DECOMPOSITIONS OF LAURENT POLYNOMIALS

MICHAEL E. ZIEVE

ABSTRACT. In the 1920’s, Ritt studied the operation of functional com-
position g o h(xz) = g(h(x)) on complex rational functions. In the case
of polynomials, he described all the ways in which a polynomial can
have multiple ‘prime factorizations’ with respect to this operation. De-
spite significant effort by Ritt and others, little progress has been made
towards solving the analogous problem for rational functions. In this
paper we use results of Avanzi-Zannier and Bilu-Tichy to prove ana-
logues of Ritt’s results for decompositions of Laurent polynomials, i.e.,
rational functions with denominator z".

1. INTRODUCTION

In the 1920’s, Ritt [28] studied the possible ways of writing a complex
polynomial as a composition of lower-degree polynomials. To this end, a
polynomial f € C[z] with deg(f) > 1 is called indecomposable if it can-
not be written as a composition f(z) = g(h(x)) with g,h € C[z] and
deg(g),deg(h) < deg(f). By induction, any polynomial of degree more than
one can be written as the composition of indecomposable polynomials. Al-
though this decomposition need not be unique, Ritt proved that its length is
unique, and moreover he gave a recursive procedure for obtaining any decom-
position from any other. Ritt’s results are quite fundamental, and have been
applied in various wide-ranging contexts (cf. [3, 6, 13, 14, 24, 25, 26, 27, 35],
among others).

Unfortunately, there are no known analogues of Ritt’s results in the case
of rational functions. Ritt himself was the first to study this [29, 30]. He
noted [30] that the action of the group A4 on the Riemann sphere, together
with the fact that A4 has maximal chains of subgroups 1 < Cy < Vj < Ay
and 1 < C3 < A4, implies that a certain degree-12 rational function can be
written as both the composition of two indecomposables and the composition
of three indecomposables. (This example is reproduced in the context of
modular forms in [15, 21].) Further, if f(z) is the map on z-coordinates
induced by multiplication-by-p on the elliptic curve y?> = 23+1, for any prime
p with p =2 (mod 3), then f is indecomposable but there is a decomposable
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g € C(z) for which 23 o f = goz?3 [19]. Further families of counterexamples
to the rational function analogues of Ritt’s results are given in [19]; however,
as noted there, all known examples fit into one of three simple types, which
suggests there may be a concise description of all examples. On the other
hand, proving such a possibility seems far beyond current techniques.

In this paper we study a situation which lies between the polynomial and
rational function cases: namely, we study Laurent polynomials, i.e., ratio-
nal functions of the form f(x)/z"™ with f € C[z]. We will prove that de-
compositions of Laurent polynomials satisfy variants of Ritt’s results. Our
statements involve the Dickson polynomials D, (x), which are defined by
the functional equation D, (x + 1/x) = 2™ + 1/z™; these are related to the
classical Chebychev polynomials T;,(x) via Dp(z) = 275,(x/2). We say a
rational function of degree > 1 is indecomposable if it cannot be written as
the composition of rational functions of strictly lower degrees, and a com-
plete decomposition of a rational function is an expression of the rational
function as the composition of indecomposable rational functions. We note
(cf. Lemma 2.3) that a decomposable Laurent polynomial can actually be
written as the composition of two Laurent polynomials of strictly lower de-
grees, rather than just as the composition of lower-degree rational functions.
Writing £ for the set of all complex Laurent polynomials, our Laurent poly-
nomial analogue of the classical ‘first theorem of Ritt’ is as follows:
Theorem 1.1. If f =piopyo---op, =qioqao---0qs where p;, q; € C(x)
are indecomposable and f € L, then the sequences (deg(p1), . ..,deg(p,)) and
(deg(q1), - ..,deg(qs)) are permutations of one another (sor = s). Moreover,
there is a finite sequence of complete decompositions of f which begins with
pLo---op,. and ends with q1 o --- o qs, where consecutive decompositions
in the sequence differ only in that two adjacent indecomposables in the first
decomposition are replaced in the second decomposition by two others having
the same composition.

Our Laurent polynomial analogue of the ‘second theorem of Ritt’ is:

Theorem 1.2. If f = gy o hy = g3 o hy where g1,g2,h1,he € C(x) are
indecomposable and f € L, then (after perhaps exchanging the pairs (g1, h1)
and (ga, ha)) there exist degree-one 1, ..., us € C(x) such that

g1 =p10Grops

g2 = p10Gaopy

hy = pz' o Hyopup

hy = pyt o Hy o o,
where one of the following holds (with n prime):

(1.2.1) Gy = Gy and Hy = Hy with G1,Hs € L and either G; € Clz] or
H2 = lin;

(1.2.2) Gy = Hy = 2", Hy = 2"q(2"), and Gy = 2"q(x)" with ¢ € C(x) and
r € Z~q coprime to n;
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(1.2.3) Gy = Hy = D,,, and Hy = Go = D,,, where m # n is prime;
(1.24) Gy =D,, HH=Gs=x+ 1/x, and Hy = x™;
(1.2.5) Gi1 =Gy =Dy, HH =x+1/z, and Hy = (x+1/(Cx), where (™" = 1.

We emphasize that, in (1.2.2), we do not require ¢ € L. In fact, our proof
shows we can require either ¢ € £ or ¢ = Q(%H) with @ € xClz]. To see
why the latter case gives rise to Laurent polynomials (after composing with
1), Put ¢ = Q(3hy) with Q € aCla), so 2q(2?) o iZ7} = iTHQ(EER),
which is in L.

These results generalize the classical theorems of Ritt, which are obtained
by requiring all the rational functions to be polynomials. Stated in the
other direction, if we begin with Ritt’s results and attempt to generalize
them to decompositions of Laurent polynomials, we must replace the various
polynomials in Ritt’s results by rational functions, and also we must allow
the new possibilities (1.2.4) and (1.2.5). In fact, (1.2.5) can be obtained
from two applications of (1.2.4), in addition to composing with linears: for,

if (" =1 then
o<§x+i> :Dno<m+l>o§”$
(x x

1
= <x+—>oxnocl'
xr
1
X
1
:Dno<3:—|——>.
X

One consequence of Ritt’s results, which actually was deduced as a step in
Ritt’s proofs, is a certain ‘rigidity’ property of polynomial decompositions:
Corollary 1.3. If g1 o hy = g2 o hy where g1,g2,h1,he € Clz] \ C and
deg(g1) = deg(g2), then there is a linear p € Clx] such that go = g1 o p and
ho = M_l ohi.

Note that (1.2.5) provides counterexamples to the Laurent polynomial

analogue of Corollary 1.3. Further counterexamples are obtained by putting
n=2in (1.2.4). We will determine all examples:
Proposition 1.4. If f = giohy = gaohs where f € L\C and g1, g2, h1,hs €
C(z) satisfy deg(g1) = deg(g2), then, perhaps after exchanging (g1,h1) and
(92, h2), there exist G € Clz|, H € L, and degree-one pu1, p2 € C(x) such
that

=GoGrom
g2 =GoGaopus
hlzpfloHloH
hg:,uglngoH,
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where one of the following holds (in which n € Z):

(141) G1 = G2 = H1 = H2 =T,

(14.2) Gy = Hy = 2", H; = (2" + 1)/2", and Gy = (x + 1)"/z", where
0<r<mn and ged(r,n) =1;

(143) Gy = —G2 = Dy, Hy = z + 1/x, and Hy = (x + 1/({x), where
"=

(1.4.4) G1 = Dy, Hl = Gy =2+ 1/z, and Hy = 2°.

Moreover, in (1.4.2)—(1.4.4) we may assume H = az® with o € C* and

S € Z>0.

Ritt proved a generalization of the polynomial version of Theorem 1.2,
which can be used to describe all polynomials g1, g2, h1, he with gy o hy =
g2 © hy [3]. We will prove the following analogue for Laurent polynomials:

Theorem 1.5. Let f € L\ C and g1, g2, h1,hs € C(x) satisfy f =g1oh; =
g2 © hy. Then, perhaps after switching (g1, h1) and (g2, ha), we have
g1=GoGrou
g2 =GoGaops
hi = ,ufl oHioH
ho = ,u2_1 oHyoH

for some G € Clz], some H € L, and some degree-one i1, 12 € C(x), where
one of the following holds (in which m,n are coprime positive integers, and

p € Clz] \ {0}):
(1.5.1) Gy = Hy =", Hy = z"p(a"), and Gy = x"p(x)", where r € Z with

ged(r,n) = 1;
(152) G1 = 2%, Hy = (z — 1)p(x + 2), G2 = (2% — 4)p(z)?, and Hy =
x4+ 1/x;

(1.5.3) Gy = Hy = Dy, and Hy = G2 = Dy;

(1.54) Gy = (%2 — 13 H =a22+220+1- ﬁ, Gy = 3% — 423, and
Hy=3((x+1—-5)%+4);

(1.5.5) G1 = Dgp, Hi = 2" + 1/2", G2 = —Dyy,, and Hy = (Czx)™ +
1/(¢x)™, where d € Z~1 and (9™ = —1;

(1.5.6) G1 = Dy,, HH =Go=2"+1/2", and Hy = z™.

Moreover, in all cases besides (1.5.1) and (1.5.3), we may assume H = ax®

with « € C* and s € Z~yg.

The analogous result for decompositions of polynomials [3] involves only
cases (1.5.1) and (1.5.3).

Ritt’s proofs of the polynomial versions of Theorems 1.1 and 1.2 are in-
dependent of one another, and have quite distinct flavors. His proof of
Theorem 1.1 for polynomials is essentially group theoretic: if f is a poly-
nomial then the inertia group I at any infinite place of (the Galois closure
of) C(x)/C(f(x)) is transitive, so one can translate questions about decom-
positions of f into questions about subgroups of I, which are not difficult
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to resolve since I is cyclic. On the other hand, Ritt’s proof of Theorem
1.2 for polynomials is a genus computation, as he determines all polynomi-
als g1, h1 of coprime degrees for which the curve gi(x) — hi(y) has genus
zero. For Laurent polynomials we require a different approach, since there
is no longer a transitive inertia group, so Theorem 1.1 cannot be proved via
group theory. Instead we first prove Theorem 1.5, using results of Avanzi—
Zannier [2] and Bilu-Tichy [6], which in turn rely on Ritt’s second theorem
and related genus computations (among other things). After determining
the possible decompositions of the specific rational functions appearing in
Theorem 1.5, we can then deduce Theorems 1.1 and 1.2. We pay special
attention to decompositions of H; and Ga from (1.2.2), in view of their role
in potential analogues of Ritt’s results for rational functions: these H; and
G5 are especially important since they have the same shape as one of the
main sources of rational function counterexamples (the one including the
elliptic curve examples mentioned above).

Ritt’s proofs used the language of Riemann surfaces; several authors have
rewritten his proofs in different languages [7, 8, 9, 11, 12, 16, 17, 20, 22, 31,
32, 33, 34]. For some applications the recursive procedure in Theorem 1.2 is
not sufficient, and one needs more precise information about the collection
of all the different decompositions of a polynomial; see [23] for the state of
the art on polynomial decomposition. We do not know whether there are
Laurent polynomial analogues of the latter results.

The contents of this paper are as follows. In the next section we prove
some general results about decompositions of Laurent polynomials, based on
which we outline our strategy for proving our main results. In Sections 3 and
4 we describe all decompositions of the various special Laurent polynomials
occurring in the statements of the above results. We use these specific
decompositions to prove preliminary versions of Theorem 1.5 in Sections 5
and 6, and finally we conclude in Section 7 by proving the results stated in
this introduction.

2. PRELIMINARY REDUCTIONS

Recall that the set £ of Laurent polynomials consists of all rational func-
tions whose denominator is a power of z, or equivalently, all rational func-
tions having no poles besides 0 and co. This perspective yields the following
result:

Lemma 2.1. If f = go h where f € L\ C and g,h € C(z), then there is a
degree-one j € C(x) such that G := go u and H := u~' o h satisfy one of
the following:

(2.1.1) GeClz] and H € L;

(2.1.2) G € L and H = z™ for some n € Z~y.

Proof. The poles of f = g o h are the preimages under h of the poles of g;
by hypothesis, these preimages form a subset of {0,00}. Hence g has at
most two poles. First suppose g has a unique pole, say a. Pick a degree-one
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u € C(x) for which pu(0o) = «, so that G := g o u has oo as its unique pole,
whence G € C[z]. Then f = G o H where H := p~' o h, and H can have
no poles besides 0 and oo, so H € L, as in (2.1.1). Now suppose g has two
poles, say « and 3. Since g o h has at most two poles, both « and g must
have unique preimages under h, which must be 0 and co. Say a = h(0)
and 8 = h(o0), and put v = h(1). Pick a degree-one p € C(z) which maps
0 — «a and oo +— § and 1 — ~. Then the poles of G := g oy are 0 and oo,
so G € L, and H := ! o h has its unique pole at oo (so H € C[z]) and
has 0 as its unique root (so H is a monomial) and maps 1 +— 1 (so H is
monic). O

Thus, in what follows we will restrict to decompositions f = G o H where
G and H satisfy (2.1.1) or (2.1.2). We refer to decompositions of these
types as ‘T'ype 1’ and ‘Type 2’ decompositions. A pair of decompositions
of the same Laurent polynomial must be in one of three categories: both
decompositions could be Type 1, both could be Type 2, or one could be
Type 1 and the other Type 2. It is easy to describe the pairs of Type 2
decompositions of a Laurent polynomial:

Proposition 2.2. If gy ox™ = gooa™ with g; € L and n,m > 0, then there
exists G € L such that g, = G o g™m)/n gnd gy = G o glem(nm)/m,

In other words, if we write a Laurent polynomial f as f = Goz with N

maximal, then every Type 2 decomposition of f is (up to linears) G(z") o
N/n
v,

Proof. Writing f = g1 o 2™, the field C(f) is contained in C(z™) N C(z™) =
C(z%), where d = lem(n,m). Write d = Nn = Mm, so g, o 2" = Gy o 2
for some G € C(z) (which is automatically a Laurent polynomial), whence
g1 =Gy o zN. Likewise go = G ozM and we have Gj oz = f = Gg 0 27,
so G1 = Go. Thus f = G1(zN™), and its two Type 2 decompositions are
Gi(zN) o 2™ and Gy (2M) o 2™, O

Next we consider Laurent polynomials with two Type 1 decompositions:
f=g10h1 = ga0hy with g; € C[z] and h; € L. Then there is an irreducible
factor E(z,y) of g1(x) — g2(y) such that E(hy(z), he(x)) =0, so E(xz,y) =0
defines a genus-zero curve having at most two closed points lying over x = oo
(since f has at most two poles). To classify the possibilities in this case, we
use a result of Bilu and Tichy [6] describing the polynomials g1, g2 for which
the curve g1 (z) = g2(y) has an irreducible component with these properties.
Note that in this situation there automatically exist nonconstant hy, ho € L
such that g o hy = g2 0 ho, coming from a rational parametrization of the
component in question.

Finally we consider Laurent polynomials with decompositions of both
types: f = g1 0hy = gaox™ where g; € Clz] and hy,92 € £ (and n > 1).
Letting ¢ be a primitive n'" root of unity, we have

g1ohi(Cx) = gaoa™o(x=gyox" =gyohi(x)



DECOMPOSITIONS OF LAURENT POLYNOMIALS 7

Let ha(z) = hi1(Cz). To classify the possibilities where ho # hi, we use
a result of Avanzi and Zannier [2] describing the polynomials g; for which
there are distinct nonconstant rational functions hq, he such that gy o hy =
g1 © ha. Finally, if h1(¢z) = hi(x) then hy = H(z™) for some H € L, where
g1 o H = go. Thus, these possibilities come from decompositions of the
Laurent polynomial g2, which can be controlled inductively.

We now recall the well-known connection between decompositions of a
rational function f and intermediate fields between C(z) and C(f(x)), as
well as the corresponding results for polynomials and Laurent polynomials.

Lemma 2.3. For f € C(z) \ C, the fields between C(x) and C(f) are
precisely the fields C(h), where g,h € C(x) satisfy f = g o h; moreover,
for h,H € C(z), we have C(h) = C(H) if and only if there is a degree-one
w € C(x) such that h = po H. If f is a Laurent polynomial (respectively,
polynomial) and f = g o h with g,h € C(x), then there is a degree-one p €
C(z) such that both gop and p=' o h are Laurent polynomials (respectively,
polynomials).

Proof. The first statement follows from Liiroth’s theorem. Now suppose
f =goh where g,h € C(x) and f € C[z]; since oo is the unique pole of f, it
follows that g has a unique pole «, and oo is the unique preimage of o under
h. Pick a degree-one 1 € C(x) which maps co +— a, so both goy and u~toh
are rational functions whose unique pole is co, hence they are polynomials.
Next suppose f = go h where g,h € C(x) and f € £; then f has no poles
besides 0 and oo, so g also has at most two poles, and the preimages of these
poles under h are a subset of {0,00}. Pick a degree-one p € C(z) which
maps the poles of g to either {oo} or {0,00}; then both go y and p=toh
have no poles outside {0, 00}, hence are Laurent polynomials. [l

3. DECOMPOSITIONS OF LAURENT POLYNOMIALS OF SPECIAL TYPES

In this section we describe all decompositions of certain special Laurent
polynomials occurring in our results. Knowledge of these decompositions
will be used in the proofs of our main results.

We begin with f = 2™ + 1/z™ (where n € Z~(), whose decompositions
turn out to be the main source of Laurent polynomial decompositions that
are not polynomial decompositions.

Lemma 3.1. If g,h € C(x) satisfy goh = 2™+ x~" for some n > 0, then
there is a divisor d of n and a degree-one p € C(x) such that one of the
following holds:

(3.1.1) gop=a™t 42 and ' o h = z¢;

(3.1.2) gop = f"Dyq and p~' o h = (z/B)? + (B/x)% where °" = 1.

Proof. Writing f = 2™ + 27", we see that C(x)/C(f) is Galois, with Galois
group G being dihedral of order 2n and consisting of the automorphisms
x +— (¢ with (" = 1 and e € {1,—1}. Let C be the cyclic subgroup of G
consisting of the automorphisms = +— (z. Let H be a subgroup of G, and
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let d = #(H NC); then H N C consists of the automorphisms x — dx with
6% = 1, so the fixed field C(z)7"¢ equals C(z?). If H = HNC then the chain
of groups 1 < H < G corresponds (via Lemma 2.3) to the decomposition
f = (2™ + 274 o %, Now suppose H # HNC, so #H = 2d. Pick
some ¢ for which H contains the automorphism z ~— ¢/z. Then C(z)H =
C(z? + (¢/x)") = C((z/B)* + (B/x)?) where §* = ¢ (so f*" = 1), and the
corresponding decomposition is f = (8"D,,,4) o ((z/B8)* + (B/x)?). O

We also recall the possible decompositions of ™ and D,,:

Lemma 3.2. If goh = z™ with g, h € Clz] and n > 0, then there is a linear
1 € Clz] and a divisor d of n such that go p = z* and p=' o h = ™%, If
goh = D, with g,h € Clz] and n > 0, then there is a linear p € Clx] and
a divisor d of n such that go = Dg and p= ' oh = Dy /g

Proof. This follows from Corollary 1.3, together with the fact that Dy o
Dy, /4 = Dy, (which follows from the functional equation defining D;). [

Rather than writing out all the decompositions of the rational functions
in (1.5.4), we show that (1.5.4) is a consequence of (1.5.1) and (1.5.2), if we
allow compositions with linear polynomials. Namely, putting p = 5 + V2
and v = 22, we have

) 11 1 1
r*+2r+—-———=|z+—- ) plx—— oy,
x  4z? x x

so for

we have

f:<§—1)30m20<x+%>-p<m—é>oy

~(G) e ramete (1= ) o

where the last equality comes from (1.5.2). Now put pu = v/2(x — 1), so
(2 +Dp(x)?op =z + 4z + 3

and

» < 1) 1
poolr——)ov=ax+1-——,
T 2z
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and thus if we put A = 3x — 4 then

f:m3o(§—1>o(x4+4m+3)o<x+1—i>

2z
4
30 —l—4x ( 1_i>
2x

_ < )MM o(x—i—l—%) (from (1.5.1))
3

= (32— 4)® 0 T 30(3&—1—1—%)

(z+1—2)° —|—4
3

4. DECOMPOSITIONS OF RITT-TWISTABLE LAURENT POLYNOMIALS

= (32 —423) o

In this section we study decompositions of the Laurent polynomials oc-
curring in (1.5.1) and (1.5.2). Some of the results we prove will be used
in the proofs of our main results. We also prove other results giving a full
picture of the decompositions of these special Laurent polynomials, in view
of the important role these examples play in the study of rational function
analogues of Ritt’s results.

Case (1.5.1) involves Laurent polynomials of the form z"¢(z") and z"q(x)",
where ¢ € £\ {0} and ged(r,n) = 1. These are the natural Laurent poly-
nomial analogues of the polynomials occurring in Ritt’s results (which have
the same shape but with ¢ € C[z]). The Laurent polynomials in (1.5.2),
however, have a different shape, namely H; = (x — 1/z)p(z + 1/x) and
Gy = (2% — 4)p(x)?, with p € Clz] \ {0}. We now show that there are linear
changes of variables which transform Hs and G5 into the same general shape
as the previous Laurent polynomials, namely zq(z?) and zq(z)?, although
here we must allow ¢ to be a rational function that is not in £. Specifically,
if we put

p(2%9)

4.1.1 _ g Pl
(4.1.1) 1=
then
(4.1.2) zq(2?) = Hy o x—i—z‘

T —1

20 — 2
4.1.3 e .
(413 rq@)? = Gao

It is shown in [23] that a polynomial of the form z"¢(z") (with ged(r,n) = 1)
can only decompose into polynomials of the same shape (composed with lin-
ears), and likewise for z"q(z)". We will prove the analogous result for Lau-
rent polynomials; the corresponding assertion is not generally true when ¢
is one of the rational functions in (4.1.1), but nevertheless we determine all
decompositions in this situation. We remark (cf. [19]) that Ritt’s original
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Ay example (after linear changes) provides an example of an ‘odd’ rational
function xq(z?) which can be written as the composition of two rational
functions that are not linear changes of odd rational functions; similar ex-
amples occur for ¢ as in (4.1.1).

Proposition 4.2. Let n,r € Z satisfy n > 1 and ged(n,r) = 1, and pick
p € Clz] with x t p. Suppose g,h € C(x) satisfy goh = x"p(z)". Then there
is a degree-one p € C(x) such that go pu = °G™ and p=' o h = 7 H™ for
some ¢ € C, some i,j € Z, and some G, H € Clz].

Proof. If » > 0 then 2"p(z)™ is a polynomial, in which case the result is
proved in [23] if g, h € C[z], and the general case follows from Lemma 2.3.
Henceforth assume r < 0.

By Lemma 2.1, after replacing g and h by g o i and p~! o h for suitable
degree-one p € C(z), we may assume g, h € £ and either g € C[x] or h = 2™
with m € Zs. First suppose h = ™. Letting ¢ be a primitive m'™ root of
unity, we have go h({x) = goh(z), so ("z"p({x)™ = x"p(z)". Thus p({z) is
a constant times p(x), so p = z°G(z™) with G € C[z] and x € Z>¢. Since
2"p(x)" = goa™, we have r + ns = mi with i € Zxg, so g = 2'G(z)".
Putting j = m and H = 1 gives the desired conclusion. Henceforth assume
g € Clz].

Write h = A/z® where s € Zso and A € Clz| with = + A. Write g =
611, (x—a)™, where the cv are the distinct complex roots of g (and ny € Zg
and 6 € C*). Then 2"p(z)” = ][, (A — aa®)" /z5>«"=. Note that each
Pa = A — ax® is a polynomial, and no two p,’s have a common root, and
x = 0 is not a root of any p,. Thus, for each «, every root of pl> has
multiplicity divisible by n, so every root of p, has multiplicity divisible by
n/ ged(n, ng).

Suppose «, 3 are distinct roots of g such that neither n, nor ng is divisible
by n. Then A — az® = a’ and A — B2* = b where a,b € C[z] and i,j > 1
are divisors of n. Thus a’ — b = (8 — a)z®, so @ := a(z')/(f — )"/ and
b= b(z") /(8 — )7 satisfy @ — b = 2. Note that :U)(Zi/b\. Now

V=a'— (%) = [[@- ¢,
¢i=1

and the various polynomials @ — (x*® are coprime (since z { @), so for each ¢
we have a — (x® = AJC for some A € Clz]. Moreover, we may assume that
b= HC A¢. Pick some ¢ # 1 with ¢" = 1. Since x 1 @, we have z { A1 A; and
ng(AhAC) = 1. But

[T (A —¢A) = A] - AL = (- 1)z,

§i=1
and any two polynomials A; — {A; are coprime, so every A; — {A¢ is an

s power. Since each of these polynomials divides z*, it follows that one of
them is a constant times x°, and the rest are constants. But since at least



DECOMPOSITIONS OF LAURENT POLYNOMIALS 11

one of Ay and A¢ is nonconstant, there is at most one £ for which A; — A,
is constant, whence j = 2. Similarly ¢ = 2, so ¢ = —1. Solving for Aq and
A¢, and then @ and b, we find that a = v + 62® and b = %(y — 62°) for
some v, € C*. Since a? — b? = (8 — a)z®, we have 4v0 = (3 — a; moreover,
A= az® +a? = §22%° + (B + a)z®/2 + v2. Conversely, given A and s, this
last equation determines the values of o 4+ 3, 72, and 82, and hence also
167202 = (8 — a)? = (a + #)? — 4ap and finally a8. Thus A and s uniquely
determine the set {«, 3}. It follows that n | n, for every root x of g besides
o and 3, whence g = ((x — a)(z — B)p?)"/? for some p € Clz]. But then
n | deg(g), so the order of the pole of z"p™ at x = 0 is divisible by n, but
this order is —r, contradiction.

This last argument also implies that g is not an n*® power, so ¢ has a
unique root « for which n { n,. Moreover, for this a we have ged(n, ny) = 1.
Thus g = (z — )" G" for some G € Clz], and A — ax® = H" for some
H € C[z], whence h = —a + H™ /2, as desired. O

To determine the decompositions of Laurent polynomials of the form
x"p(z™), we use the following result of Avanzi and Zannier [2, §5]:

Proposition 4.3 (Avanzi-Zannier). Let g € C[z] be indecomposable, and
suppose hy, hy € C(z) \ C satisfy g o hy = g o hg where v € C*\ {1}. Then
(g,h1,h2) = (G opu, pw o HyoH, p= o Hyo H) where § € C*, u € Clz] is
linear, H € C(x) \ C, and one of the following occurs:
(4.3.1) Hy = =, Hy = dz, and G € 2"C[z"], where r € Z~o, 0" = 7,
n € Lo, and 0" = 1;
(4.3.2) G = D,, with n an odd prime, v = —1, Hy = x + 1/x, and Hy =
Hy o dx where 0™ = —1;
(4.3.3) Hy = (1—482™)/(6z™t™ —1), Hy = =1+ (2" —1)/(6z™* " —1), and
G =z"(x + 1)", where m,n € Z~q are coprime and 0™ = ~;
(4.3.4) G = D3(z) + 9, where § € C\ {0,2,—2} and either
i) y=(+2/6—-2), H = -1+ 3(y2®2+1)/(y2® + 1), and
Hy = —-2+3(1 —x)/(yz® +1); or
(i) 7= (5 2)/(5+2), Hy =24+ 39(1—2)/(a* + 7). and Hy =
1324 7)/ (0 ) o
(435) G=z%— %(Oé 4 1)563 + 20(1’2, H, = (E_a)(E_E)(g(_E?_i_):;4(a+1)(E3+l);
and Hy = EHy, where v = —1, o* +1=2(a® + a), and

—1 ( 6a> ( 1)
E= r+— ) —|la+—];
24/2(2a% — 5o + 2) T o

(4.3.6) G = 2* — (o + B)2® + 20822 + 1, where w = >™/3, y € {w,w?},
(a+w?)? = -2 and B = (1 —a)w—1; if ¥ = w then Hy =
w?(Hy — a)E and
(B? +pE + Jz0” —w(a— 1)U + Z((a = DE® — w(a - w))

Hy = 71 +a,
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where E = (x — 0/x)/24+p and U = (z + 0/x)/(24/—3(ac —1)/2)
with p = —i—\;"goﬁ —w(a—1) and § = —w(a? —iv3a+3w); if y = w?
then exchange the above Hy and Hs;

(4.3.7) G = z(x + o)’ (x +1)? and Hy = —Z%Hy, where v = —1 and Z :=
(z— B 4 6-2€)/32 with € +€+4 =0 and o> — Z*a+1 =0,
and

(a+)(Z3+ D)+ (a—1)(2% -2+ 1)U

2(Z5 — 1)

Hy =

with U = (x + 2L78) /32,

Remark. In the above statement we have implicitly made several corrections
to the results stated in [2]. Specifically, in the definition of Py in [2], the
equation for ¢ should be ¢2 — 2¢ — 2 = 0. Our other corrections refer to [2,
Prop. 5.6]. In cases (1) and (3) of that result, g; and h; should be switched;
in case (8), U should be replaced by U/16; and in case (7), the sign preceding
2/3 in the expression for g; should be ‘+’, and also an additional comment
must be made for the case ¢ = w?. We also combined case (1) of [2, Prop. 5.2,
5.6] with case (3), and we combined case (2) with cases (3) and (4).

Avanzi and Zannier [2, Thm. 2] generalized Proposition 4.3 to the case
of decomposable g, obtaining a recursive description of the possible poly-
nomials g. In case the genus-zero factor can be parametrized by Laurent
polynomials, we require the following non-recursive description.

Proposition 4.4. Let g € Clz| satisfy deg(g) > 1, and let hy,hy € L\ C
and v € C\ {1} satisfy go hy = g o ha. Then, after replacing (g, hi, he) by
(gop, p~tohiobx, p~tohyobz) for some 6 € C* and some linear u € Clz],
one of the following holds (where n € Z>q¢ and r,m € Zso):

(4.4.1) hy = ahg and g € 2"Clz"], where & =1 and o = ~;

(4.4.2) hy = 2™+ 1/2™, hy = hy oax, and g = G o D,,, where v = —1,
G € zC[z?], and ™™ = —1;

(443) b = 2™+ 1/5™, hy = (& = 1/a™)/\/a@, and g = Go (L= _2)
where G € 2"C[2"], o =7, and ™ =1 but o # —1.

Proof. Write g = g1 o --- 0 gs where the g; are indecomposable polynomials.
Let j be the largest integer < s for which Hy := gj410---0gs0 h; and
Hjy :=gjy10---0gs0hy satisfy gjo Hy = vogjo Hy for some linear v € C[z],
and put G = gy 0---0g;_1. Writing v(z) = ax + [ and comparing leading
coefficients in the identity G o v = vG, we see that ad°8(@) = 4 £ 1, so
a # 1. Now put A := x4+ /(e — 1), so Aov = al; replacing G and g;
by G o A7l and X o g;, we have g; o Hi = ag; o Ha, so G(az) = vG(z).
Hence G € z"Clz"] for some 7 > 0 and n > 0 such that o” =1 and o" = .
If hy = Vo hy with 7 € C[z] linear, then this argument shows that (4.4.1)
holds. Henceforth assume there is no such 7, so there is no linear v € C[z]
such that H; = vV o H.
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By Proposition 4.3, there exist § € C*, H € C(z) \ C, and a linear uC[z]
such that

gi="0g500n
Hi=p‘oH oH
HQZ/:ZilOE[\QO-Ha

where g;, I/J\l, and }/1\2 satisfy the conditions required of G, Hy, and Hs in
one of (4.3.1)—(4.3.7). By replacmg G by G o Oz, we may replace gj by gj
while also replacing H; and Hs by H, 10 H and Hg oH.

Since Hi, Hy € L have at most two poles, also H1 and I/J\Q have at most
two poles. This rules out (4.3.4)—(4.3.7). In (4.3.3) it implies m =n = 1,

so gj = 2 + x, o, = (1 - az)/(ax? — 1) and o, = (x — az?)/(ax?® — 1).
Putting
dx + 2 4 1 z1+Va)+V1—«
e an b
Mm=T—a M= arl1va) —vi-a

we have

1—

Mlof/ﬁoﬂzzx-i-;

_ 1 1
H = — - .
H1© =20 i Va <x a:)

Now replace G by G o 8z and 1 g; by gj o ul , while also replacmg H1 and
Hg by w1 o H1 o uo and pa o H2 o g (and replacmg H by ,u2 o H). Thus
we have g; = 15222 — 2, H =xz+a ,andHQ—(:U—m b/y/a. Since
H; = f/I\l o H has no poles besides 0 and co, and H1 has poles at 0 and oo, the
full H-preimage of {0, 00} is {0,000}, so H = (fz)™ for some nonzero m € Z
and 0§ € C*. If m < 0 then replace H by (6x)~" and .F/I\g by —I/{\g, thereby
preserving the compositions I/J\l oH and ]/'{\2 oH. Thus we may assume m > 0
by making the appropriate choice of /a. Now H; = HioH = (x™+z"™)obhx
and Hy = (2™ —2™™)/\/aofx. Write R = gj410---0gs, SO

1
Rohy =H; = <$m—|—x—m>09x

1 1
Rohy=Hy=— (2™ — — Ox.

By Lemma 3.1, we have R = D,;,/q o u where d | m and p € C[z] is linear;
moreover, hy = p~ o (z% + 1/x%) o fx. Since Ro hy = % o0 fit/mx,
Lemma 3.1 implies that R = D, 4(z)/(iv/@) o fi and hy = ="' o (a4 +
2~%) 0 0i'/™z for some linear i € C[z]. Equating coefficients in the identity
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Dyyjg o = R = Dy,q/(iv/a) o fi, we see that either « = —1 or m = d.
If m =dthen g = Gogjopand Iy =pto(@m+27™) ofxr and hy =
p~to(z™ — ™) /\/a oz, as in (4.4.3). Now assume m # d, so a = —1,
whence g; = Djy. Replacing g, hy and hy by go pt, pohyox/f, and
pohgox/0, we have g = G'o Dy, /g and hy = 2%+ 2% and hy = +hy0il/ M.
Thus hy = hy o @z where a@*™ = —1, and we have obtained (4.4.2) with
n=2.

Now assume gj, H; and Hs satisfy (4.3.1). Then Hy =6z and Hy = z
for some § € C*, so H; = I-/fl o H = §H>s, contradicting our hypothesis to
the contrary.

Finally, assume g;, H1 and H2 satlsfy (4.3.3). Thus @« = —1 and g; = D,
with p an odd prime, and _moreover H1 =z + 1/z and Hg H1 o 0x where
0P = —1. Since H; = H1 o H is a Laurent polynomial, we must have
H = (Ax)™ for some nonzero m € Z and 6 € C*. If m < 0 then we can
replace m by —m if we replace ¢ and 6 by 1/§ and 1/6; since these changes
do not affect Hy or Hz, we may assume m > 0. Write R = g;110---0gs, SO
Roh; = (z+1/x)o(0x)™ and Rohy = (v +1/z)0d(fz)™. By Lemma 3.1,
we have R = D,,/q o p where d | m and p € Clz] is linear; moreover,
hi = p to(z¢+1/2%) 0bz. Likewise R = Dy, /40 i for some linear fi € C[z],
and moreover hy = ji~' o (z% + 1/z%) o £66Y/™. The identity Dyyjgop =
R = D,,/q o fi implies that g = e with € € {1,—1} and em/d = 1. After
replacing g, hy and ho by gopu™!, pohiox/0, and pohyox/0, we have
g=GoD,y,,qand hy = z¢ + 1/acd and hy = €hy o 26Y/™, s0 hy = hy o Gz
where a™P = —1. Thus we have (4.4.2). O

We can now describe the decompositions of Laurent polynomials of the
form x"p(z™):
Proposition 4.5. Let n,r € Z satisfy n > 1 and n t r, and pick p € Clx]
with x 1 p. Suppose g,h € C(x) satisfy go h = x"p(z™). Then there is a
degree-one i € C(x) such that, after replacing g and h by gop and p~toh,
one of the following occurs (with s,t,m € Z and m > 0):
(4.5.1) g € 2°C[2™] and h € 2'C[z"] where n | mt;
(4.52) g = Go Dy and h = (2™ + 1/2™) o Oz where G € z2C[z?] and

mt =r =n/2 (mod n), with n even, t >0, and 6 € C*.

Moreover, if g € Clz] and h € L then we may choose mu € Clz].

Proof. By Lemma 2.1, we may assume g, h € £ and either g € C[z] or h = x?
with ¢ € Z~g. In the latter case the condition 2"p(z") € C[x!] implies ¢ | r
and p = P(z!/2d(m))) with P € C[z]. Thus g = a'/tP(a™/ &4 as in
(4.5.1). Henceforth assume g € C[z]|. If deg(g) = 1 then we may assume
g = x, so again (4.5.1) holds. Now assume deg(g) > 1.

Let ¢ be a primitive n'™™ root of unity. Then g o h(Cz) = ("g o h(x),
and v := (" # 1. Write hg := h(z) and hy := h({x), so g o hy = ~yg o ha.
By Proposition 4.4, there exist # € C* and a linear ;1 € Clz] such that,
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after replacing g, hi,ho by gopu, =t o hy o6z, and u~! o hy o fx, one of

(4.4.1)—(4.4.3) holds. We will use the equation hy = hs oz to analyze these
possibilities.

If (4.4.1) holds then ahy = hy = hg o (x, so hy € x!C[z"] with (! = o
here also g € °C[z™] where o™ = 1 and a® = . Thus ("™ = 1, so we have
(4.5.1).

If (4.4.2) holds then

1 1
"+ o=l =hyolr = <xm+—m>oaéw,
Zz T
SO (aC)m = 1. Here g = G o Dy where v = -1 and G € l‘(C[l’z], and

a™ = —1. Thus ("™ = —1, and we have (4.5.2).
If (4.4.3) holds then, for some o # —1, we have

1 1 1
xm—Fx—m:hl:hQOCx:ﬁ <33m_x_m> o(z,
so ("™ = \/a = —1/¢™. But then o = ¢(*™ = —1, contradiction. O

Next we consider decompositions of (2% — 4)p(z)? with p € C[z]; since
these are polynomials, Ritt’s results provide information about their de-
compositions, but we go further by precisely describing the shape of every
decomposition:

Proposition 4.6. Let g, h,p € C[z]\{0} satisfy goh = (x?>—4)p(x)%. Then,
after replacing g and h by go u and =t o h for some linear p € Clx], there
exist B, D € Clz] and n € Z~¢ such that one of the following holds:

(4.6.1) g =xB? and h = (2? — 4)D?;

(4.6.2) g = (22> —4)B? and h = D,,.

Remark. To verify that the polynomials g and h in (4.6.2) satisfy go h =
(x? — 4)p(z)? for suitable p, note that D2 — 4 = (2% — 4)E2_,, where the
polynomial F,_; is a ‘Dickson polynomial of the second kind’, and is defined
by the functional equation E, 1(x +27!) = (2" —27")/(z — 2~ 1).

Proof of Proposition 4.6. Write ¢ = AB? and h = CD? with A, B,C,D €
Clx] and A, C squarefree and monic. Then (22 — 4)p(x)? = A(h) - B(h)?, so
A(h) is a square times 22 — 4. Write A(z) = [, (= — ), where the product
ranges over the roots of A, and write h —a = E2F,, with E,, F, € Clx] and
F,, squarefree and monic. For distinct roots «, o/ of A, plainly h—a and h—a’
are coprime, s0 gcd(Ey, Ey) = 1 = ged(Fy, Fy). Since A(h) =[], E2F, is
a square times 22 — 4, and the various polynomials F,, are monic, squarefree
and coprime, we have 22 —4 = [] o Fa. Moreover, differentiating the equation
h—a= EgFa implies E, | I/, and since the various polynomials E, are
coprime, we have [ E, | /. Writing n = deg(h) and r = deg(A), it follows
that n — 1> %" deg(F,), and since

nr=deg(ho A)=> deg(h—a)=2+2) deg(Ea),
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we conclude that r < 2. If » = 1 then, after replacing g and h by go u
and ! o h for a suitable linear 1 € C[z], we may assume A = x; but then
C = Fy = 2% — 4, so we have (4.6.1). Now assume r = 2, so, after inserting a
linear and its inverse between g and h as above, we may assume A = 2% — 4.
There are four possibilities:

(i) Fo =22 —-4and F o = 1;

(ii) Fo=x—2and F o =2+ 2;

iii) Fo=x+2and F_g =2 —2; or

iv) Fo =1and F o = 22 — 4.

By replacing g and h by g o (—x) and (—x) o h, we may assume that (i) or
(i) holds. In either case, the cover h : P! — P! is totally ramified over oo,
and every point lying over 2 or —2 has even ramification index except 2 and
—2. This data determines h up to composition on both sides with linears,
as was first shown by Ritt [28], and as has been reproved in every proof of
Ritt’s results. Thus, h = v1 o D,, o v, for some linear v1,v € C[z]. In case
(ii) we have h — 2 = (z — 2)E3, so n is odd; if n = 1 then Ej is a constant,
and since (z +2) | (h 4+ 2) we must have Fy = £1, so h = x and (4.6.2)
holds. If (ii) holds with n > 1 then 2 and —2 are the unique finite branch
points of h : P! — P! and their unique unramified preimages are 2 and
—2, respectively. Since D,, has the same property, each v; preserves {2, —2},
hence equals +z, and we must have v = v1. Since —D,,(—x) = D, (x), this
gives (4.6.2). In case (i), n is even; if n = 2 then —2 is the unique finite
branch point of both h and D, so 14 fixes —2 and thus v; = =243+ (x+2).
Since h(4+2) = 2 and Dy = 22 — 2, we find that v5 = ax where 3 = 1/a?,
which implies h = Dy as desired. Now suppose n > 2. Then both h and D,
have 2 and —2 as their unique finite branch points, and all of their preimages
are ramified except for 42, both of which lie over 2. Thus 14 fixes 2 and —2,
so v1 = x. Also s preserves {2, —2}, so vy = +x, whence h = D,,. O

(
(

Finally, we determine the decompositions of the other Laurent polynomi-
als in (1.5.2), namely (z — 1/z) - p(x + 1/x) with p € C[z]. As we noted
in (4.1.1), composition with a degree-one rational function transforms these
into the form xq(z?), but the resulting ¢ € C(x) is not a Laurent polynomial.
Proposition 4.7. Let g,p € Clz] and h € L satisfy p # 0 and go h =
(x —1/z) - p(x + 1/x). Then there exist u,q € Clz| with p linear such that
one of the following holds:

(4.7.1) p~toh = (x—1/x)-q(x+1/x) and gopu € xC[x?] is an odd polynomial;

(4.7.2) p~toh = f/—;—{—x\/—j and gop = Go D, with G € xC[z?] and y" = —1.

Remark. We note that the examples in (4.7.2) do satisfy the hypotheses:
for, f:=goh=GoD,o(x+1/x)ox™/,/y. Writing I = /4", we have
I?’=-1,50 f=Go(z+1/x)oIz" = Gol(x—1/z)oz™. There is a
polynomial E,,;,—1 (the Dickson polynomial of the second kind) satisfying
(x —=1/x)oa™ = (x —1/x)Epm—1(z + 1/z). Since G is odd, it follows that
f(z) = (z—1/x) - p(x + 1/x) for some p € C[z].
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Proof of Proposition 4.7. Write f = (x — 1/x) - p(x + 1/z). Since f(1/x) =
—f(z) (and f € L), we can write f(z) = F(x) — F(1/z) with F € xC|x].
Write the leading terms of F' and g as fz° and 6x". Viewing f as a finite
Laurent series, its highest and lowest-degree terms have degrees s and —s,
so we can write h = 0(2¢ + 6120 -+ 0o 12) FEF (T F Gt T+
Ce_1x™ 1) with §,¢ € C* and &;,(;, & € C, where e = s/r. Then §" = 3/0 =
—(", and moreover the J; are uniquely determined by F', since the coefficients
of 71 ..., 257" in the congruence (2¢ + 612! +--- + 5._12)" = F/B
(mod z°~¢) successively determine 41, ...,0.—1. Since the (; are determined
by the same congruence, we have (; = §;, whence h = H(z) + yH(1/x) + &
with H € zClz] and v = —1. Since f(1/x) = —f(z), we have go h(z) =
—go h(1/x). By Proposition 4.4, there exist f € C* and a linear p € Clx]
such that one of (4.4.1)—(4.4.3) holds for §g:=gou, hy :==pu toho (/9\3:, and
hg = u_loho(é\a:)_l. Write ﬁ(x) = p Lo H(x)—pu1(0), so He xC[z] and
hi = H(0x) +~yH(1/(0x)) +p =€) and ho = H(1/(02)) +~H (0z) +p~ " (€).

In case (4.4.1) we have h; = ahg, where a@ # 1. Comparing the terms

of highest and lowest degrees in this identity gives é Tt =p oy =

a-p~t soa=+= -1 Now (4.4.1) implies g € zC[2?]. Since h; and
hy = —hy both have constant term p~!(¢£), this term must be zero, so
hi(z) = H(x) — H(1/z). Letting o be the automorphism of C(z) mapping
x +— 1/x, we see that R := hy(z)/(x — 1/x) is fixed by o, and thus lies in
the fixed field C(z)? = C(x+1/x). Thus R = g(x + 1/z) for some ¢ € C(z).
The only poles of 1/(xz — 1/x) are 1 and —1, both of which have order 1;
since h1(1) = hy(—1) = 0, neither 1 nor —1 is a pole of R, so R has no poles
besides 0 and co. Since R = ¢(x + 1/z), and the images of 0 and co under
x + 1/z are both oo, it follows that ¢ has no poles besides 0o, so ¢ € C[z].
This proves that (4.7.1) holds.

In cases (4.4.2) and (4.4.3) we have hy = 2™ + 1/2™, so 2™ = H(0x
and 1/2™ = 'yfl(i), whence H(z) = (m/@)m and <™ = ~. Thus hy =
™ [~y+~y/x™, which is incompatible with (4.4.3), so (4.4.2) holds. Moreover,
in (4.4.2) we must have o™ = 1/v, and g = G o D,, where G is an odd

polynomial and o™ = —1. This yields (4.7.2). O

5. LAURENT POLYNOMIALS WITH TWO TYPE 1 DECOMPOSITIONS

In this section we describe all instances of Laurent polynomials with two
Type 1 decompositions. Our proofs make crucial use of a result of Bilu
and Tichy [6, Thm. 9.3], whose proof relies on Ritt’s results among other
things. The statement of this result involves the general degree-n Dickson
polynomial Dy (z,a) (with o € C), which is defined by the functional equa-
tion Dy (z+ a/z,a) = 2" + (a/2z)™ (in this notation, our previously defined
D, (z) is Dy(z,1)).

Proposition 5.1 (Bilu-Tichy). Let g1,92 € Clz] \ C, and let E(z,y) €
Clz, y] be a factor of g1(x)—g2(y). Suppose that E(x,y) = 0 is an irreducible
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curve of genus 0 which has at most two closed points lying over x = co. Then
g1 =GoGropus and g2 = G o Ga o g, where G, ju1, iz € Cla] with p, o
linear, and where either (G1,G2) or (G2, G1) is in the following list (in which
x] is nonzero, m,n are coprime positive integers, and o, 3 € C*):

2", ax"p(z)") where 0 < r <n and ged(r,n) = 1;

o mDQW(xﬂa)a _ﬂ_nDQR(xvﬂ));

(az? —1)3, 3ot — 423);

5.1.6) (Dgm(z,a™), —Dgn(x cos(m/d),a™)) where d > 3.

Moreover, there exists (G1,G2) as above such that E(x,y) is a factor of
G1o i (z) — Gao pae(y), and such that in all but the last case E(x,y) is a
constant times Gy o pui(x) — Ga o ua(y).

Remark. In the above result we have corrected an error from [6], namely
that a™/¢ and a™/¢ should be switched in the definition of ‘specific pairs’ in
[6] in order to make [6, Thm. 9.3] be true.

Actually Bilu and Tichy proved a version of this result for polynomials
over an arbitrary field of characteristic zero; since we have restricted to the
complex numbers, we can simplify the statement somewhat:

Corollary 5.2. Proposition 5.1 remains true if we replace (5.1.1)—(5.1.6)
by the following (where m,n € Z~q are coprime, and p € C[x] is nonzero):
(5.2.1) (:U x"p(x)™) where 0 < r <mn and ged(r,n) =1;
(5.2.2) (2%, (2% — 4)p(2)?);
(5.2.3) (Dim(z), Dn(2));
(5.2.4) ((22/3 —1)3, 32* — 4a3);
(5.2.5) (Dgm(z), an(x)) where d > 1.

Before proving Corollary 5.2, we recall some basic properties of Dickson
polynomials. These follow readily from the definition; for details, and further
results, see [1, 18].

(5.3.1) Di(z,a) =z; Doz, a)=z%— 20
(5.3.2) Dinn (2, &) = Din(Dn(z, @), a");
(5.3.3) B"D,,(x,a) = Dy, (Bx, B2a).

Proof of Corollary 5.2. If (5.1.1) holds then (5.2.1) holds, since ax"p(x)" =
" (ap(x))". Likewise, if (5.1.2) holds then so does (5.2.2) (perhaps after
changing p and p;), since (ax? + B)p(x)? = (2? — 4)p(x)? o yo where 72 =
—4a /B and p(z) = (vV—05/2)p(x/v). We pass from (5.1.5) to (5.2.4) in a
similar manner, since (az? —1)3 = (22/3 — 1)3 0 v/3az. If (5.1.4) holds, we
use (5.3.3) with 42 = 1/a and 6% = 1/, getting ™™ Doy, (z, &) = Doy (277)
and —(07"Day(x, ) = —Dap(x6), which yields (5.2.5) (with d = 2).

If (5.1.3) holds, let v be a square root of «, so (5.3.3) implies Dy, (z,a™) =
YY" D (z/~4™), whence G o Dy, (z, ™) = G(y"™x) 0 Dy () 0 z/~™. Since we
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could do the same thing after exchanging n and m, and since this change
would not affect G(7y""z), it follows that (5.2.3) holds here.

If (5.1.6) holds, we again let v be a square root of «, so (5.3.3) implies
that —Dgy, (x cos(m/d), &™) = =" Dy, (2 cos(m/d) /y™) and Dy, (z,a™) =
Y4 D (2/4™). Thus, after replacing G(x) by G(7¥™"z), and composing
p1 and po with z cos(w/d) /4™ and x /4™, we obtain (5.2.5). O

To describe the Laurent polynomials with two Type 1 decompositions, we
need two more auxiliary results. The first is a neat observation of Fried’s
about factorizations of polynomials of the form g;(x) — ¢2(y) [10, Prop. 2];
we state the refined version given in [6, Thm. 8.1]:

Proposition 5.4. For any G1,Gy € Clz]\ C, there exist a1, as,ba,bs € Clz]

such that

(5.4.1) G1 = a1 ©° b1 and G2 — as o bg,‘

(5.4.2) the splitting field of a1(x) — z over C(z) equals the splitting field of
as(z) — z over C(z);

(5.4.3) the irreducible factors of G1(x) — Ga(y) are precisely the polynomials
A(bi(z),b2(y)), where A is an irreducible factor of ai(x) — as(y).

We also require the factorization of D, (z) + D, (y); as noted by Bilu [5,
Prop. 3.1}, (5.3.1) and (5.3.2) imply Da, = D2 — 2, so for F,, :== Dy(x) —
D,,(y) we have Dy (z) + Dy (y) = Fa,/F), and hence it suffices to factor F,.
This last factorization is well-known; for a simple derivation see [4, Thm. 7].

Proposition 5.5. Put
®,(z,y) = H (2% — xy - 2cos(nk/n) + y* — 4sin®(wk/n)).

1<k<n
k=1 mod 2

Then
D, (x,y) if n is even
D,(x)+ D =M
n(@) n(y) {(x +y)Pn(x,y) if n is odd.

We now classify Laurent polynomials with two Type 1 decompositions.
Theorem 5.6. Let g1, g2 € C[z]\C and hq, hy € L\C satisfy giohy = gaohs.
Then, perhaps after switching (g1, g2) and (hi, ha), we have

g1=GoGrow
g2 =GoGyopuy
hl = Mfl (@] Hl o H
ho = ,u2_1 oHyoH
for some G € Clz|, some H € C(x), and some linear j1, p2 € Clz|, where

(G1, G9) satisfy one of (5.2.1)—(5.2.5) and (Hy, H2) is the corresponding pair
below:

(5.6.1) (z"p(z"), 2");
(5.6.2) ((x—1/x ) (x+1/z), 2+ 1/x);
(5.6.3) (Dn(x), Dm(x));
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(64) (24201~ b (61— 1P+ 0)
(5.6.5) (z"+1/2", (C2)™ + 1/(Cx)™) where (MM = —1.

Proof. Since g1(x) — g2(y) vanishes when = = hi(z) and y = ha(z), there is
an irreducible factor E(z,y) of g1(z) — g2(y) such that E(hi(2), ha(z)) = 0.
Here E = 0 defines a genus-zero curve having at most two closed points lying
over © = co. By Corollary 5.2, we have g1 = GoGrouy and go = GoGgo s
where G, u1, po € Clz] with p; linear, and moreover (perhaps after switching
g1 and g2) we may choose (G1,G2) to have the form of one of (5.2.1)-
(5.2.5). Furthermore, these choices can be made so that E(z,y) divides
Giop(z) — Gaopz(y). As noted in Proposition 5.1, in cases (5.2.1)—(5.2.4)
the polynomial G1(z) — Ga(y) is irreducible. Thus, for any H;, Hy € C(x)
satisfying G1 o Hy = G2 o Hy and ged(deg(H),deg(Hz)) = 1, there exists
H € C(x) such that gy o hy = Hy o H and pg o hg = Hy o H. Hence in
these cases it suffices to exhibit one such pair (H;, Hs), and visibly the pairs
stated in the Theorem have the required properties.

Henceforth suppose that G1 = Dy, and Gy = —Dy,, with m,n coprime
positive integers and d > 1. Let G = a; ob; and G2 = a2 0 by be the decom-
positions occurring in Proposition 5.4. Denoting by ) the splitting field of
a1 (z) — z over C(z), we see that deg(ay) is the ramification index in /C(2)
of any place lying over z = oo; but (5.4.2) implies the same description ap-
plies to deg(az), so a; and ay have the same degree. By Lemma 3.1, there
exist linear vy, vy € Clx], and a divisor e of d, such that a; = D, o vy and
ag = —Deovy (and by = vy ' o Dipgje and by = vyto Dpqs.)- Since Propo-
sition 5.4 holds for some linear vy, 1o, it follows that Proposition 5.4 holds
for any arbitrarily chosen linears vy, v5, so we may assume v; = vo = x. A
factorization of a; (z)—az(y) is given in Proposition 5.5, in terms of the poly-
nomials Ay := 22 —zy-2 cos(mk/e)+y* —4sin®(rk/e) where 1 < k < e and k
is odd. Note that Ay . is irreducible (since its degree-2 part is a nonsquare, it
has no degree-1 terms, and it has a nonzero constant term). Thus, by (5.4.3),
every irreducible factor of G1(z) —G2(y) has z-degree 2dm/e, unless e is odd
when there is also one factor of z-degree dm/e. But Proposition 5.5 implies
that G (z)—G2(y) is the product of several polynomials Ay, q(Dm(x), Dn(y)),
as well as (if d is odd) the polynomial D,,(x) + Dy(y). Thus every irre-
ducible factor of G (x) — Ga(y) has z-degree at most 2m, so either e = d or
(d,e) = (2,1). In the latter case, G1(z)—G2(y) is irreducible. Thus, in either
case, the irreducible factors of G1(x) — G2(y) consist just of the polynomials
Ak.d(Dp(x), Dp(y)) with 1 < k < d and k odd, unless d is odd in which
case Dy, (x) + Dy (y) is another irreducible factor. Now F(uy*(x), iy (y))
must be a scalar multiple of one of these factors, and we may assume the
scalar is 1 (since we are free to replace E by a scalar multiple of itself). Since
E(hi(x), ha(y)) = 0, we cannot have E(uy* (2), 13 (y)) = Dm(2)+Dn(y), so
we must have E(u; ' (z), uy ' (y)) = Ag.a(Dm(z), Dn(y)). Denote this poly-
nomial as R(x,y), and put Hy := 2" + 1/2" and Hy := (Cx)™ + 1/(Cz)™,
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where ¢ = e™k/(@mn) - Then R(H,(z), Hg( )) =0, so (smce R(:L’ y) is irre-
ducible) we have Hy = Hy o.J and Hy = Hj o J for some H;, H, J € C(x)
such that R(I/—I\l(x),l—/f\z(ac)) = 0, where in addition pj o h; = H1 o H and
pis 0 ha = Hy o H for some H € C(x). If deg(J) = 1 this gives (5.6.5), so
assume deg(J) > 1. Since deg(J) divides ged(deg(H1),deg(Ha2)) = 2, we
must have deg(J) = 2. If J € C(2?) then Hy, Hy € C(2?) so both n and m
are even, contradiction. Now Lemma 3.1 implies that J = A; o (z/v + v/x)
and J = Ag o (/5 + §/x) o (&, where 4" = 1 = 6™ and A\, Ay € C(2)
have degree one. Comparing images of x = 0, we see that Aj(00) = A2(0),
SO Ay Lo )| fixes oo and thus is a linear polynomial. Thus J is a Laurent
polynomial, and its constant term is A\1(0) = A2(0), so A\;* o \; = ex for

some € € C*. Thus
Ty _(m
6<7+x)_ 5 +Crv

and equating coefficients of like terms yields €d = (v and ey( = J, so
€ = (/d = 1. Raising to the (2nm)™ power gives (™" = 1, but ¢*™" =
e?mk/d oL 1 gince 0 < k < d, contradiction. O

6. LAURENT POLYNOMIALS WITH DECOMPOSITIONS OF BOTH TYPES

In this section we prove the following result:

Theorem 6.1. Let g1 € C[z]\ C and g2, h; € L\ C satisfy g1ohy = gaoa™
with n € Z~o. Then either hy = Aoz™ (and gs = g1 0 A) for some A € L,
or there exist G,u € Clx] with p linear such that g1 = G o Gy o u and
hi = p~to Hy and go = G oGa, where one of the following holds (with e € Z
and r = ged(n,e)):

(6.1.1) Gy = 2™, Hy = z°p(z"), and G = z°/"p(x)"/", where p € Clz];
(6.1.2) Gy = Dy, Hy = (2°+1/2¢) 0z, and Go = (z¢/" +1/2°/") 0 o™z,
where o € C*.

We will use some results of Avanzi and Zannier [2, §4], which we state as
follows.

Proposition 6.2 (Avanzi-Zannier). Pick an indecomposable g € C[z], and
distinct nonconstant hy, hy € C(x), and suppose that go hy = go he. Then

= puoGovand hy = v Yo Hy o H and hy = v~ o Hy o H, where
wu,v € Clx] are linear, H € C(x), and either (G, Hy, Hy) or (G, Ha, Hy) is
in the following list:

(6.2.1) (2™, =, Cx), where n is prime and C is a primitive n*®

root of unity;

(6.2.2) (Dn, T+ %, Cx + Cix), where n is an odd prime and ( is a primitive
n™ root of unity;

(6.2.3) (( (x4 1)™, W, -1+ ﬂm_ll), where r,m are coprime posi-

tive integers with r +m > 3;
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(6.2.4) (1:(:6 +a)?(x + 1) —4ozx—};, —& (22— I — %)2>, where o € C* sat-
isfies 9 — 2a4+9 =0 and
3 99 45 225
E=az*+=(3—Ta)x* + —(1 24— (7-3 —
o’ + g8 T+ g (v )™t g (T =30 + 156
(6.2.5) (x(x +a)3(x +1)3, —4096:”—;7 (64 — (2 — a)2)3>, where o € C* sat-
isfies a® — 5o+ 8 = 0 and
E = 2%+ (32 — 10a)z° + (31a — 88)z* 4 (68a + 1888)a3
+ (651 — 56)22 + (11158 — 50288)z + 41881a — 156520.

Remark. The polynomials in [2] involve some parameters which we have
removed by absorbing them into x and v. Also, the assertion in [2, Prop. 4.7]
about g; being reduced is false in case (3).

Proof of Theorem 6.1. Let ¢ be a primitive n*" root of unity, so for hy =
h1o(x we have gioho = g1 ohy. If hg = hy then hy = Aoz™ with A € L, in
which case go = g1 o A. Henceforth assume hs % hi. This implies g; is not
linear, so we can write g = f1 0--- o f, where every f; is indecomposable.
Let j be the largest integer for which

fiofitio--ofyohy=fjo fif10---0fyoh,

and put R = fjy10---of,and A= fio---0 fj_1,50 g1 = Ao fjo R. Then
Sy := Ro hy and S1 := R o h; satisfy Sy # S1 but fj oSy = fj 0 S1. After
replacing A, f;, and R by Aoy, p='o fjor~!, and vo R, for suitable linear
wu,v € Clz], Proposition 6.2 implies that there exist si,s2,7 € C(x) \ C
such that S; = sy 0T and Sy = sp o T and either (f},s1,s2) or (fj,s2,51)
is one of the triples (6.2.1)—(6.2.5). Since replacing ¢ by 1/¢ has the effect
of exchanging s; and sy, we may assume that (f}, s1,s2) is among (6.2.1)-
(6.2.5). Moreover, since h; € £ and R € C|z], also S; = Ro h; isin L, so s;
has at most two poles. This rules out (6.2.3), (6.2.4) and (6.2.5).

If (6.2.1) holds then f; = x* for some prime ¢, and moreover S, = vS; for
some primitive £*! root of unity 7. Thus S;((x) = 7S (x), so S; € ztC[z"]
for some t € Z with ¢! = v. By Proposition 4.5, after replacing R and h;
by Rop and p~ ! o hy for a suitable linear y € C[z], we may assume that R
and h; satisfy the conditions required of g and h in either (4.5.1) or (4.5.2).
First suppose R and hy satisfy (4.5.1), so R € x?C[z™] and hy = 2p(a™)
with p € C[z] and n | em; then v = ¢%, so n | fde. Putting r = ged(n, e),
we have n | rged(dl,m), so fjoR € C[z™"]. Since g1 = Ao fj o R, we can
write g1 = G o z™". Tt follows that gy = 2/ p(z)"/", so we have (6.1.1).
Now suppose R and h; satisfy (4.5.2), so n is even, and also R = ﬁoDd and
hy = (2 + 1/2%) o ax, where R € 2C[2?] and ed = ¢ = n/2 (mod n); thus
v = ¢! has order 2, so £ = 2. Now fjo R = z? o Ro Dg; since R € 2C[z?], we
see that 22 o R is in C[2?], and thus can be written as Ro Dy with R € Cz].
Thus fjoR = Ro Dyq, so since n | 2ed we can write g1 = G o D,,/, where
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r = ged(n,e) amd G = AOEODMT/W This implies go = (/" +2~¢/") o,
so we have (6.1.2).

Finally, suppose (6.2.2) holds. Then f; = D, for some odd prime /¢, and
moreover s; =z + 1/x and sy = vz + 1/(yx) for some primitive /' root of
unity . Since s 0T is a Laurent polynomial, and s; has poles at 0 and oo,
Lemma 2.1 implies that 7' = éz¢ for some § € C* and d € Z. Since we can
replace s1, s2, and T' by sjol/x, sgol/xz, and 1/xoT, we may assume d > 0.
Now we have Ro hy = éx? 4+ 1/(62%) and R o hy(Cz) = véx? + 1/(ydz),
so (? = v and thus n | df. Since R is a polynomial, Lemma 3.1 implies
that R = oded/e opand hy = p~to (¢ +1/2°) o S\x/a where p € Clz]
is linear, a®? = 1, and 5% = §. Likewise R = ﬂdDd/e ov and hjo(x =
vl o (2¢ 4+ 1/2°) o 3z /B where v € Clx] is linear, 3?? = 1, and 3¢ = ~6.
Thus (a/ﬂ)dDd/e = Dgjeovo w1 equating coefficients of z%¢~! shows
that v o u~! = 2 with § € C*, and equating coefficients of z%¢ shows that
0% = (a/B). If d = e it follows that § € {1, —1}; if d # e then we also
obtain # = +1 upon equating coefficients of 2%/¢~2. Since € := a? = +1, we
have

g1 :AODZOGDd/eO”
= Aoe'Dyo Dgjeop  (by (5.3.3))
— Ao Do p

Recall that n | d¢, so with r = ged(e,n) we have en | fdr, and thus g; =
Go Dn/r opuwith G =A4o EEDﬁdr/(en)' Since hy = ,ufl o (xe + 1/{Ee) o (5;(;/04’

-~

we find go = G o (z¢/" + 27%/") o (§/a)"x, so we have (6.1.2). O

7. PROOFS OF MAIN RESULTS

In this section we prove the results stated in Section 1.

7.1. Proof of Theorem 1.1. Define an ‘admissible sequence’ to be a finite
sequence of complete decompositions of a rational function f, such that
consecutive decompositions in the sequence differ only in that two adjacent
indecomposables u, v in the first decomposition are replaced in the second
decomposition by two other indecomposables i, v such that uov = wo® and
{deg(u),deg(v)} = {deg(u),deg(v)}. It suffices to prove that, for any two
complete decompositions of a Laurent polynomial f, there is an admissible
sequence containing them both. We prove this by induction on deg(f).
So assume it holds for all Laurent polynomials of degree less than deg(f),
and consider two complete decompositions f = pjopso---op, = ¢ 0
q20---0¢s (50 pi,qj € C(x) are indecomposable). If » =1 or s = 1 then
these decompositions are identical, so trivially are contained in an admissible
sequence. Henceforth assume r,s > 1.

By Lemma 2.1, after replacing p,—1 and p, by p,_10p and p~" op, for some
u € C(x) with deg(u) = 1, we may assume that both p, and p := pjo---op,_;

1
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are Laurent polynomials, and moreover either p € Clz| or p, = 2" with n
prime. Further, if p € C[z] and p, € C(z™) with n > 1, then n is prime and
pr = o z™ for some degree-one i1 € C(x), so by replacing p,.—1 and p, by
pr_10f and i~ ! op, we may assume p, = x™; since pop, = f € L, we must
have p € L. Thus we may assume that p,p, € L, and if there is no prime
n for which p, = 2", then p € C[z] and p, ¢ C(z") for any n > 1. We can
make analogous assumptions about gs and g:=¢y 0 -0 ¢qs_1.

If there is a degree-one v € C(x) for which p, = v o ¢, then p= gov ™1,
so by induction there is an admissible sequence containing pjo---op,_1 and
qro---0qs_20(qs_10ov~t). Composing each complete decomposition in the
sequence with p,, we then get an admissible sequence containing pyo---op,
and g; o - -- o gs. Henceforth assume there is no such v.

If p, = 2™ and g5 = 2™ (with n, m distinct primes), then Proposition 2.2
implies p = Goz™ and ¢ = G o 2" for some G € L. Write G = g1 o

- o g¢ where every g; € C(z) is indecomposable. By induction, there is
an admissible sequence containing p; o---op,_1 and gy o0 ---0 gs 0 2™, s0
composing with p, yields an admissible sequence containing p;o---op,_j0p,
and gyo---og,ox™ox™. Likewise there is an admissible sequence containing
quo---oqgsand gy o---0g ox™ox™. Since the sequence (z™ o 2™, 2™ o ™)
is admissible, there is an admissible sequence containing p; o --- o p, and
q1o---0gs.

Now assume ¢gs; = 2" but p, ¢ C(z™) for every m > 1. Then p € C[z]. By
Theorem 6.1, there exist G, u € C[x] with deg(p) = 1 such that p = GoGop
and p, = p~ 1o Hy and § = G o Gg, where G1, G2, Hy satisfy either (6.1.1) or
(6.1.2). In (6.1.2) we have H; = (2¢+1/2°)oax with a € C* and e > 0, and
indecomposability of p, implies e = 1. Thus G; = D,, and G2 = (x +1/x) o
a™x, so (Gy o Hi,Gy 0 qs) is admissible, and the inductive argument of the
previous paragraph produces an admissible sequence containing pj o--- o p,
and q; o---0¢s. In (6.1.1) we have Hy = z°h(z") with h € C[z] and e € Z;
since p, ¢ C(z™) for m > 1, we must have ged(e,n) = 1, so G; = 2" and
Go = z¢h(x)"™. We will show that G2 is indecomposable. This implies that
(G10 Hy,Gg0x™) is admissible, so as above there is an admissible sequence
containing pyo---op,. and gy 0---0qs. So suppose G4 is decomposable; then
Lemma 2.1 implies that G2 has a decomposition of either Type 1 or Type 2 in
which both rational functions involved have degree > 1. By Proposition 4.2,
if there is a Type 1 decomposition with this property, then Gy = wow
where u = 2 A(x)" and v = 2/ B(z)", with A, B € C[z] and i, € Z and
i > 0. But then 2" o H; = Ga(2") = uov(z") = 2'A" 0 2" o 2/ B(2™) =
2" o 2'A(2"™) o 2/ B(2™), so Hy = (z'A(z") o 2/ B(z") for some ( € C*
with (" = 1, contradicting indecomposability of p,. If G2 has a Type 2
decomposition into rational functions of degree > 1, say G € C(z™) with
m > 1, then Go(¢z) = Go(x) where  is a primitive m'" root of unity. Thus
Ceh(Cx)™ = h(z)™, so h(Cx) = Bh(x) where (°3" = 1. Hence h = 2% A(z™)
for some A € C[z] and some d € Z such that (¢ = 3. Thus 1 = ¢¢8" = (¢t
som | (e +nd). Now Hy = z°h(z") = x¢t"?A(2z"™) is in C(z™), and
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since H; is indecomposable we must have H; = X\ o 2™ for some degree-one
A € C(x). But H; = x°h(2™) has no constant term (since ged(e,n) = 1),
so A is a degree-one Laurent polynomial with no constant term, whence A
is a monomial Laurent polynomial. Thus h is a monomial polynomial, so
G2 = 2°h(x)" is a constant times Hy = z°h(z"), whence indecomposability
of Hy implies indecomposability of Gs.

Now assume p,,qs ¢ C(z") for every n > 1. This implies p,q € Clz],
so Theorem 5.6 applies. After switching (p,p,) and (¢, gs) if necessary, we
obtain

p=GoGiou
qg=GoGayopus
pr=py cHioH
gs = py ' o Hyo H

for some H € C(z) and G, u1, p2 € Clx] with p; linear, where (G1, Ga) is
one of (5.2.1)—(5.2.5) and (H;, H2) is the corresponding pair among (5.6.1)—
(5.6.5). If deg(H) > 1 then indecomposability of p, and ¢s implies p, =
v o g5 for some degree-one v € C(z), a case treated previously. So assume
deg(H) = 1, whence H; and Hy are indecomposable. In case (5.6.1) we
have Hy = 2" with n > 0 (where indecomposability implies n is prime), and
Hy = x2°h(2™) with h € C[z] and e € Z~( coprime to n. Moreover, G; = z"
and Go = z¢h(x)". Here indecomposability of H; implies indecomposability
of G (by Ritt’s first theorem), so our result follows by induction. In case
(5.6.2) we have Hy =+ 1/z and Hy = (x — 1/x)p(z + 1/z) with p € C|z],
and moreover G1 = x? and Gy = (22 — 4)p(x)%. Here we need only to prove
that G2 is indecomposable. If it were not, then by Proposition 4.6 there
would be nonlinear u,v € Clz] such that u o v = G2 and wu,v satisfy the
conditions required of g,h in either (4.6.1) or (4.6.2). In (4.6.1) we have
u=rB?% and v = (22 — 4)D? with B, D € C[z], so composing with z + 1/z
gives

JI2OH1:G2(.’E—|—1>:UOU<$+1>:UO$2O([E—1)D<$+l>
x x x x
=z“oxB(z*)o|z—=]-Dlx+—|,
x x

whence Hy = +xB(2?) o (x — 1/x)D(x + 1/z), contradicting indecompos-
ability of H;. In (4.6.2) we have u = (22 —4)B? and v = D,, where B € C[z]
and n > 1, so composing with = + 1/z gives

1 1 1
$20H1:G2 ($+) :uov(x+> :UO<$+>Q$”
€T x x
1 1
:$20<$——>'B<$+—>oxn7
X X
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whence Hy = +(x — 1/x)B(x + 1/x) o 2™, again contradicting indecompos-
ability. If (5.6.3) holds then Hy = Gy = D,, and Hy = G; = D,;, where
m,n are distinct primes, so the result follows by induction. If (5.6.4) holds
then Hy is decomposable, a contradiction. Suppose (5.6.5) holds. Then
Hy = 2" + 1/2™ with n € Z~¢, and indecomposability implies n = 1. Like-
wise Hy = (x + 1/(Cx), where ¢¢ = —1 for some d € Z~;, and moreover
G1=Dg=—Gy. Write d = HEZI £; where the ¢; are primes which need not
be distinct, and put e = d/¢;. Since D,o(x+1/x) = —D,o(¢hra+1/(¢Mx)),
by induction there is an admissible sequence containing both Dy, 0---0Dy, o
(x+1/x) and —Dy, 0 Dy, 0---0 Dy, o (¢'x+1/(¢“x)). Composing with 2t
gives an admissible sequence containing Dy, o --- o Dy, o (x + 1/x) o x“t and
_Dgtngt—lo' ’ 'ODKQO(Celx"i_l/(gglx))oxel7 and plainly ((x+1/:v)ox€1, Dﬁlo
(z 4 1/2)) is admissible, as is ((¢“a +1/(¢%x)) 0o 2’1, Dy, o (Cx +1/(Cx))).
Thus there is an admissible sequence containing Dy, o --- o Dy, o Hy and
—Dy, 0Dy, , 0---0D1o Hy, so there is an admissible sequence containing
pro---op, and gy o -+ -0 qs. This concludes the proof of Theorem 1.1.

7.2. Proof of Theorem 1.2. We prove the result by induction on deg(f).
So assume it holds for all Laurent polynomials of degree less than deg(f),
and write f = g1 o hy = g9 0 ho with f € £ and with indecomposable
g1,92,h1,ha € C(x). After replacing g1 and hy by g1 oy and p=t o by
for some p € C(x) with deg(p) = 1, we may assume that g1, h; € £ and
either g1 € Clz] or h; = 2™ with n prime (by Lemma 2.1). Moreover,
this argument shows that if h; € C(z") for some n > 1 we may assume
hi = 2™ (and indecomposability implies n is prime). We can make analogous
assumptions about g and hg. If hy = p o hy for some degree-one p € C(x),
then g1 o u = g2, so we have (1.2.1). Henceforth assume hy # p o hy for any
degree-1 p € C(x).

First suppose h; = 2™ and ho = 2", where m and n are distinct primes.
Proposition 2.2 implies g1 = G oz™ and go = G o x™ for some G € L, which
must have degree 1 since g; and hs are indecomposable. This yields (1.2.2)
with » = m and ¢ = 1.

Now suppose hg = 2™ but hy ¢ C(z™) for any m > 1. Then ¢; € C[z],
so Theorem 6.1 applies. Since h; ¢ C(z"), there exist G, € Clz] with
deg(p) = 1 such that g = GoGiopand hy = p~' o Hy and g2 = G o Go,
where either (6.1.1) or (6.1.2) holds. If deg(G) > 1 then indecomposability of
g1 implies deg(G1) = 1, so in both (6.1.1) and (6.1.2) we have n | e and thus
G € C(z™), contradiction. Hence deg(G) = 1, so G is indecomposable and
thus ged(n,e) = 1. In (6.1.1) we have G7 = 2™ and Hy = zq(z"™) and Hy =
x¢q(z)", with ¢ € C[z] and e € Z coprime to n; this gives (1.2.2). In (6.1.2)
we have G1 = D, and H; = (az)® + 1/(az)® and G2 = (a"x)¢ + 1/(a"z)¢
with @ € C* and e € Z, and indecomposability implies ¢ = +1. After
adjusting G1, Ga, H1, Hy by composing with linears, this gives (1.2.4).

Henceforth assume hq, hy ¢ C(z™) for every m > 1. Then g1, g2 € C[z], so
Theorem 5.6 applies. Thus, after switching (g1, h1) and (go, ko) if necessary,
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we have
g1 =GoGiom
g2 =GoGaopus
hlz,ul_loHloH
h2:M2_10H20H

for some G € C[z], some linear p1,u2 € Clz], and some H € C(z), where
(G1,G2) is one of the pairs (5.2.1)-(5.2.5) and (H;, Hz) is the corresponding
pair among (5.6.1)—(5.6.5). If deg(G) > 1 then indecomposability of g;
implies deg(G;) = 1, so we must have either (5.2.1) or (5.6.3). Thus (Hy, H2)
satisfy (5.6.1) and (5.6.3), and in either case G; o H] = G2 o Hy is a linear
polynomial, so we have (1.2.1). Likewise if deg(H) > 1 then deg(H;) = 1,
so since gy o pu; ' o Hy = g o iy + o Hy we again have (1.2.1). Now assume
deg(G) = deg(H) = 1, so G; and H; are indecomposable. Since Hy # 2",
we do not have (5.6.1). If (5.2.2) and (5.6.2) hold then, by (4.1.1)—(4.1.3),
there are vy, v9,q € C(z) with deg(v;) = 1 such that H; o vy = xq(2?) and
Gyovs = xq(x)?; here also G = 2 and yglngoyl = 22, so we have (1.2.2).
Note that in this case ¢ is not a Laurent polynomial, instead ¢ = Q(1/(z+1))
for some @ € xC[z]. If (5.2.3) and (5.6.3) hold then (1.2.3) holds. Since
G is indecomposable, we do not have (5.2.4). Now suppose (5.2.5) and
(5.6.5) hold. Thus G7 = Dy, and G2 = —Dy,, with d > 1 and m,n > 1, so
indecomposability implies d is prime and m = n = 1. Here Hy = x + 1/x
and Hy = Hy o Cx, where (¢ = —1. If d is odd then, with u = —z, we have
Go = Dgpopand p~'o Hy = Hy o (—Cx) where (—¢)? = 1, which is (1.2.5).
Finally, if d = 2 then with u = 2 — x we see that (u o Gg, o G1) satisfies
(5.2.2) and (Hsq, Hy) satisfies (5.6.2) (both with p(x) = (), a case we have
already resolved. This concludes the proof of Theorem 1.2.

7.3. Proof of Theorem 1.5. Let f € L\ C and g1, g2, h1, ho € C(z) satisfy
f =g10h1 = gooho. By Lemma 2.1, after replacing g; and hy by g1 o p
and p~! o hy for some degree-one y € C(x), we may assume gi,h; € £ and
either g; € C[z] or hy = 2™ with n € Z~o. We can make similar assumptions
about g2 and hs.

If hy = 2™ and hy = 2™ with n,m > 0, then Proposition 2.2 implies
g1 = Goglomm)/n and gy = G o lm(m)/m for some G € £. Thus (1.5.1)
holds with y; = z and H = z8°4(»™) (and p = 1).

Now suppose precisely one of hi and ho has the form z" with n > 0;
by switching (g1, h1) and (g2, ha) if necessary, we may assume hg = 2™ and
g1 € Clz]. If there exists A € L such that hy = Aoz™ and g2 = g1 0 A, then
(1.5.1) holds with G = g1, pu; =z, H =z, and p = A. So assume there is
no such A. By Theorem 6.1, there exist G, u € C[x] with p linear such that
g1 =GoGiopand hy = p~' o Hy and go = G o Go, where either (6.1.1)
or (6.1.2) holds. If (6.1.1) holds then (1.5.1) holds with H = gscd(me)  Tf
(6.1.2) holds then (1.5.6) holds with H = (az)ged(me),
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Finally, suppose g1,92 € C[z], so Theorem 5.6 applies. Thus, perhaps
after switching (g1, g2) and (hq, ha), we have

g1=GoGrou
g2 =GoGaopuy
hlz,ufloHloH
hg:,uglngoH

for some G € C[z], some H € C(x), and some linear puj, po € C[z], where
(G1, G9) satisfy one of (5.2.1)—(5.2.5) and (Hy, Hs) is the corresponding pair
among (5.6.1)—(5.6.5). In each case, this implies the corresponding condition
among (1.5.1)—(1.5.5).

If G4 o Hy has poles at both 0 and oo, then H preserves {0,000}, so H is
a monomial. This occurs in (1.5.2) and (1.5.4)—(1.5.6).

Now we prove the final assertion in Theorem 1.5. Since f = GoG1oHi0H
is a nonconstant Laurent polynomial, and G, Gy € C[z], we see that H; o H
has no poles besides 0 and co. If any of (1.5.2) or (1.5.4)—(1.5.6) holds, then
Hj has poles at both 0 and oo, so H preserves {0,c0} and thus H = ax®
with o € C* and s € Z. Here s # 0 (since f is nonconstant). To show
we can choose s > 0, it suffices to prove that, for some § € C* and some
degree-one vy, vy € C(x), the decompositions (G ovy)o (v o Hyo3/x) =
(Gaows)o(vy' o Hyo /) satisfy the same one of (1.5.2) or (1.5.4)-(1.5.6)
that is satisfies by the original decompositions. In case (1.5.2) this is true
for =1 and vy = ¢ = —r;. In (1.5.4), we can take § = —1/2 and
vy = x = —vy. In (1.5.5), we can take § =1 and v; = x = vy (provided we
replace ¢ by 1/¢). In (1.5.6), we can take § =1 and v; = x = 1/v,. This
concludes the proof of Theorem 1.5.

7.4. Proof of Proposition 1.4. Pick f € £\ C, and suppose there are
91,92, h1, hy € C(x) such that f = g1 o hy = g2 0 ho and deg(g1) = deg(g2).
By Theorem 1.5, after possibly switching (g1, 1) and (g2, ha), we have

g1=GoGrow
g2 =GoGao s
hlzlu,floﬂloH
hgz,uQ_IOHon

for some G € C[z], some H € L, and some degree-one p1, o € C(x), where
one of (1.5.1)—(1.5.6) holds. Since deg(g1) = deg(g2), we have deg(G;) =
deg(G2), which greatly restricts the possibilities. In particular, (1.5.4) can-
not happen. In case (1.5.3) we must have m = n = 1, so (1.4.1) holds. In
case (1.5.5) we again have m = n = 1, so (1.4.3) holds. In case (1.5.6) we
have m = 2 and n = 1, so (1.4.4) holds. In case (1.5.2) we have p = ax with
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a € C*. Putting A =2+ % and v = ax/i we get

)
Ao Gjov=—Dsy(z)
Ao G2 == DQ(SL‘)

1
V_loleix—i—,—
i

1
HQZ‘T—’__?
xr

which is the n = 2 case of (1.4.3). Finally, suppose (1.5.1) holds, so G1 =
Hy = 2™ for some n > 0, and H; = 2"p(2") and G2 = 2"p(x)" where p €
Clz]\ {0} and r € Z is coprime to n. Write p = 2°P where P € C[z] satisfies
P(0) # 0, so with R = r — en we have H; = 2P(2") and Gy = 2R P(z)";
replacing r by R and p by P, we may therefore assume x { p. If r > 0 then
deg(Ga) = r + n-deg(p), which must equal n, so deg(p) < 1. In either case,
coprimality of r and n implies n = 1: for, if deg(p) = 1 then r = 0, and
if deg(p) = 0 then » = n. Thus G2 and H; are linear, and Gy = Hj, so
by composing with linears we obtain (1.4.1). Now assume r < 0, and write
s = —r. Then deg(G3) = max(s,ndeg(p)), so deg(p) =1 and 1 < s < n.
We may assume s < n, since otherwise s = n = 1 so we obtain (1.4.1) as
above. Now, composing with (scalar) linears gives (1.4.2).

Cases (1.4.3) and (1.4.4) are instances of (1.5.5) and (1.5.6), so by The-
orem 1.5 we may assume H = az® with a € C* and s € Zso. If (1.4.2)
holds, then f = G o G1 o Hy o H is a nonconstant Laurent polynomial, and
G,G1 € Clx], so Hy o H has no poles besides 0 and co. But H; has poles at
0 and oo, so H preserves {0,000}, and thus H = az® with « € C* and s € Z
(and s # 0). If s < 0 then, writing v = 1/x, we have Hyov = (2" +1) /2" "
and vo Hyov = Hy and Goov = (z+ 1)" /2", so by replacing r by n —r
we again have (1.4.2), but now with H replaced by z7%/«. Thus we may
assume s > 0, so the proof of Proposition 1.4 is complete.
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