:
MyNumber = Int(99.8) ' Returns 99. MyNumber = Fix(99.2) ' Returns 99.
MyNumber = Int(-99.8) ' Returns -100. MyNumber = Fix(-99.8) ' Returns -99.
MyNumber = Int(-99.2) ' Returns -100. MyNumber = Fix(-99.2) ' Returns -99
This example illustrates how the Int and Fix functions return integer portions of numbers. In the case of a negative number argument,

the Int function returns the first negative integer less than or equal to the number; the Fix function returns the first negative integer greater than
or equal to the number.
2) Log(x) Returns the natural logarithm of a number. Pay special attention to this function. Because in the
worksheet, you use “=ln(x)” calculate the natural logarithm.
3) sqr(x) Returns the square root of a number. This is also confusing. In the worksheet you use sqrt(x) to
calculate the square root.
To learn more about VB functions, use Help to look up math functions.

2. Conditional Statement
Until now we can only use VB to do some simple, straightforward stuff. VB has more powerful
statements to control the executions of your application. They are conditional statements that switch
the direction of execution according to some conditions, which is the magic that makes your program
thinking and making decisions, and loop statements which make your program to have replicate
ability.
First we introduce conditional statements of VB

(1) If… Then…
This statement can let your program do something according to a condition. Look at this example:

Example 3 Simple program using If…Then statement

4

Sub IfThenDemo()
 Dim sum As Double
 Dim w(1 To 10) As Double

 w(1) = Sheets("Example2-14").Range("B2").Value
 w(2) = Sheets("Example2-14").Range("B3").Value

 'If the first fish is heavier than the 2nd one (or with the same weight) then color it with red
 If w(1) >= w(2) Then
 Sheets("Example2-14").Range("B2").Interior.ColorIndex = 3
 End If ‘Do not forget end if

 'If the first fish is lighter than the 2nd one then color it with green
 If w(1) <= w(2) Then
 Sheets("Example2-14").Range("B2").Interior.ColorIndex = 4
 End if

End Sub

(2) If…Then…Else…
Example 3 can be improved by if…then…else…

Example 4 If…Then…Else statement

Sub IfThenElseDemo()
 Dim sum As Double
 Dim w(1 To 10) As Double

 w(1) = Sheets("Example2-14").Range("B2").Value
 w(2) = Sheets("Example2-14").Range("B3").Value

 If w(1) >= w(2) Then
 'If the first fish is heavier than the 2nd one (or with the same weight) then color it with red
 Sheets("Example2-14").Range("B2").Interior.ColorIndex = 3
 Else
 'If the first fish is lighter than the 2nd one then color it with green
 Sheets("Example2-14").Range("B2").Interior.ColorIndex = 4
 End if

End Sub

 Example 5 Nested if statements

 Sub NestedIf()
 Dim HeaviestFish, sum As Double
 Dim w(1 To 10) As Double

 w(1) = Sheets("Example2-14").Range("B2").Value
 w(2) = Sheets("Example2-14").Range("B3").Value
 w(3) = Sheets("Example2-14").Range("B4").Value

 'Select the heaviest fish among the first three fish and color it with red

 If w(1) >= w(2) Then
 If w(2) >= w(3) Then

5

 HeaviestFish = w(1)
 Sheets("Example2-14").Range("B2").Interior.ColorIndex = 3
 End If
 Else
 If w(2) >= w(3) Then
 HeaviestFish = w(2)
 Sheets("Example2-14").Range("B3").Interior.ColorIndex = 3
 Else
 HeaviestFish = w(3)
 Sheets("Example2-14").Range("B4").Interior.ColorIndex = 3
 End If
 End If

 End Sub

Note: you must match each If with an End If in the correct place

(3) Select Case
Sometimes a condition may have multiple results. Decision must be made according to one of the
results. In such case you can use Select Case statement.
Example 6 Select Case Statement

Sub SelectCaseDemo()
 Dim Number
 Number = 8 ' Initialize variable.

 Select Case Number ' Evaluate Number.
 Case 1 To 5 ' Number between 1 and 5.

Debug.Print "Between 1 and 5"
 ' The following is the only Case clause that evaluates to True.
 Case 6, 7, 8 ' Number between 6 and 8.
 Debug.Print "Between 6 and 8"
 Case Is > 8 And Number < 11 ' Number is 9 or 10.
 Debug.Print "Greater than 8"
 Case Else ' Other values.
 Debug.Print "Not between 1 and 10"

 End Select
End Sub
Note: Debug.print outputs the result in the immediate window. Choose Vb Editor view menue, click the

immediate window button to open the immediate window

3. Loops
You can use loop structure to repeatedly run a section of your program. The commonly used ones are
For…Next, Do while…Loop and Do…Loop statements.

(1) For…Next
If you know how many times you will replicate, you can use For…Next statement. Here is a simple
example copied from Excel VB Help.

Example 7 Sum

Sub Sum()
 Total = 0
 For j = 2 To 10 Step 2
 total = total + j
 Next j

6

 MsgBox "The total is " & total ‘The & operator to force string concatenation. MsgBox is a window’s dialog
box to display a message

End Sub

ANALYSIS In this program, j changes from 2 to 10 at a step of 2 (j = 2, 4 , 6, 8, 10). For each j, total =total + j is
performed. When Next j is encountered, j increments a step size 2: j = j + 2, and then it repeats the calculation again until j
>10. This program does the following calculation: total = 2 + 4 + 6 + 8 + 10. We usually use the recurrence equation: total t =

total t-1 + x with the initial condition total 0 = 0 to perform the summation (Sum = ∑
=

n

j
jx

1
).

Example 8 For…Next Statement: product
This program will calculate Prod = 1 x 2 x 3 x … F = F !, e.g., the factorial of F.

Sub Factorial()
 Dim I, F As Integer
 Dim Prod As Double

 F = InputBox("Calculate Factorial of :", "***Factorial Calculation***", "2")
 Prod = 1
 For I = 1 To F
 Prod = Prod * I
 Next I
 MsgBox "The factorial of F is " & Prod 'The & operator to force string concatenation.

End Sub

Note: Through InputBox, you can enter a single input value for a program. Learn more of InputBox by VB Help

(2) Do…Loop
If you don’t know the run times, you can use Do…Loop, or Do While {Condition}… Loop, or Do …
Loop Until {condition}.

Example 9 Count the fish with weight greater than 20 lb

 Sub CountIf()
 Dim i, count As Integer
 Dim w As Double

 i = 2
 count = 0
 Do
 'Read the fish weight
 w = Sheets("Example2-14").Cells(i, 2).Value

 'Count only if w > 20
 If w > 20 Then
 count = count + 1
 End If

 'Change i for another loop
 i = i + 1
 Loop Until w < 0

 Sheets("Example2-14").Cells(2, 4).Value = "# fish with weight > 20 lb: " + Str(count)
End Sub

7

ANALYSIS We use another way to refer to a cell in the spreadsheet here: Cells(Row #, Col #). It is similar to
Range(“ “), but here its row no. and column no. can be changed according to the context whereas Range can
only refer to fixed cell(s). Notice that by Do…Loop, we find the weight of each fish from top to bottom until
encounter “-1”. The statement I = I + 1 is important for Do…Loop, without it the program will loop forever with I
stays at its initial value 2. For…Next statement does this automatically.

Example 10 Heaviest Chinook!

Sub FindMax_HeavyFish()
 Dim Heavy As Double
 Dim w As Double

 i = 2

 'Read the first fish weight value and let the value of Heavy equals to it
 Heavy = Sheets("Example2-14").Cells(i, 2).Value
 Do
 i = i + 1
 'Read the next fish weight
 w = Sheets("Example2-14").Cells(i, 2).Value

 'If the next value is larger than the value of Heavy then put that value in Heavy variable
 If w > Heavy Then
 Heavy = w
 End If

 Loop Until w < 0

 Sheets("Example2-14").Cells(2, 4).Value = "Here is the heaviest Chinook: " + Str(Heavy)

End Sub

Example 11 Sorting the chinook in your trip
This example demonstrates how loops and arrays are used together making your program more neat
and clear. Notice that the sorting process is an extension to the Find_Max program above: after we find
the heaviest fish, then we look for the next heaviest fish and then next… using the same algorithm as
Find_Max.

Sub RippleSort()
 Dim i, j, N, NTimes As Integer
 Dim x(1 To 30), xtemp As Double

 ‘Input
 N = 9
 For i = 1 To N
 'Read the fish weight
 x(i) = Sheets("Example2-14").Cells(i + 1, 2).Value
 Next i

 ‘Processing
 NTimes = N – 1

 For i = 1 To NTimes
 For j = i + 1 To N
 If x(j) < x(i) Then

8

 'Swap the value of x(j) and x(i)
 xtemp = x(j)
 x(j) = x(i)
 x(i) = xtemp
 End If
 Next j
 Next i

 ‘Output
 Sheets("Example2-14").Cells(1, 7).Value = "Sorted weight"
 For i = 1 To N
 'Output the sorted weight in column 5, row 2 to 10
 Sheets("Example2-14").Cells(i + 1, 7).Value = x(i)
 Next i

End Sub
ANALYSIS

4. Subs (Macros)
There are two kinds of programs in VB: (1) Subs and (2) Functions. The difference between subs and
functions is that you use the function name to return a value (mimic a math function), but for a sub,
you need it does lots of tasks and don’t need it return a particular value.

(1) Subs without arguments—Macro
A Macro is a kind of subs without arguments. You can run it directly through the Macro dialog box.
All our previous examples are Macros.

(2) Subs with argument(s)
We usually break a complex program into small blocks (subs). Each block will perform only one
independent task. We make the blocks as independent as possible. This way, the bugs in each block
will not influence other block. Changes made to each block can be done separately. We connect or
string the blocks together into an entity (a program or module) by call statement and provide the input
data need by a block through arguments. You can also call a macro, but it doesn’t need your input data.

Syntax

Sub name [(argumentlist)]
[statements]
[Exit Sub]
[statements]

End Sub

An argument is a constant, variable, array or expression passed to a procedure.

 Example 12 A sub with arguments
Sub Ybar(N, x, Average)
 'calculate sample mean
 Dim sum As Double
 sum = 0
 For i = 1 To N
 sum = sum + x(i)
 Next i

 Average = sum / N
End Sub

(3) Call a sub within a sub
Using:

Call sub-name(argumentlist)

9

Example 13 Bootstrapping

Sub Bootstrap()
 '***********************************
 '* Learn How to do Bootstrapping *
 '***********************************
 'a) Draw a random sample from the observed Chinook catch data with replacement
 'b) Using the Ybar sub to calculate the mean of the sample
 'c) Replicate a and b for 1000 times
 'd) Calcualte the Variance of 1000 Ybar's produced in b and c
 'e) Using Excel "=VAR()" to calculate the estimated variance of the sample mean calculation for the original

observed weight values: var^(Ybar)=VAR(B2:B10)/N:
 'f) Comparing the two Variances just obtained

 Dim i, B As Integer
 Dim Index(1 To 30) As Integer
 Dim x(1 To 30), w(1 To 30) As Double
 N = 9
 For i = 1 To N
 'Read the observed fish weight data
 x(i) = Sheets("Example2-14").Cells(i + 1, 2).Value
 Next i

 Sheets("Example2-14").Cells(16, 1).Value = "BootRep"
 Sheets("Example2-14").Cells(16, 2).Value = "YbarBoot"

 'Bootstrapping
 For B = 1 To 1000

 'Draw replicate sample from the observed sample with replacement
 Call sampler(N, Index)

 'find the weight values corresponding to the indexes: Index(i)
 For i = 1 To N
 w(i) = x(Index(i))
 Next

 'call the sub Ybar to calculate the mean
 Call Ybar(N, w, mean)

 Sheets("Example2-14").Cells(B + 16, 1).Value = B
 Sheets("Example2-14").Cells(B + 16, 2).Value = mean
 Next B
End Sub

Sub Ybar(N, x, Average)
 'calculate sample mean
 Dim sum As Double
 sum = 0
 For i = 1 To N
 sum = sum + x(i)
 Next i

 Average = sum / N

10

End Sub

Sub sampler(N, Index)
 Dim i As Integer
 For i = 1 To N
 'a) Using RND function to draw a random number between [0, 1):The Rnd function returns a value less than 1

but greater than or equal to zero.
 'b) and convert this random number to an integer in the range 1 to 9 using equation: Index(i) = Int(N * Rnd) +

1
 Index(i) = Int(N * Rnd) + 1 'if Rnd=0, then Index = 1, if Rnd near 1, Index = N
 Next i
End Sub

5. Functions
(1) The differences between a sub and a function

Syntax

Function name [(arglist)] [As type]
[statements]
[……]
[statements]
[name = expression]

End Function

Example 14 A function with arguments

Function YbarB(N, x)
 'calculate sample mean
 Dim sum As Double
 sum = 0
 For i = 1 To N
 sum = sum + x(i)
 Next i

 YbarB = sum / N
End Function

(2) Using a function
Just as using a standard function.
For example, in sub Bootstrap(), you can use the function Ybarb() by

Sheets("Example2-14").Cells(B + 16, 3).Value = YbarB(N, w)
(3) A function can return multiple values—return an array!

Example 15 A function return an array
In worksheet-“Transpose”, use the following function to transpose the matrix there.

Function MatrixTranspose(N, A)
 ReDim x(1 To N, 1 To N)

 For i = 1 To N
 For j = 1 To N
 x(j, i) = A(i, j)
 Next j
 Next i

11

 MatrixTranspose = x()
End Function

6. Modules
A module is a package wrapping up all subs and functions.

• Insert a new module

You can insert a new module in your project by the insert Module button on the Insert menu of
the VB Editor.

• Import or Export a module

On the File menu of VB, choose Import or Export to load or save your modules separately in
your directories.

Part 3 Learning by yourself--Getting Help and Recording a Macro

(1) Record a macro

1 On the Tools menu, point to Macro, and then click Record.
2 In the Macro name box, enter a name for the macro.
3 Click OK.
4 Carry out the actions you want to record.
5 On the Stop Recording toolbar, click Stop Recording

Example 16 Using Record Macro to take down the sorting process of Excel
Try this example in sheet “Example 16”

Sub RecordSort()
'
' RecordSort Macro
' Macro recorded 11/23/98 by ftzs
'

'
 Range("B2:B10").Select
 Selection.Copy
 Range("D2").Select
 ActiveSheet.Paste
 Application.CutCopyMode = False
 Selection.Sort Key1:=Range("D3"), Order1:=xlAscending, Header:=xlGuess, _
 OrderCustom:=1, MatchCase:=False, Orientation:=xlTopToBottom
End Sub

2. Get Help

Position the insertion point anywhere in a keyword, then press F1 to get help. As an example, try to do
so for Range or Cells. Try to find their formula property. For example, the following statements sets
the formula for cell A2: ActiveSheet.Cells(2, 1).Formula = "=sum(A1:A2)". This is a very useful property.
Because Excel has lots of worksheet functions you are very familiar with, this is the way you use the worksheet
functions in your VB programs.

Example 17

12

Here, I want to learn something about “sort” in example 16. So I followed the above instructions. You
see I copied some of the content in the help for “sort” to my program GetHelp, and copied some lines
from example 16, and put them together, I got a workable sub like this

Sub GetHelp()

 'This example sorts the range A1:C20 on Sheet1,

 'using cell A1 as the first sort key and cell B1 as the second sort key.

 'The sort is done in ascending order by row, and there are no headers.

 Range("B2:B10").Select

 Selection.Copy

 Range("D2").Select

 ActiveSheet.Paste

 ActiveSheet.Range("D2:D10").Sort Key1:=Range("D1")

End Sub

13

	Visual Basic Programming for Excel
	Part 1. Programming Basics
	Part 2 Language

