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Abstract: The compound decision problem for a vector of independent
Poisson random variables with possibly different means has half a century
old solution. However, it appears that the classical solution needs smooth-
ing adjustment even when there are many observations and relatively small
means such that the empirical distribution is close to its mean. We dis-
cuss three such adjustments. We also present another approach that first
transforms the problem into the normal compound decision problem.

1. Introduction

In this paper we consider the problem of estimating a vector λ = (λ1, . . . , λn),
based on observations Y1, . . . , Yn, where Yi ∼ Po(λi) are independent. The

performance of an estimator λ̂ is evaluated based on the risk

Eλ||λ̂− λ||2, (1)

which corresponds to the loss function

L2(λ, λ̂) =
∑

(λi − λ̂i)2.

Empirical Bayes (EB) is a general approach to handle compound decision
problems. It was suggested by Robbins, see (1951, 1955); see Copas (1969) and
Zhang (2003) for review papers. Suppose we assume that λi, i = 1, . . . , n are
realizations of i.i.d. Λi, i = 1, . . . , n, where Λi ∼ G, then a natural approach is
to use the Bayes procedure:

δG = argmin
δ

EG(δ(Y )− Λ)2, (2)
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and estimate λ by λ̂ = (δG(Y1), . . . , δG(Yn). When G is completely unknown,
but it is assumed that λ1, . . . , λn are i.i.d., then it may be possible to estimate
δG from the data Y1, . . . , Yn, and replace it by some δ̂G. Optimal frequentist
properties of δG in the context of the compound decision problem, are described
in terms of optimality within the class of simple symmetric decision functions.
See the recent paper by Brown and Greenshtein (2009) for a review of the
topic. The optimality of the empirical Bayes decision within the larger class of
permutational invariant decision functions is shown in Greenshtein and Ritov
(2009).

The Bayes procedure δG has an especially simple form in the Poisson setup.
In this case there is also a simple and straightforward estimator δ̂G for δG.
Denote by P the joint distribution of (Λ, Y ), which is induced by G. The Bayes
estimator of λi given an observation Yi = y, is:

δG(y) ≡ E(Λi|Yi = y) =

∫
λP (Yi = y|Λi = λ)dG(λ)∫
P (Yi = y|Λi = λ)dG(λ)

=
(y + 1)PY (y + 1)

PY (y)
,

(3)

where PY is the marginal distribution of Y under P . Given Y1, . . . , Yn, we may
estimate PY (y) trivially by the empirical distribution: P̂Y (y) = #{i|Yi = y}/n.
We obtain the following Empirical Bayes procedure

δ̂G(y) =
(y + 1)P̂Y (y + 1)

P̂Y (y)
. (4)

This is currently the “default”/“classical” empirical Bayes estimator in the
Poisson setup, suggested initially by Robbins (1955). Various theoretical results
established in the above mentioned papers and many other papers, imply that
as n → ∞, the above procedure will have various optimal properties. This is
very plausible, since as n → ∞, P̂Y → PY and thus δ̂G → δG. However, the
convergence may be very slow, even in common situationsn as demonstrated in
the following example, and one might want to improve the above δ̂G. This is
the main purpose of this work.

Example 1: Consider the case where n = 500 and λi = 10, i = 1, . . . , 500.
The Bayes risk of δG for a distribution/prior G with all its mass concentrated
at 10 is, of course, 0. The risk of the naive procedure which estimates λi by Yi,
equals the sum of the variances, that is, 10× 500 = 5000. In 100 simulations we
obtained an average loss of 4335 for the procedure (4), which is not a compelling
improvement over the naive procedure, and very far from the Bayes risk.

We will improve δ̂G mainly through “smoothing”. A non-trivial improvement
is obtained by imposing monotonicity on the estimated decision function. By
imposing monotonicity without any further step, the average total loss in the
above example in 100 simulations is reduced to 301; by choosing a suitable
smoothing parameter (h = 3, see Section 2 below) and imposing monotonicity,
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the average loss is reduced further to 30. Early attempts to improve (4) through
smoothing, including imposing monotonicity, may be found in Maritz (1969)
and references there.

The rest of the paper is organized as follows. In Section 2 we will suggest
adjustments and improvements of δ̂G. In Section 3 we describe the alternative
approach of transforming the Poisson EB problem to a normal EB problem, us-
ing a variance stabilizing transformation. In Section 4 we discuss some decision-
theoretic background, and in particular we examine loss functions other than
the squared loss. In Section 5 we discuss the above mentioned two approaches
and compare them in a simulation study. Both approaches involve a choice of
a “smoothing-parameter”. A choice based on cross-validation is suggested in
Section 6. In Section 7 we present an analysis of real data, describing car acci-
dents. Finally, in Section 8 we briefly describe a further third approach, which
estimates δG using a nonparametric MLE.

2. Adjusting the classical Poisson empirical Bayes estimator

In the Introduction we introduced the Bayes decision function δG and its straight-
forward estimator δ̂G. Surprisingly, it was found empirically that even for n
relatively large, when the empirical distribution is close to its expectation, the
estimated decision function should be smoothed. We discuss in this section how
this estimator can be improved. The improvement involves three steps, which
finally define an adjusted Robbins estimator.

2.1. Step 1

Recall the joint probability space defined on (Y,Λ). We introduce a r.v. N ∼
Po(h), where N is independent of Y and Λ. Let Z = Y + N . Consider the
suboptimal decision function

δh,1(z) ≡ E(Λ|Z = z) = E(Λ + h|Z = z)− h. (5)

The above is the optimal decision rule, when obtaining the corrupted obser-
vations Zi = Yi + Ni, i = 1, . . . , n instead of the observations Y1, . . . , Yn. The
“corruption parameter” h is a selected parameter, referred to as “smoothing pa-
rameter”. In general, we will select smaller h as n becomes larger. See Section 6
for further discussion on the choice of h. Motivated by (5) and reasoning similar

to (4), we define δ̂h,1 as:

δ̂h,1(z) =
(z + 1)P̃Z(z + 1)

P̃Z(z)
− h. (6)

where the distribution P̃Z(z) is defined by

P̃Z(z) =

z∑
i=0

P̂Y (i)× exp(−h)
hz−i

(z − i)!
. (7)
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Note that P̃Z(z) as defined in (7) involves observation of Y through the quan-
tity P̂Y (y) that appears inside its definition. It is—in general—a much better
estimate of PZ(z) than is the empirical distribution function #{i : Zi = z}.

2.2. Step 2.

There is room for considerable improvement of δh,1. Note that δh,1 is applied
to the randomized observation Zi. Therefore, the natural next adjustment is
Rao-Blackwellization of the estimator. Define

δ̂h,2(y) = EN (δ̂h,1(y +N )), (8)

for N ∼ Po(h), which is independent of the observations Yi, i = 1, . . . , n. That
is,

δ̂h,2(y) = e−h
∞∑
j=0

hj

j!
δh,1(y + j).

Note that for a given y, the value of δ̂h,2(y) depends on all of P̂Y (0), P̂Y (1), . . . ,
although mainly on the values in the neighborhood of y.

2.3. Step 3

Finally after applying adjustments 1 and 2 we obtain a decision function which
is not necessarily monotone. However, because of the monotone likelihood ratio
property of the Poisson model, δG is monotone. A final adjustment is to impose
monotonicity on the decision function δ̂h,2. We do it through applying isotonic
regression by the pulling adjacent violators, cf. Robertson, Wright, and Dyk-
stra (1988). Note, the monotonicity is imposed on δ̂h,2 confined to the domain
D(Y ) ≡ {y : Yi = y for some i = 1, . . . , n}. To be more explicit, an estimator
is isotonic if

yi, yj ∈ D(Y ) and yi ≤ yj ⇒ δ(yi) ≤ δ(yj), (9)

and δh,3 is isotonic and satisfies

n∑
i=1

(
δ̂h,3(yi)− δ̂h,2(yi)

)2
= min

{ n∑
i=1

(
δ̂(yi)− δ̂h,2(yi)

)2
: δ satisfies (9)

}
.

We obtain the final decision function δ̂h,3, after this third step.

In order to simplify notations we denote: ∆h ≡ δ̂h,3. This is our adjusted
Robbins estimator.

Finally we remark on a curious discontinuity property of ∆h. The function ∆h

is a random function, which depends on the realization y = (y1, . . . , yn). In order
to emphasize it we write here ∆y,h ≡ ∆h. Consider the collection of functions
parameterized by h, denoted {∆y,h(y)}. It is evident from the definition of (6),
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that ∆y,h(y) does not (necessarily) converge to ∆y,0(y) as h approaches 0, even
for y in the range y1, . . . , yn. This will happen whenever there is a gap in the
range of y. Suppose, for simplicity that P̂Y (y) = 0, while P̂Y (y−1), P̂Y (y+1) >

0. Then, limh→0 δ̂h,1(y−1) = 0, and limh→0 hδ̂h,1(y) = (y+1)P̂Y (y+1)/P̂Y (y−
1). Hence

lim
h→0

δ̂h,2(y − 1) = lim
h→0

E
(
δ̂h,1(y − 1 +N)

∣∣y1, . . . , yn)
= lim

h→0

(
(1− h)δ̂h,1(y − 1) + hδ̂h,1(y)

)
= (y + 1)P̂Y (y + 1)/P̂Y (y − 1),

which is strictly different from δ0,2(y) = 0. Suppose that P̂y(y) > 0 and P̂Y (y+

j0) > 0 for some j0 > 1, but P̂ (y + j) = 0 for j = 1, . . . , j0 − 1. Then one can

check directly from the definition that limh→0 δ̂h,2 = y + j0. Note that in such

a situation δ̂G(y) = 0. Hence δ̂h,2(y) for small to moderate h seems preferable

to δ̂G(y) = δ̂0,2(y) in such gap situations.
This phenomena is reflected in our simulations, Section 5, especially in Table

5.
Another curious feature of our estimator is when applied on ymax = max{Y1, ..., Yn}.

It may be checked that: δ̂h,2(ymax) = (ymax + 1)h+O(h2). When h is small so
that (ymax + 1)h� ymax, this would introduce a significant bias. Hence, choos-
ing very small h, might be problematic, though this bias is partially corrected
through the isotonic regression. An approach to deal with this curiosity could
be to treat ymax separately, for example decide on the value of the decision
function at the point ymax through cross-validation as in Section 6, trying a few
plausible values.

3. Transforming the data to normality.

The emprical Bayes approach for the analogous normal problem has also been
studied for a long time. See the recent papers of Brown and Greenshtein (2009)
and of Wenhua and Zhang (2009) and references there. The Poisson problem and
the derivation of (4) are simpler and were obtained by Robbins at a very early
stage, before the problem of density estimation, used in the normal empirical
Bayes procedure, was addressed. In what follows we will consider the obvious
modification of the normal method to the Poisson problem.

In the normal problem we observe Zi ∼ N(Mi, σ
2), i = 1, . . . , n where

M1, . . . ,Mn are i.i.d. random variables sampled from G and the purpose is
to estimate µ1, . . . , µn the realizations of M1, . . . ,Mn. The application of the
normal EB procedure has a few simple steps. First we transform the Poisson
variables Y1, . . . , Yn to the variables Zi = 2 ∗

√
Yi + q. Various recommenations

for q are given in the literature, the simpler and most common one is q = 0,
the choice q = 0.25 was recommended by Brown et. al. (2005, 2009). We now
treat Zi’s as (approximate) normal variables with variance σ2 = 1 and mean
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2 ∗
√
λi, and estimate their means by µ̂i, through applying normal empirical

Bayes technique; specifically, µ̂i = δN,h(Zi), as defined in (11) below. Finally

we estimate λi = EYi, by λ̂i = 1
4 µ̂

2
i .

We will follow the approach of Brown and Greenshtein (2009). Let

g(z) =

∫
1

σ
ϕ
(z − µ

σ

)
dG(µ).

It may be shown that the normal Bayes procedure denoted δGN , satisfies:

δGN (z) = z + σ2 g
′(z)

g(z)
. (10)

The procedure studied in Greenshtein and Brown (2009), involves an estimation
of δGN , by replacing g and g′ in (10) by their kernel estimators which are derived
through a normal kernel with bandwidth h. Denoting the kernel estimates by
ĝh and ĝ′h we obtain the decision function, (Z1, . . . , Zn)× z 7→ R:

δN,h(z) = z + σ2 ĝ
′
h(z)

ĝh(z)
. (11)

One might expect this approach to work well in setups where λi are large,
and hence, the normal approximation to Zi =

√
Yi + q is good. In extensive

simulations the above approach was found to also work well for configurations
with moderate and small values of λ. In many cases it was comparable to the
adjusted Poisson EB procedure.
Remark In the paper of Brown and Greenshtein the estimator δN,h as defined
in (11) was studied. However, just as in the Poisson case, it is natural to impose
monotonicity. In the simulations of this paper we are making this adjustment
using isotonic regression. Again, the monotonicity is imposed on δN,h confined
to the range {y1, ..., yn}. We denote the adjusted estimator by

∆N,h.

4. The loss functions.

The estimator δN,h(Zi) = µ̂i, may be interpreted as an approximation of the

nonparametric EB estimator for µi ≡ 2
√
λi, based on the (transformed) obser-

vations Zi under the loss L(µ,a) = ||µ−a||2, for the decision a = (a1, . . . , an).
Thus, 1

4 µ̂
2
i may be interpreted as the approximation of the empirical Bayes

estimator for λi, under the loss

LH(λ,a) =
∑

(
√
λi −

√
ai)

2 = −2 log(1−D2
H),

where DH is to the Hellinger distance between the distributions
∏
Po(λi) and∏

Po(ai).



Brown, Greenshtein, Ritov/Poisson Compound 7

Some papers that discuss the problem of estimating a vector of Poisson means
are Clevenson and Zidek (1975), Johnstone (1984), Johnstone and Lalley (1984).
Those and other works suggest that a particularly natural loss function in ad-
dition to LH and L2, denoted LKL is

LKL(λ, λ̂) =
∑ (λi − λ̂i)2

λi
.

Note, LKL also corresponds to the local Kulback-Leibler distance between the
distributions.

The above articles and some other literature, strongly suggest that LKL is
the ‘most natural’ general loss function. From an empirical Bayes perspective,
the optimal decisions that correspond to those three loss functions may have
more and less similarity, depending on the configuration. For example, when the
prior G is concentrated on a point mass, the Bayes procedures corresponding to
those 3 loss functions are obviously the same. Since the LKL loss is of a special
importance, we will briefly describe how our analysis can be modified to handle
it. As in the case of L2 loss, one may obtain that the Bayes decision under the
LKL loss is given for y ≥ 1 by:

yPY (y)

PY (y − 1)
.

The decision for y = 0 denoted λ̂(0), is:

λ̂(0) = arg min
a

∫
(λ− a)2

λ
e−λdG(λ)

=

∫
e−λdG(λ)∫

λ−1e−λdG(λ)
.

In particular, λ̂(0) = 0 if G gives a positive probability to any neighborhood of
0.

The decision for y ≥ 1 may be estimated as in (4) together with the three
adjustments suggested in Section 2, along the same lines. However, we still need
to approximate the Bayes decision λ̂(0). Note however, that if G has a point

mass at 0, however small, the risk will be infinite unless λ̂(0) = 0. This is the
only safe decision, since the cannot ascertain that there is no mass at 0.

Note, defining Z = Y + N , N ∼ Po(h) under the KL loss as in Step 1 in
the squared loss, might introduce instability due to small values of P̃Z(z− 1) in
the denominator of P̃Z(z)/P̃Z(z − 1), e.g., for z = min{Z1, ..., Zn}. One might
want to define the ”corrupted” variable alternatively, as Z ∼ B(Y, p). Then
Z ∼ Po(pλ), when Y ∼ Po(λ). Our smoothing/corrupting parameter is p. We
skip the details of the analogouse of steps 1-3.

Throughout the rest of the paper, we consider and evaluate procedures ex-
plicitly only under the L2 loss.
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5. Simulations

In this section we provide some simulation results which approximate the risk
of various procedures as defined in (1). Specifically for various fixed vectors
λ = (λ1, ..., λn), we estimate Eλ

∑
∆h(Yi)−λi)2 and Eλ

∑
∆N,h(Yi)−λi)2, for

various values of h. Our approach is of compound decision and our procedures
are permutation invariant, it is known ( see, e.g., Greenshtein and Ritov (2009)
) that a good benchmark and lower a bound for the risk of our suggested proce-
dures is nB(λ); here B(λ) is the Bayes risk for the problem where we observe
Λ ∼ G, where G is the empirical distribution which is defined by λ1, ..., λn.
The main findings are the following. As already seen in Example 1, adjusting
the classical non parametric empirical Bayes yields a significant improvement
in the risk. The modification of the normal empirical Bayes works well (for a
suitable choice of h), in the Poisson case. It works surprisingly well even for
configurations with small λi, as may be seen in Table 2.

The class ∆h of adjusted Poisson EB procedures has advantage over the class
∆N,h of modified normal EB procedures when applied to configurations with
homogeneous λi’s, see Tables 3 and 4. There are a few reasons for that. First,
aggressive smoothing is helpful in a homogeneous setup. Thanks to the bias
correction in Adjustment 1 and the Rao-Blackwellization step of Adjustment
2, the adjusted Poisson class performs relatively well when the smoothing is
aggressive, i.e., h is large. Another reason is that in a homogeneous setup, much
of the risk is due to large and moderate deviations, and the need to correctly
assess those few deviations. The normal approximation might be misleading for
moderate deviations and thus an advantage to the class of adjusted Poisson
procedures might be expected. Another advantage of the adjusted Poisson EB
procedures is its little sensitivity to the choice of h, compared to the modi-
fied normal procedures. This small sensitivity is evident in the simulations and
should be understood better theoretically. Adjustment 2 seems like a crucial
stabilizer. Also, the simulations indicate the advantage of the choice q = 1

4 over
the choice q = 0.

We elaborate on Table 1. The reading of the other tables is similar. In Table 1
we compare the different estimators when λi, i = 1, . . . , 200, are evenly spaced
between 5 and 15. The table is based on 1000 simulations. We present the
risk of ∆h and ∆N,h for various values of h. In practice h should be selected
by cross-validation or another method, we elaborate on it in Section 6. The
normal procedures are based on variance stabilizing transformation with both
q = 0 and q = 1

4 . Monotonicity is imposed on all the estimators, as described
in Step 3, through the Iso-Regression R-procedure . The risk that corresponds
to ∆0 is the risk of the classical Poisson empirical Bayes procedure ( i.e., no
smoothing through convolution) on which monotonicity is imposed. For the
configuration studied in Table 1, the risk of the naive procedures equals the sum
of the variances which equals 200 ∗ 7.5 = 1500. A good proxy of the empirical
distribution which is defined by (λ1, ..., λ200) is U(5, 15). The Bayes risk for the
case where Λ ∼ U(, 5, 15) was computed numerically and it equals approximately
4.4, hence we have nB(λ) ≈ 200×4.4 = 880. In each line the number in boldface
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Table 1
Different EB procedures for λ1, . . . , λ200 that are evenly spaced between 5 and 15

∆h h 0 0.2 0.4 0.8 1.8 3
risk 1114 1049 1017 994 965 958

∆N,h h 0.2 0.3 0.5 0.7 0.9 1.2
q = 0 risk 1263 1131 1043 1022 1063 1197
q = 1

4
risk 1230 1099 1013 997 1046 1138

Table 2
Different EB procedures for λ1, . . . , λ200 that are evenly spaced between 0 and 5

∆h h 0 0.2 1 1.8 2.4 3
risk 248 232 232 242 249 258

∆N,h h 0.2 0.3 0.5 0.8 1.0 1.4
q = 0 risk 324 291 268 267 280 317
q = 1

4
risk 308 267 245 242 254 291

corresponds to the minimal risk.
The model studied in Table 2 is of λi, i = 1, . . . , 200 evenly spaced between 0

and 5. Comparing the two halves of the table, one may see how well the normal
modification works even for such small value of λi.

Next, in Table 3, we study the case where λ1 = · · · = λ200 = 10. Here the
advantage of the adjusted Poisson over the modified normal is clear.

Next we study the following a situation where we have a few large λi values:
λ1 = · · · = λ200 = 5, while λ201 = · · · = λ220 = 15. There is still a clear
advantage of the adjusted Poisson over he modified normal. See Table 4

Finally we investigate a configuration with only n = 30 observations spread

Table 3
Different EB procedures for λ1 = · · · = λ200 = 10.

∆h h 0 0.2 0.4 1 2 3
risk 253 121 90 54 38 28

∆N,h h 0.2 0.3 0.5 0.7 0.9 1.3
q = 0 risk 369 231 208 290 455 822
q = 1

4
risk 330 197 180 265 442 808
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Table 4
Different EB procedures for λ1 = · · · = λ200 = 5, while λ201 = · · · = λ220 = 15.

∆h h 0 0.2 0.4 1.2 2.0 3
risk 665 476 471 449 462 483

∆N,h h 0.2 0.3 0.5 0.9 1.1 1.4
q = 0 risk 857 687 580 696 766 854
q = 1

4
risk 819 613 550 653 732 823

Table 5
Different EB procedures for λ1, . . . , λ30 that are evenly spread between 0 and 20.

∆h h 0 0.2 0.4 1.2 2.0 3
risk 867 256 249 256 262 260

∆N,h h 0.2 0.3 0.5 0.9 1.2 1.4
q = 0 risk 316 303 278 241 241 239
q = 1

4
risk 316 302 280 243 236 239

over a larger interval. The λi are evenly spread between 0 and 20. For this config-
uration there is a slight advantage of the modified normal procedure. In order to
demonstrate the discontinuity of ∆h mentioned in Remark 1, we approximated
the the risk of ∆h for h = 0.01, based on 1000 simulations. The approximated
risk is 244, compared to 867, for h = 0, this is also the minimal approximated
risk from the values of h that we tried in Table 5. Note, that 867, the average
simulated loss that corresponds to h = 0, is much larger than the risk of the
naive procedure which estimate λi by Yi; the risk of the later is the sum of the
variances which equals 10× 30 = 300.

Remark on sparsity: Our procedure is less efficient in situations with ex-
treme ”sparsity”. Here by ”sparsity” we mean that the vast majority of the
values of λi are equal to a certain known value λ0 and very few others are very
different from λ0. In such a cases thresholding procedures might perform better,
i.e., ”round” to λ0 the estimators of λi for Yi which are not too far from λ0.

6. Choosing the smoothing-parameter by Cross-validation

In practice we need to choose h in order to apply our adjusted Poisson method.
In this section we will suggest a slightly non-standard way for cross validation.
It is explained in the Poisson context, and then in the normal context. The
same general idea works for other cases where an observation may be factorized,
e.g., for infinitely divisible experiments. About factorization of experiments, see
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Greenshtein (1996) and references there.
A standard situation in cross validation analysis is the following. The sample

is composed of pairs Zi = (Xi, Yi), i = 1, . . . , n, where Xi is considered as
an explanatory variable, and Yi is the dependent variable. We have a class
of predictors which depends on a parameter: {δh(·;Z1, . . . , Zn) : h ∈ H}.
Often, every value of h represents a different trade-off between variance and
bias. The problem is how to select a good value of h. One approach is based
on setting aside a test sub-sample, Zm+1, . . . , Zn, say. We can construct the
predictors Th(·, Z1, . . . , Zm), h ∈ H, and use the test-bed sample for validation,

e.g., compute S(h) =
∑n
i=m+1

(
Th(Xi;Z1, . . . , Zm) − Yi

)2
. On the face of it,

the Poisson sample we consider does not have this structure. There are no
explanatory and dependent variables, just one observation, and the observations
are not i.i.d., at least not conditionally on λ1, . . . , λn. Yet, we can separate the
sample to two independent samples.

Let p ∈ (0, 1), p ≈ 1, and let U1, . . . , Un be independent given Y1, . . . , Yn,
Ui ∼ B(Yi, p), i = 1, . . . , n. As is well known, one of the features of the Poisson
distribution is that Ui ∼ Po(pλi), and Vi ≡ Yi − Ui ∼ Po((1 − p)λi), and they
are independent given λ1, . . . , λn. We will use the main sub-sample U1, . . . , Un
for the construction of the family of estimators (parameterized by h), while the

auxiliary sub sample, V1, . . . , Vn for validation. Let δ̂∗h(·), h ∈ H be a family of

estimators, based on U1, . . . , Un such that δ̂∗h(Ui) estimates pλi, i = 1, . . . , n.
Consider:

V (h;U ,V )

=
1

n

n∑
i=1

(
δ̂∗h(Ui)− p(1− p)−1Vi

)2
=

1

n

n∑
i=1

((
δ̂∗h(Ui)− pλi

)
− p(1− p)−1

(
Vi − (1− p)λi

))2
=

1

n

n∑
i=1

(
δ̂∗h(Ui)− pλi

)2
+Rn(h) +An,

(12)

where An is a random quantity that does not depend on h, and has no impor-
tance to the selection of h, while

Rn(h) =
2p

(1− p)n

n∑
i=1

(
δ̂∗h(Ui)− pλi

)(
Vi − (1− p)λi

)
. (13)

Since V1, . . . , Vn are independent and independent of U1, . . . , Un given λ1, . . . , λn:

E(R2
n(h)|U ,λ) =

4p2

(1− p)n2
n∑
i=1

(
δ̂∗h(Ui)− pλi

)2
λi. (14)

We conclude that if (1− p)n/max{λi}|H| → ∞, then

V (h;U ,V ) = L(δ̂∗h, pλ) + op(1), (15)
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uniformly in h ∈ H. Recall that the decision function δ̂∗h used in the above
result, is the non-parametric empirical Bayes procedure based on U1, . . . , Un
and δ̂∗h(Ui) is estimating pλi. If also p → 1, we suggest to use the value h that
minimizes V (h;U ,V ), to construct a similar estimator based on the original
sample Y1, . . . , Yn, estimating λ1, . . . , λn.
V (h;U ,V ), given the sample Y1, . . . , Yn is a randomized estimator of the loss

function. Once again we suggest in this paper to replace a randomized estimator

by its expectation given the sample E
(
V (h;U ,V )

∣∣∣Y ). This expectation can be

estimated by a Monte Carlo integration—sampling K i.i.d. samples of U and
V .

For the normal model, Zi ∼ N(µi, 1), i = 1, . . . , n, let εi ∼ N(0, 1) be
auxiliary i.i.d. variables, independent of Y1, . . . , Yn. Define Ui = Yi + αεi, Vi =
Yi − (1/α)εi. Then Ui and Vi are independent both with mean µi, and with
variances 1 + α2 and 1 + (1/α2) correspondingly. Again, U may be used for
estimation and V for validation, where α > 0, α→ 0.
Example 2: Consider the configuration λ1 = · · · = λ200 = 10, simulated in
Table 3 Section 5. In that table h = 3 is recommended with a noticeable ad-
vantage over h ≤ 0.4. We applied the above cross validation procedure with
p = 0.9 on a single realization of Yi, i = 1, . . . , 200. We repeated the cross-
validation process K = 10000 times on this single realization for the values
h ∈ {0, 0.5, 1, 1.5, 2, 2.5, 3}. The corresponding numbers (scaled by (1 − p)2)
were: 165.834, 164.862, 164.736, 164.457, 164.421, 164.286, 164.340. Note that,
the last numbers represent mainly the variance of our validation variable, but
the success of the corresponding estimator is also a factor. The numbers indi-
cate that the choices h = 0, 0.5, 1 are inferior, the formal recommended choice
is h = 2.5, the second best is h = 3.

We repeated the simulation on another single realization, again K = 10000,
this time we took p = 0.85. The corresponding numbers are: 220.562, 217.986,
217.706, 217.374, 217.209, 217.272, 217.247. Again, the numbers indicate that
the choices h = 0, 0.5, 1 are inferior. The formal recommended choice is h = 2,
the second best is again h = 3.

7. Real Data Example.

In the following we study an example based on real data about car accidents
with injuries in 109 towns in Israel in July 2008. The 109 towns are those that
had at least one accident with injuries in that period of time, in the following we
ignore this selection bias. There were 5 Tuesdays, Wednesdays and Thursdays,
in that month. For Town i, let Yi be the total number of accidents with injuries
in those 5 Wednesdays. Similarly, for Town i, let Zi be the average number of
accidents with injuries in the corresponding Tuesdays and Thursdays. We mod-
elled Yi as independent distributed Po(λi). In the following we will report on the
performance of our empirical-Bayes estimator for various smoothing parameters
h. It is evaluated through the ‘empirical risk’:∑

(∆h(Yi)− Zi)2.
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Table 6
EB applied to traffic accident by city

∆h h 0 0.5 1 1.5 2 3
Risk 140 163 172 168 166 159

∆N,h h 0.2 0.6 1 2 3 4
Risk 262 185 174 170 183 202

The towns Tel-Aviv and Jerusalem had a heavy impact on the risk and thus we
excluded them from the analysis. The remaining data seems to have relatively
low values of λi, a case where the classical Poisson-EB procedure is expected to
perform well, and indeed it is. The range of Yi is 0-14, while

∑
Yi = 135, and∑

Y 2
i = 805. In this example, the classical Poisson-EB adjusted for monotonicity

(i.e., h = 0), gave the best result. Applying a smoothing parameter h > 0 is
slightly inferior based on the above empirical risk. Yet, it is re-assuring to see
how stable is the performance of ∆h, as h varies. The empirical loss for the
naive procedure estimating λi by Yi, is 240. The modified normal estimators
with q = 1

4 and various values of h was applied to the data as well. Again
a clear advantage of our class of adjusted Poisson procedures over the class
of modified normal procedures was observed. In particular, the former class is
much more stable with respect to the choice of the smoothing parameter h. The
results are summarized in Table 6.

8. The nonparametric MLE

The nonparametric maximum-likelihood (NPMLE) is an alternative approach
for estimating δG. It yields, automatically, a monotone and smooth decision
function. See Jian and Zhang (2009) for the normal model. To simplify the
discussion, we will assume that λ1, . . . , λn are i.i.d. random variables sampled
from the distribution G.

Note that the NPMLE maximizes with respect to G, the likelihood function:

1

n

n∑
i=1

log p̂G(yi) =

∞∑
i=0

Pn(i) log p̂G(i)

=

∞∑
i=0

(
F̄n(i− 1)− F̄n(i)

)
log p̂G(i)

= log p̂G(0) +

∞∑
i=0

F̄n(i) log
p̂G(i+ 1)

p̂G(i)

= log p̂G(0) +

∞∑
i=0

F̄n(i) log δ̂G(i) + C(y).
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where Pn is the empirical process, Pn(i) = Pn({i}), and F̄n(i) =
∑∞
j=i+1 Pn(j)

(F̄n(−1) = 1).
Suppose G is supported on [a, b]. Extend

δG(y) =

∫
λy+1e−λdG(λ)∫
λye−λdG(λ)

, y ∈ R+.

Then, clearly, δG(y) ∈ [a, b]. Moreover, it is monotone non-decreasing with
derivative δG

′
(y) = cov(λ, log λ) ∈ [0, b log b − a log a] (the covariance is with

respect to measure λye−λdG(λ) normalized)
It is well known that the NPMLE is discrete with point mass g1, . . . , gk on

λ1, . . . , λk say. It is easy to see that it satisfies

n∑
i=1

λyij
yi!pG(yi)

= eλj , j = 1, . . . , k.

Since the left hand side is a polynomial in λ of degree max yi, and a polynomial
of degree q in λ can be equal to exp{λ} only q times, we conclude that k < max yi
(a more careful argument can reduce the bound on the support size). Hence, it
is feasible to approximate algorithmically the NPMLE. Pursuing the asymptotic
properties of the NPMLE estimator of δ̂G is beyond the scope of this paper and
we intend to do it somewhere else.

9. Theoretical considerations

We consider in this section two extreme situations. In the first, the intensity dis-
tribution is very sparse, and one can expect a gain by improving the procedure.
In the second situation the support of the intensity distribution is bounded. We
show that at least asymptotically the Robbins’s procedure is very efficient.

We assume in this section that (λ, Y ), (λ1, Y1), (λ2, Y2), . . . are i.i.d. λi ∼ G,
Yi|λi ∼ Po(λi). For simplicity we assume further that the sample size N is a
Poisson random variable with mean ν. Asymptotic results will hold as ν →∞.
Let Nν(y) = #{i : 1 ≤ i ≤ N,Yi = y}, y = 0, 1, . . . . Note that they are
independent, Nν(y) ∼ Po(νP (y)), where P (·) is the marginal probabilities of
Y . Let

δ0(y) = (y + 1)
P (y + 1)

P (y)
, y = 0, 1, . . .

δ̂(y) = (y + 1)
Nν(y + 1)

Nν(y)
, y = 0, 1, . . .

be the Bayes procedure and its Robbins’s approximation.
Consider first the a situation where G is discrete with mass gν(k) at the

point λk = λνk = (ανk)2, k = 1, 2, . . . . Note that if αν →∞ fast enough, then
the Bayes risk r(G, δ0) → 0 as it it would be easy to identify exactly for each
observation yi the corresponding value λi out of the very sparse set. However,



Brown, Greenshtein, Ritov/Poisson Compound 15

if lim supν→∞maxk νgν(k) <∞ (e.g., gν(k) = ν−1(1− ν−1)−1, k, ν = 1, 2, . . . ),

then r(G, δ̂)/nu does not converges to 0 as Nν(y + 1)/Nν(y), y = 1, . . . , n are

proper random variables and E(δ̂(Y )− h(Y ))2 6→ 0.
On the other hand, the situation is completely different when the support is

compact.

Theorem 1. Suppose that λ ∼ G, the support of G is bounded, and let r(G, δ)
be the Bayes risk of the procedure δ. Then

r(G, δ̂) =
(

1 +O(log2(ν)/ν)
)
r(G, δ0),

uniformly over all distribution G with the same support.

Proof. The Bayes risk is given by

r(G, δ̂) = E

∞∑
y=0

Nν(y)E
((
δ̂(y)− λ

)2|Y = y
)

= E

∞∑
y=0

Nν(y)
(
δ̂(y)− δ0(y)

)2
+ E

∞∑
y=0

Nν(y)var
(
λ|Y = y

)
= E

∞∑
y=0

(
(y + 1)2

N2
ν(y + 1)

Nn(y)
− 2(y + 1)2

Nν(y1)P (y + 1)

P (y)
+ δ20(y)

)
1(Nν(y) > 0) + r(G, δ0)

= r(G, δ0) + E

∞∑
y=0

(y + 1)2
N2
ν(y + 1)

Nn(y)
1(Nν(y) > 0)− νEδ20(Y ).

Recall that Nν(y + 1) and Nν(y) are independent, and if X ∼ Po(θ) then
EX2 = θ + θ2 while

Eθ
1(X > 0)

X
= e−θ

∞∑
i=1

θi

i!i

= e−θ
∫ θ

0

∞∑
i=1

ti−1

i!
dt

= e−θ
∫ θ

0

1

t
(et − 1)dt

Hence

Eθ
1(X > 0)

X
≤ 2e−θ

∞∑
i=1

θi

(i+ 1)!
=

2

θ
e−θ(eθ − 1− θ) (16)
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and

E
1(X > 0)

X
− 1

θ
= e−θ

∞∑
i=1

θi

i!i
− 1

θ

= e−θ
∞∑
i=1

θi

(i+ 1)!
− 1

θ
+ e−θ

∞∑
i=1

θi

(i+ 1)!i

≤ e−θ
∞∑
i=1

θi

(i+ 1)!
− 1

θ
+ 3e−θ

∞∑
i=1

θi

(i+ 2)!

=
1

θ
e−θ
(
eθ − 1− θ

)
− 1

θ
+

3

θ2
e−θ
(
eθ − 1− θ − 1

2
θ2
)

= −1 + θ

θ
+

3

θ2
e−θ
(
eθ − 1− θ − 1

2
θ2
)
.

(17)

While

E
1(X > 0)

X
= e−θ

∞∑
i=1

θi

i!i

≥ e−θ
∞∑
i=1

θi

(i+ 1)!

= e−θ
1

θ
(eθ − 1− θ)

≥ 1

2
θ2e−θ

(18)

We apply now these inequalities.

r(G, δ̂) = r(G, δ0) +

∞∑
i=0

(y + 1)2E
νP (y + 1)

Nν(y)
1(Nν(y) > 0)

+

∞∑
y=0

(y + 1)2E
(ν2P 2(y + 1)

Nν(y)
1(Nν(y) > 0)− ν P

2(y + 1)

P (y)

)
= r(G, δ0) + I + II, say.

However, by (16) and for some 1 ≤ c1 ≤ 2:

I = c

∞∑
y=0

(y + 1)2
P (y + 1)

P (y)

(
1− e−νP (y)(1 + νP (y))

)
If G has a compact support, then (y+1)P (y+1)/P (y) = δ0(y) is increasing and
bounded by λU , the upper support of G, and P (·) have sub-exponential tails.
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Hence

I ≤ c1λU
∞∑
y=0

(y + 1)
(
1− e−νP (y)(1 + νP (y))

)
= c1λU

∑
νP (y)>γ

(y + 1)
(
1− e−νP (y)(1 + νP (y))

)
+ c1λU

∑
νP (y)≤γ

(y + 1)
(
1− e−νP (y)(1 + νP (y))

)
≤ c2 max{y2 : P (y) > γ/ν}+ c3

∑
νP (y)≤γ

(y + 1)
(
νP (y)

)2
≤ c2

(
log(ν/γ))2 + c4γ

2 max{y : P (y) > γ/ν}
= O(log2(ν)).

Bounding II is similar, noting that the RHS of (17) is negative for θ < γ,
for some γ > 0:

II ≤
∞∑
y−0

(y + 1)2ν2P 2(y + 1)E
(1(Nν(y))

Nν(y)
− 1

νP (y)

)
≤ 3

∑
νP (y)>γ

(y + 1)2
P 2(y + 1)

P 2(y)

(
1− e−νP (y)(1 + νP (y) +

1

2
ν2P 2(y))

)
≤ c5λ2U

∑
νP (y)>γ

≤ c6 log(ν).

We conclude that the Bayes risk of the Robins’s estimator is r(G, δ0) +
O(log2 ν) while r(G, δ0) = O(ν).
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