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1. Introduction

A sample X;,..., X, is considered biased if it is sampled from a density p
which is represented as

@)
J q(w)w(u) du’

Here g is some ‘natural’ pdf (probability density function) for the problem, rep-
resenting the ‘true’” underlying distribution, while w is a given weight function
that biases the sample. In a standard example, X represents the severity of the
disease, and g is the density of X among patients at admission to the hospi-
tal. However, it may be more convenient to take a random sample from the
population of patients who are in the hospital at a given time. If the time of
hospitalization is proportional to the severity of the case, then the sample is
taken from the density p, which is equal to ¢ ‘length biased” with w(z) = =.
Vardi (1985) was the first to analyze systematically these type of models. As-
ymptotic theory was develop in Gill, Vardi and Wellner (1988). Gilbert, Lele,
and Vardi (1999) extended the model to the situation where the weight func-
tion depends on some parameter, w(z) = w(z; f). The large sample properties
were discussed in Gilbert (2000).

Our paper is about estimating f, the parameter of the weight function, w(z) =
w(z; f). Two semiparametric models are discussed in this paper. The first model
is an experimental design problem in which the concept of biased sample is in-
troduced in a situation where a direct sample is in fact impossible. The model
for ¢ is semiparametric, while the parameter of interest, f, is Euclidean. In the
second model we consider, ¢ is taken as known, while the weight function is
parametrized by a non-Euclidean parameter. This brings us to an inverse prob-
lem of estimating and demixing the weight.

The purpose of the first model is to design an experiment in order to evalu-
ate the relative attractiveness of different baits. See for example Ji, Veitch, and
Craig (1999). It can be described as follows. Suppose that traps are distributed
with different baits. We do not know much about the animal population. We do
not know even how many animals visited each trap. We know only the number
and characteristics of the animals who were tempted by each of the baits and
were captured. For simplicity we assume that each trap and bait can attract and
catch unlimited number of animals. We want to estimate the attractiveness of
each type of bait as a function of the animal characteristics, and do that from
the sample in which a datum is a pair of an animal and a bait.

The second model is motivated by research on risk aversion and proclivity,
more precisely on the empirical pricing kernel (EPK). See Detlefsen, Hardle and
Moro (2007) (hereafter DHM). The EPK describes the apparent utility behavior
as function of individual investors utility function.

In this model g is the risk neutral density of assets pricing. It is derived from
theoretical considerations. The density p on the other hand is the empirical
(historical) prices. See Figure 1 (a) and (b) for an example. In asset pricing the

p(x) (1)
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EPK links risk neutral investor’s behavior to individual utilities, which gives in
our notation a semiparametric modeling of the weight function w. The integral
function of the pricing kernel ¢/p is the utility function used by a represent-
ing individual. Knowing p and ¢ yields the exact form of the utility function,
cf. Ait-Sahalia and Lo (2000). The risk neutral (state price) density (SPD) ¢ can
be calculated from the market data on European options, in the DAX data-set.
There are more than 5000 observations each day for maturity from 1 week to
2 years. The SPD can therefore be estimated very precisely. Much empirical re-
search work has demonstrated the so called EPK paradox: The resulting utility
function is partially concave and partially convex, more precisely of the Fried-
man and Savage type. See Friedman and Savage (1948).

It is assumed in DHM that the observed density of the DAX value has den-
sity of the form p(x) = cq(z)w(z; f) where ¢ € {q,,v € N C R%} is theoretical
derived risk neutral density, assumed to follow a given parametric function
and c is a normalization factor. That is, of the type of equation (1). The weight
function is theoretically derived to be given by 1/U’(x), where U is the mar-
ket utility function, and prime denotes derivative. The market utility function
itself is assumed to be a function of the mixture of the individual investors:

r=U"Y(u) = / o(u: €)£(€) de.

Here £ denotes an investor type, f is the density of the investors” distribution,
and the function ¢(-; -) is the inverse utility function and it is considered known.
A subject of type ¢ has the inverse utility function ¢(-; ), or equivalently, the
utility function u(-; §) satisfying g{u(x;&); £} = x. The problem we consider in
this paper is to find the density f. We obtain the representation:

po) = cale) [ SLotw )€ de, witha = [gwes© ds @

See Figure 1 for an example taken from DHM of estimates of p, ¢, and f.

We will investigate the estimation rate for a few utility functions. The result
is typical for inverse problems, in that slightly different assumption will yield
completely different results. In fact, we will present three similar models, sim-
ilar to those investigated in DHM, that exhibit three different type of behavior:

(i) There is no consistent estimator of f;
(ii) f canbe estimated at a regular nonparametric rate of n=%;
(iif) f can be estimated but at a very slow rate.

We will also show a sort of uncertainty principle. The better we can estimate
the function U ! (u), the worse we can demix it and estimate f . This is reason-
able. We cannot estimate f well, when large differences in f have only minor
impact on [ g(-;€)f(€) d.

There are two unified themes to the paper. The first is the usefulness of the
concept of biased sample of unknown weight function, even in models where
this point of view is not automatic. The second is the technical analysis of in-
verse problem which starts with a naive estimator that not much is known
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Distribution of the Switching Points (2000)

''''''

(a) (b) (©

Fig 1: The DAX data, 24/03/2000 half a year look ahead: (a) p, the historical
density; (b) ¢, the risk neutral density; (c) The estimate of f, the mixing density.
Figures are taken from DHM

about it, and then improving it. The structure of the rest of the paper is as fol-
lows. In Section 2 we consider a parametric model for the weight function, and
show the simplicity of the result. Then, in Section 3 , we suggest an algorithm
for calculating the generalized maximum-likelihood estimator (GMLE) for the
semiparametric weight function of the model suggested by DHM. Finally rates
of convergence of the demixing estimator for the DHM’s model are discussed
in Section 4 , as well as of estimates of the mixture itself.

2. The parametric bait problem

Animals of type z are trapped by a bait of type v with probability which is
proportional to w(z,u; f). We do know about the animals only after they are
caught by the traps. Our aim is to design an experiment and to estimate f.
The solution in a nutshell is to distribute many different baits and compare
the difference between the animals captured by the different baits, somewhat
similar to what is done in case-control studies.

Let X = (U, Z) where U denotes the bait property (e.g., percentage of fat)
and Z is a vector of measurement for each animal (e.g., gender, weight, and
age). Baits with known (designed!) distribution ¢ are spread, and are encoun-
tered by the animals. We assume therefore that the data is sampled from the
joint density given by

(U va)g(U)h(Z)
KT (@)h(Z) 1 (@) dv(Z) 3)

with respect to the product measure ;. x v, and where w(u, z; f) is some para-
metric weight function, for example, if u is a scalar and z € R¢, we can consider

w(u, 2; f) = exp{ufz}. (4)
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Our aim is to estimate f. The density & is an unknown distribution over R?, d
large.

Suppose we consider the weight function (4), then the likelihood equation
for fis

T
0= 1.7 - S S uzet! 2g(u)h(z) dp(u) dv(z)
[ ent=g(u)h(z) dp(u) dv(z)
Assuming that Z has at least one Lebesgue continuous component, the GMLE

(generalized maximum likelihood estimator) of its distribution is discrete with
a point mass at each observation, so that we obtain

" >, Juze 5 g(u)hy du(u)
0= UlZZ —n J = .
2 > [ e s g(u)hy dp(w)

where Bj is the estimated mass at the point Z;. However, the likelihood equa-
tion for h is

0= _»n J e % g(u) dp(u)

hy  ry [ e Zig(u) du(u)h

Plugging this into the profiled log-likelihood equation for f we obtain

1. Juzje ufl % g(u) du(u)
0=—-4f)==> UZ -
0= yom- L

- ZZl-{Ui —~E(U|f"Z)}

i=1

1 n
= > T, Zi f),  say.
i=1
For example, in the simple case where g is uniform on the interval (a, b):

B, (U)2) = f ue! = 4z B beb! v geaf Tz 1
f eufT du o 6bfTZ*€asz fTZ
a

if T2 # 0, and (a + b)/2 otherwise.

Generally, the derivative of E;(U|f'Z;) is — Varp(U|f"2)ZZT. Hence ¢ is
concave in f. This yields that the maximizer of / is simple to find and is asymp-
totically normal with asymptotic covariance function given by E{ Var;(U|f"2)ZZ"}

3. EPK: Model and an EM estimator

We consider now the EPK problem. We start now from (2) and we assume that
q is known. In practice, it is assumed only to belong to some parametric family
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{q,}- However, we will deal in the following in rates which are slower than the
parametric /n rate, and the estimate of v is based on much larger sample than
the estimates of the rest of the parameters. Therefore, the assumption that v is
known simplifies the discussion without a real impact on the results.

Rewrite (2) as

pl [ 90w )7 du(e)} / §g<u;§>f<f> aue)

—caf [ o5 @)} [ Show 1O @)}

where 1 is some dominating measure (i.e., the Lebesgue or the counting meaus-
res). Noting that the LHS of (5) is integrated to 1, we can solve for ¢ and obtain

a{ [ 9(w; ) f(€) du(€)} [ Zg(u; &) F(€) dp(€)
w; &) f(&) du(&) ; =
p{/g( (€ duld)) [ al [ g(0:6)1(€) }{fm (0:6)1() dp() } do

The market utility U(x) = U(x; f) is given by

(5)

- / o {U @ )€1 1(€) du(€) = b {U(: )}
We obtain

q() fau 1) (&) dp(§)
Jaw) [ 529U (y: £):)£(6) du(€) dy

a(x) w}{vﬁ;l( )}

Jaw)vp{v; (v)} dy
The statistical model assumed by DHM is that we obtain a simple random
sample from p, where p is parametrized in (6) by the non-Euclidean parameter

f. A natural approach is to estimate f by the MLE or a variant of it, which
we develop now. Note that V¢ s(u) = g(u;-), and by taking the gradient of

z = [g{v; (2);€}F(€) du(€) we obtain
0=g{v; " (@);-} + vp{e; ()} Vv (a).

The derivative of the log-likelihood is given therefore by

p(r) =
(6)

; 1 9 1y V¥ “1/y .
Lp(&) = ; W [%g{wf (Xi); &} — J;{wf (Xi)}g{¢f (Xi)vf}}

*nAf(E), § € supp f
Z {U} aug{ Uit} ~

Ui = 97 (Xa), febuppf,

’(/} z (UZ7 5)} - TLAf(f)’

imsart-generic ver. 2007/02/20 file: biasedSample.tex date: May 1, 2007



Ritov and Hirdle/Biased sample 7

where A¢(§) is the mean of the first term under f. Since the density of Uj; is
given by

2
a{ vy (u) f{v} ()
1) = p{ ()} () = — L)
Ja{wr@) ) (v)} dv
We obtain that
A6 = Ja{ws (@) ) (u) grg(u; €) — ¥ (w)g(u; €) } du
f — .
S a{wr ) He) ()} dv
The model of random sample from the density p can be well approximated
asoc — ObyaX; = ¢;U;) +¢;,4 =1,...,n where ¢1,...,¢, is a random
sample from N(0,0?) independent from the random sample Uy, ..., U, taken

from the density r ;. Now, the log-likelihood of the joint density is given by

n n

lr=>" [1og a{vs (Ui} +2 1og{w’f(U,-)}} —nCy — % D (X —yp(U)?,
i=1 =1

where
€y = o5 [ afus () w50} do.

By a well known formula for the Bayes estimator in the Gaussian measure-
ment error model, under the above model, the distribution of ¢;(U;) — X;
given X; is normal with mean o2 f4 (X;)/fx (X;) and a second moment equal
to ot f(X;)/ fx (X;) + 02, where fy is the marginal density of X;. At the limit
as 02 — 0, the conditional expectation of the log-likelihood given the X;s
amounts therefore to replacing U; by w;l(Xi). We conclude that the limiting
EM algorithm iterates therefore between

The E step: U; — w;l(Xi), 1=1,...,m,

and

n

The M step: f « arg max [Z{log a{vs(U;)} + 2log{¢}(Ui)}} - an} )

i=1

Let U = (Uy,...,U,), X = (Xi,...,X,), and denote the E-step by U =
w;l (X). The M-step can be solved by solving the likelihood equation:

0=1(}(¢0)
Y M . 20 @)
- ;[q{wf(Ui)} 9lst) + U (U;) 99U Cf(f)}
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for all £ € supp f, where
FIEEOLot0:6) + o oot Olalws 0} {40} o
S a{wr @)} (0)) dv
o @y 9
_Ef[Q{wf(U)}g(U7€)+ aug(U’g)]

=E {T;(U;¢)}, say.

An approximate M-step (which is enough, since all we need in the M-step is
that the likelihood will be strictly increased) is obtained by considering an ap-
proximate Newton-Raphson solution of (7), where O, (1/n) terms in the Hessian
of the log-likelihood are discarded. That is the term

Cp(¢) =

P5(U)

n

Z{vaf(Uﬁg) —Ey Vfo(U; f)}

i=1
We consider therefore the algorithm:
firr = fi+ H O 50 (X)), i=1,2,.
where Hy : Ly(p) — Lo(p) is the operator given by:
Hy(&,¢) = cove{Ty(U;€) , Tr(U;Q)}-

4. EPK: Rates of convergence

In the previous section we considered the MLE estimate of f. In this section
we consider simple estimators of the type suggested by DHM. Using these
estimators we will be able to discuss possible minimax rates of convergence.
In essence, we start with some naive nonparametric estimator and improve it
or demix it for f. One simple method for demixing the EPK is to start with (2)
which can be written as

o q .
= / 5o €)(6) de / o(u: €)£(€) de}

d q

— 52t [t 1(6) agh.

Hence
— u; a = o+ pu

for some « and S, or
[owerr© s = () (ot pu).
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The utility function of an individual is defined up to affine transformation. To
assure that it is well defined, we assume that that utility at a return of 1 is 0, and
its derivative there is 1. In other words we assume that g(0,&) = % 9(0,¢) = 1.
Hence

0= P
q(1)
g=P) pMHd)
q(1)  q(1) ¢(1)
We therefore want to solve
[ a1 de = vt ®)

for some 1. Since ¢ is estimated as a parametric density (based on a much larger
sample), and p can be estimated at a standard non-parametric rate based on a
direct sample from p, ¢ can as well be estimated at a regular density estima-
tion rate. The analysis of this section starts with (8). We assume that ) and its
relevant derivatives can be estimated in some polynomial rate 6@ — i|loe =
Op(n=**) for some «v; > 0. The natural estimator suggested by DHM is given by
the inverse function of a weighed density estimator. Under strict monotonicity
and boundness, the inverse function inherits most properties from the density
kernel estimator.

Note that model (8) looks like a linear model. For example if f is approxi-

mated by a finite distribution with point mass at i, ..., &, and we consider
the equation at the k points uy, ..., u; then we can write (8) as
m
j=1

(9) looks like a standard linear model, and indeed we suggest to estimate f
by solving it. However, it is not. Most linear model assumptions are violated.
E.g.,e1,...,e, arenotii.d., they are not independent of the random w4, . .., u,
which are in fact an estimated function of the observed values z1, ..., 7.

The basic idea of this section is as follow. We assume that we have some
naive nonparametric estimator of ). We then proceed to use the pseudo linear
model (9) to to estimate the mixing distribution and to improve the estimate of
1 itself. We show that this method yields the minimax rates.

How fast can f be estimated? In the rest of the section we present simple
examples following DHM. These examples show that in a very similar models
very different type of behavior can be obtained. It can be that (i) There is no
consistent estimator of f; (i) f can be estimated at a regular nonparametric rate
of n™%; (iii) f can be estimated but at a very slow rate. Thus one can suspect
that any optimistic result of demixing depends too heavily on assumptions,
and are a priori not robust (at least in the minimax sense). In particular, any
result should be checked to stand against different changes in the model.
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4.1. Switching between two utilities
Following DHM assume that for z, { > 0:
U(z;€) = as(1 = o) o2 {[w — ]/ V(2 = )2} —az(1—¢),  (10)
where oy > a1 > 1 are given, ¢ < 0, and [z, = :r]_(x > 0). See Figure 2 . Then
9(u;€) = min{F%{u + as(l = )}** +¢, [ {u+az(l - )} + &},

where 3 = a; (1 — ¢)~ /2, To simplify and generalize the discussion, we
consider the slightly more general case:

o ) ge(u) —oo < u < h(§)
where
hWl=g—g (11)

is a strictly increasing function. Note that g(u; £) is continuous in &. Then (8) is
translated to

h= (u)
blu) = / E1() de + go(w)F{h~ ()} + ga(w){1 = F{n~ ()} }

where F is the cdf corresponding to the pdf f. Changing variables and consid-
ering (11)

w{nto)} = [ €n(€ e = sF(s) + ga{ns)
Taking derivative:

F(s) = W'(s){gh{h(s)} = ' {n(s)} }.

Hence estimating F' at s is equivalent to the estimation of ¢’ at h(s). In other
words, f(-) can be estimated at the same rate as the rate of the estimation of
second derivative of 1), which in turn is essentially governed by the rate of esti-
mation of the second derivative of p, which depends on the level of smoothness
assumption we are willing to accept. Thus if we assume that p has s bounded
derivatives, then f can be estimated with an O, (n~(*=2)/(2s+1)) error. See Sil-
verman (1986) for a general review of density estimation.
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Ux)

Fig 2: The utility function U(+;¢) of (10) (a1 = 2, ap = 2.25, ¢ = 2) for two
different values of £ (solid lines), and of (12) for two values (broken lines).

4.2. Polynomial and exponential inverse utility function

The previous example was a relatively optimistic example. However, modest
changes in the inverse utility function may create situations in which f can
hardly estimated, or even not at all.

Suppose a CRRA (constant relative risk aversion) utility:

g(w; Q) = (¢ N H(uw+)* - ¢} +1, uveR,(eR,

where « is known. Note that g is scaled such that both its value and derivative
at 0 are equal to 1. That is, we consider only one branch of (10). If « is an integer,
then #(+) is a function of only the first & moments of f, and hence there is no
consistent estimator of f.

Seemingly, more and more moments are revealed as « — oco. However, it
is not clear that they could be estimated effectively. The limiting form of the
inverse utility function, as & — oo and a/{ — ¢ is given by

g(u; ) = &M — 1) + L. (12)

The density f is now identified. For example, all its moments can be estimated,
e.g., by [&f(€)d¢ = ¢+ (0). We are going now to analyze this model in
some detail. We will argue now that if f(-) is assumed to have two bounded
derivatives, then its value at a point can indeed be estimated, but this can be
done only in a very slow convergence rate, slower than any polynomial rate.
To be more exact,we argue
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Theorem 4.1 Assume that g is given by (12) and f is bounded and has two bounded
derivatives. Suppose the minimax rate of estimation of 1 is n”, v € (0,1/2). Then
there is an estimator f such that f(s) — f(s) = O, (n~lglean/logn) for some o, and
there is no estimator f(s), such that f(s) — f(s) = O,(n=2/1°818") for some .

The proof is given in Appendix A .

4.3. Smoothing the empirical estimate and an uncertainty principle

As in the previous subsections we start with a nonparametric 1. The purpose
of this subsection is to show that a simple projection of this initial estimator
yields a considerably better estimator.

We argued in Subsection 4.2 there that there is no reasonable estimator of f
for g given in (12). Is this model useless? The surprising answer is no. Although
f cannot be estimated per-se, many of its functionals can be estimated quite
easily and quite well. For example, as mentioned, its moments. Similarly ¢ (u)
considered as a simple linear functional can be estimated quite easily. Suppose
that f is supported on some compact interval [a, b]. Then one can approximate

Y(u) = Biu' + R (u)
i=1
where for some 4 € (0, u):

0 Riyfu) = o™ 0)
b
= [ € de (13)

- meUb
~ (m+ 1)l

Generally speaking, the faster the coefficients 3 are converging to 0, the easier
it is to estimate ¢ and the harder it is to estimate the mixing density g. As (13)
shows, we need only very few terms to approximate 1 quite well. In fact we
show that in this smooth case, where on one hand f can be hardly estimated, v
can be estimated almost at the parametric rate. This is not an accident — these
are two faces of one phenomena. The shape of the observable 1) hardly depends
on f, and essentially depends only on a few aspects of f. These aspects can be
estimated well (and hence ¢ can be estimated well too). The other aspects can
hardly be estimated and hence f cannot be estimated in a reasonable rate. This
yields an uncertainty principle — the more you are certain about 1) the less you
are about f.

Recall that a function g is called completely monotone if (—1)*g*) > 0, and
it is called Bernstein function if its first derivative is completely monotone. It
is well known (Feller, 1996) g is completely monotone if, and only if g(u) =
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JoS e dF(€). In other words, 1) is a Bernstein function. Nonparametric max-
imum likelihood estimation for exponential mixture (and hence completely
monotone density) was discussed in Jewel (1982). Balabdaoui and Wellner (2007)
discussed the estimation of a k-monotone density.

We assume that at our disposal there is an estimate 1[1 = 1[),1 Foranyu;,...,ur >
0,let X(uq, ..., ux) € RE** where

ZZ] (ula <o ,Uk) = COV{Q&(U@) ) 1&(“’7)}
Consider the following assumption:

Al. For any n thereis k = k,, and uq, ..., ux € (¢,d), 0 < ¢ < d, such that the
spectral radius of X(u1,...,ux) is O(k/n) and max; |E(u;) — ¢(w;)|* =
O(logn/n).

Assumption Al is satisfied by many nonparametric density and regression es-
timators when they are strictly under-smooth. We care much more about bias
than about variance of the original estimator 1. Thus, we have in mind a kernel
estimator with bandwidth of order n~'/4+¢. The spectral radius is based on the
assumptions that the estimator at points that are a multiply of the bandwidth
apart are (almost) independent, for example this is trivially the case with ker-
nel estimator with compact support. The relationships in the assumption are
derived from assuming that the bias of the estimator is O(c?), the variance is
O(1/no),and k = O(c~1).

Consider now the least squares regressmn of Y = {1/) Up)yeney z/A) (uk) }T on
the design matrix Z € R"*™, Zij = uj. That is3=(2'2)"'2'Y, whereﬁ € R™.
Finally let ¢ (u) = Y7 =1 Bjuf, u > 0. We argue that the error achieved by 4 is
almost the parametric rate even although 3 achieves can be estimated in strictly
lower rate.

Theorem 4.2 Suppose g(u; &) = €1 (e"s — 1) and that f is supported on a compact
interval. Assume A1 holds and m = m,, = logn/loglogn. Then k~! Zle {zﬁ(ui)—

1/1(%')}2 = Op{(log n)g/n}

Proof. Let 3° be the true value ) = [ &7 f(£) d€/j!. Write Y = Z3 + ¢, where
¢ include both the random error and the bias terms due to both the estimator
and the truncation. The latter term is given in (13). By standard least squares
results

1EZ{¢ (w;) — b(u) Y = k' B{e"2(272) ' 27e)
=kt trace{Z(ZTZ)_lZTE(EsT)}.

Since Z(Z7Z)~1Z"is a projection matrix on a m-dimensional space, the RHS is
bounded by the largest eigenvalue of E(ec") times m/k. This has three sources
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(variance and two biases) and hence

3 i) ot = o5 +HE k()]

The factor k before the last two terms is due to the norm of the unit vector in R¥,
and, the last term is by (13). The theorem follows by taking m = log n/loglogn
O

A more general result can be based on an assumption like the following

A2. Assume that for some c, d and each ¢ there are h. 1, ..., h. () such that

M(e)

hi(u)| <
Sgprrgncrggg lg(u; &) — Z_: vihi(u)| < e

Note that clearly the assumption ensures the existence of y(-) such that max.<,<q |g(u; £)—
Z;w(f) v;(€)hj(u)| < &, butthen therearealso 3; = [v,;(§)f(§)d¢, j=1,...,M(e),

such that max.cy<q [t (u) — ZM(E) Bih;(u)| <e.
The following theorem can be proved similarly to Theorem 4.2 :

Theorem 4.3 Suppose assumptions Al and A2 hold. Define ,, by

En = arggmin{M(e)/n +e}.

Let 1) be the least squares estimate of the regression of ) o he, 1, ..., he, M(e,)- Then
S 2
B i {(w) —9()} = Op(en).

In practice, Theorems 4.2 and 4.3 may seem to be of a limited use — a
knowledge of the structure of the span of the individual utility functions is
needed, and the regression is based on an identified efficient base, which may
be not natural. For example, we used a polynomial base for the exponential
utility function. The practical approach is an histogram or discrete approxima-
tion of f. We want now to discuss when such a procedure does yield an effec-
tive estimator, an estimator which is both statistically speaking efficient, but at
the same time easy to compute and can be be used in off-the-shelf manner.

This is indeed the case. Let &1, ..., & () be reasonably spaced points in the
support of f. With the notation introduced after Assumption A2 , and by a
similar argument, for a vector /5 on the simplex

M (e) M(e)
j{: ﬁ% j{: " gj hl
j=1
Hence, one can use the base function g(+;&1), ..., 9(-;{ar(e)) as well.
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Appendix A: Appendix: Proof of Theorem 4.1 .

We start the proof with the negative result. The proof is standard. We exhibit
a small perturbation that cannot be detected. The perturbed density should re-
main a probablity density function with bounded second derivative. It should
be however very wiggly so that the exponential mixing would smooth it out to
make it hardly detectable through 1. Very convenient candidates could be high
derivatives of the normal density, but the supports of these functions are not
bounded, while the support of f is bounded at least from below. We therefore
use derivatives of approximations of the normal density. Here are the details.
Consider

Ton(€) = Tm(€e,d) = {1 - (556)2}"’1@ € (c—d,c+d)}

for some ¢, d, where 1 denotes the indicator function. m,, is approximately the
normal pdf normalized improperly, cf. (24) below. Note that for k < m:

c+d
[ e de = (1o [ ema©de, (14)
c—d
and
w0 = (-1t () (15)
Write
o 576 m gic m
mn(©) = (1 S 5ma 4 £20)

and taking the derivative of the RHS:

T (€)

— oy ()0 G - o e
N =\ (m —i)! (m — 2k +i)! (16)

k
=d%* Z(—l)iai, say.
=0

For simplicity we write £ = (£ — ¢)/d. Note that

a1 2k—i  om—i  14¢
a;  i+tlm-—2k+it+l]_¢

Hence the sum in the RHS of (16) is of unimodal terms with alternating signs.
Let I be the index where the maximum is achieved:
2k — 1 m—1 1-¢
={1 1 >, 17
[Fim—krie1 Uo7 17)
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Then
ap = ap — Z(al+2j71 — Qi425) — Z(al72j+1 — ay_2;)
j=1 j=1

2k
= (=)' (~1)a;

as)
=a; — a1+ Z(al+2j — Qiyoi41) — -1 + Z(alfzj —ai—2j-1)

j=1 j=1

> —q

where, if necessarily, the sequences are padded by zeros at the ends. But then
for some C' = O(1), C' may vary from line to line:

ai = (26) (7) (%m_ Z) (L= gmi(1+gm

mgm(l . g)mfl(l + g)mf2k+l
< C(2k)!ll(m —ym1(2k — 1)2F1(m — 2k + [)m—2k+]

= C(2k)! (1 - 52)%%{’22:?) }2’“—1 {k(ljé) }l {%}%

(19)

l m—l1 2k —1 m—2k-+1
ol Uy R U T

To deal with the following terms of the RHS of (19) we assume that 0 < [ < k.
The case 2k > | > k is dealt similarly. The cases of | € {0, 2k} are simple

{k(l—g)}%*l {k(1+£)}l _{k(1—§)}2<k—z>{1+£ﬁ}l

2k — 1 l 2k — 1 1—-¢ 1
14 &2k — 14!
< 2k > —
- {1f§l+1} (20)
— 2k + 14+ 14!
< 9k m_avTeT 2
_3{ m—1 }’ by (17)
< 3
The next bound is easy,
l m—l 2k —1  m—2k+i ok
o 21
(Eh s A U sy, R @

since (1 + 1/x)” < e” for any « > 0. We conclude from (16), (18), (20), and (21):
m }2k

1729 || < ay < C(Zk)!{@z (22)

for co > 1.
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Let
d2k

w2 ()

Am,k(f) = (2k+2)!(0162)2k m

where we take m = [¢1k]. Note that by (22) Ag)k is uniformly bounded, while
by (15)

Bl6) = eak~ ) (1) = 3t )
for some ¢4 > 1. However by (14)

/ €[~ 1Y F(6) + €A ()} de

—2(m—k) b
d 2% / T (€)eE dE

—

(2k + 2)!c2F

d2k oh b .

e —m(E—0)?/d? uE

(2k + 2)lc2F " /a ‘ ¢ dt
vV 27Td2k+1 2k .

(2k + 2)!m1/2c%ku ‘-

= ¥(u) +

= ¢(u) + (1) {1+ o(1)}

= ¢(u) + (=) {1+ o(1)}

Hence if
d2 k+1

— o (n—1/2
(2k + 2)!m1/2(crc9)?k o),

or klogk — logn — oo, then one would not be able to test between f to f +
&A, k- In particular this happens when k£ = logn/ log log n. However, then, by
(23), n® Ay, 1 (c) — oo for any a > 0. This proves that f can be estimated in any
n%, a > 0 rate.

We move now to the positive result. We suggest an estimator of the mixing
density f whose rate of convergence is easy to evaluate. Of course, the practical
way would be the standard least squares as discussed in Subsection 4.3 , but
then rates are difficult to evaluate. We suggest therefore in the proof a kernel
estimator of ¢ given by [ ¢ (u) K (u) du for some K given below. Here are the
details.

If (u) = [ g(u;€) f(§) dE, let s = hs(u) = e “5(¢(u)-1). Assume for sim-
plicity that by assumption f(§) = 0 for & & (sp — d, so + d). Then since

alts) = / MEIET F(g) d — e / e f(6) de
$) (u) = / (€ — ) E gL f(€) dE — (~1)Fskes / 1 1(E) d,

then formally:

m kZm% (?) (e )
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— o [ FnGis. eI () de
\/2d2ﬂ'm(50d 7“5/5 Lrg) de

where m,,(-) = 7, (+; 8, d). Note that for any smooth bounded function h with
two bounded derivatives:

m/ T (€5, d)B(E) dE ~ \/272 [ etvie-syame
)

~ h(s) +O(m™*

where ¢ is the standard normal density. Hence

Voo Z( )(Z) v =) asmo @9

Let @s be an estimator of 1,. Let K be a smooth kernel of order 2m, inte-
grated to 1, and with bounded support kernel. Then by (25) we can estimate

f(s) by
fo) =\ 3 i (1) ()" [ Kwiewa
~ [ Rtwd.w) du
where

9=z (1) @) e

Since we have already developed the machinery we pick

2m
K(u) = vm \/ Wﬂém(u; ug, )

where 7,,, = 1 4 o(1). Hence by (22)

Il <052 3 (1) () n =06y )

If 4, can be estimated at a standard polynomial rate, ¢) — ¢ = O,(n~7), then
we obtain from (26) and (27) that ¢) induce an error of O(¢™m™ /n"). To this we
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have to add the bias of O(m™!) as given by (24). The minimization of the error
estimate is obtained therefore of the order of the value at m when these two
terms are equal:

mlogm — vylogn = logm.

By taking m = m,, = alogn/loglogn we achieve the rate of

f(S) - f(s) =0, (n*alogbgn/ logn)7

for any a < 1. We have shown that the optimal rate of convergence is n®" for
some o, — 0 slowly.
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