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SUMMARY. Estimation of the integral of the square of a derivative of the probability
density function is considered. The estimators we propose and their properties are a function
of the amount of smoothness assumed. The rate of convergence of the appropriate estimator
is shown to be optimal given the amount of smoothness assumed. In particular the appropriate
estimator achieves the information bound when estimation at an n~1/2 rate is possible.

1. INTRODUCTION

Suppose X, X,, ..., X, are iid., each with distribution function F.
Let f(.) be the probability density function of F, f(® its k-th derivative and
Ox(F) = [ {f®)(x)}*> dz. These functionals appear in the asymptotic variance
of the Wilcoxon statistic and in the asymptotics of the integrated M.S.E.
for kernel density estimates. Discussion of the estimation of 6 and similar
parameters appear in Schweder (1975), Hasminskii and Ibragimov (1978),
Pfanzagl (1982), Prakasa Rao (1983), Donoho and Liu (1987) and Hall and
Marron (1987).

Ritov and Bickel (1987) show that the standard semiparametric informa-
tion bound for the estimation of 0,(F) fails to give an achievable rate of con-
vergence. In fact, the information is strictly positive when f is bounded,
promising that the 12 rate is achievable. Nevertheless, there is no rate
that can be achieved uniformly in small compact neighborhoods (in the total
variation norm) of a given distribution. Moreover, even if the uniformity
requirement is dropped then for any sequence of estimates {05} there exists an
(unknown) point F such that 1 (85— Ox(F)) doesn’t converge to 0 for any y > 0.

In this paper we consider classes of F which satisfy Holder conditions

on fm for suitable m. We establish the rate achievable under these condi-
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tions and exhibit estimators that achieve these rates. Our estimators con-
verge uniformly and when improvement is possible faster than similar esti-
mators. suggested by Schweder (1975), Hasminskii and Ibragimov (1978),
and Hall and Marron (1987). In particular we need to assume weaker Holder
conditions to obtain n-12 rates and efficient estimators.

We believe that our proof of the best achievable rates is novel in that it
cannot be reduced to considering a sequence of simple vs. simple testing
problems and in effect requires the use of composite hypotheses of growing
size. Note that 0 can be estimated at the 7~1/2 rate in any fixed regular finite
dimensional submodel.

2. MAIN RESULTS : THE ESTIMATORS AND THEIR PROPERTIES
Let 0x(F) = [ {f%(x)}? dz where f is the (continuous) density of the dis-
tribution F. (In general we dencte distribution functions by F or F, and
their densities by f or f, respectively.) Let o > 0. m be a nonnegative integer
and g(-) € Ly () L. Suppose Xj, ..., X,, is a random sample from F. How
well can O4(F) be estimated if it is known a priori only that F ¢ Fy, ., where
Fppap = {F 1 |f™@)—f™ (x+€)] < g@)]£]* for all z real |£] <1} ?
We begin by suggesting a family of estimators. Let k,(x) = ot h(zfo)
where % is a kernel with the following properties :
k is symmetric about zero,
h(z) = 0 for |z] >1,
{h(x)de = 1,
{@h(z)de =0, i=1,2,.., max{k, m—k}
and % has 2k+1 derivatives.
Divide the sample into two subsamples X, ..., X and X . ¢

%y ny+1?
with. comparable sizes (i.e. ny/n is bounded away from 0 and 1). Let 7, and
P, be the empirical distribution functions of each subsample respectively.
Define, fi(x) = jka(x—y)dﬁi(y), i=1,2. The dependence of ﬁ; on o is left

implicit. Consider the following estimator of 6,.

* T A n *
05Xy vns Xy 50) = »ﬂl 901472 0;, e (2.1)
where n = n;+n,
ggl(Xl’ sees Xn§ 0')

= [fdat2nt 2, (Xo— § Rt | Reyds
= 2 [ h@—b)dR (OdFy@)—n32 B [ he(t—Xhe(x—Xj)dx

nytl<iAj<n
. (2.2)
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and 8%, is obtained by interchanging the roles of the two subsamples in 05,
The first two terms of 8, can be recgonized as Hasminskii and Ibragimov’s
estimate of this parameter which they show is efficient in F, , if & > 1/2.
This is the, by now, familiar one step estimate (see Bickel, 1982 ; Schick,
1986) using the estimated influence function 2(f2—jf§(x)dx). The last term
n
in (2.2) removes the pure known bias component, n;2 X [h2(x— X;)dx from
i=n1+1
[P @)de = 032 B [ hy(e— Xo)h,(x— X j)de. . (23)
6 »
Curiously enough this simpie debiasing leads to efficient estimation in
Fy, 5 foro>1/4 and (uniformly) +/n consistent estimation on Fo i/ .
Moreover, 4/n consistent estimation is shown to be impossible for o < 1/4.
More generally, if f has 2k continuous derivatives,

Op(F) = (—1)*[ fEP(2)f(x)dw
= (— )FBp(fE(X)).
This suggests, by the same process as above, estimates by, 07, and 9,’:. For
convenience we replace 85, by 8, where n;? in (2.2) is replaced by [ny(n,—1)12
and similar replacements are made .in 83, and more generally §7. So the
estimate we study is

Ok(Xy, ..., X3 0) = 2(— 1) 20 (z—)dF, ()AFy(w)

—mgln my(n,— 1] [P (@)—X)AP (v—Xj)de
1<i<jg<my

—ny[n ny(ng-—1)]1 z [ BEP@— X8 (e—Xp)de. ... (2.4)
ny +1LEijLn
Our main results are summarized in the following two theorems. In
the first we describe the performance of 8y in terms of the assumed family
F, ., The rate of convergence of 0 to Oyx(F) is a function of m-+o and
By is “efficient” when m4-o > 2k+-1/4. In the second theorem we show that
the rates given in the first theorem are, essentially, the hest possible.

Theorem 1: Let {Fy, Fy, ...} C Fpyq where 0 < a < 1, m+a >k and
g €Ly () Lo Lt Xy ooy X be 5.5.8., Xy ~F,, and let Op=0u(Xny, ... X3 0)
where o, = n~21+imtia),
i) If m+o > 2k--1/4 then
. 2 I
\/nl_ 9k—9k(1?n)—71 D {(—1)k fob (XM)—OIC(Fn)}] —0. ... (25)

=1

Let Iy(F,) = [Var{f#(X,)}12 Then, nlxy(F,)E {9k— O(F,)2—> 1 and
L{y/n I}A(F,) (Bs—O4(F,))}— N(O, 1) provided lim sup Iy(F,) < oo.
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@) If k<mta<2kt1/4 then nPE{li—0p(F,)} is. bounded when
y = 4m-+a—k)/(1+4m-+42). .

We conjecture, but have not checked the details, that it is possible to '
estimate o by cross validation to obtain an estimate §,’; = 01(Xngs o> Xn 5 On)
which does not depend on m and « but is equivalent to 8 which does so depend
through o, given in the statement of Theorem 1.

Theorem 2 : (i) The information bound (in the sense of Khoshevnik and
Levit (1976)) for mon parametric estimation of Ox(F), F € Fop g4 is given by
Ix(F) as defined in Theorem 1.

(i) Suppose k< mto < 2k+1 (4. Then there is a small compact set
F*C F,, , o such that for any ¢,—> o0 and any sequence of estimators T'y, T'y;..., T,
=T (Xqy oes Xp)y Xy, Xy ooy Xy did X, ~F:

liminf sup Pgic, ' |T,—0kF)| > 1}=1 ... (2.6)
n FeF*

where y = 4(m-+o—k)/(1-+4m--4a). Moreover F* can be constructed so that
its only accwmulation point is any specified Fy € Fpy o4

The proof of the first part of Theorem 2 is quite standard and follows
essentially the discussion in Hasminskii and Ibragimov (1978). The proof
of the second part of the Theorem is an extension of the ideas presented in
Ritov and Bickel (1987). In our problem, 6, can be estimated at the n—'/2
rate in any one dimensional sub model of F,, ., and the information bound
of Theorem 2i) is the best bound that can be achieved using these techniques.
Yet for m--a < 2k-+1/4 this bound is unachievable by uniformly »!/2 con-
sistent estimates. In fact, for m-+a < 2k-+1/4 no uniformly »'/? consistent
estimate exists. Even uniformity can be dropped—see Ritov and Bickel
(1987), Theorem 1. Qur proof is based on the demonstration of a sequence
of difficult multiparameter Bayesian problems.

3. Proors

We begin the proofs with the following technical lemma whose own
proof is postponed to the end of the section.

Temma 1 : Let a, m and g be suchthatoa > 0m > 0 and g € L,. Then
sup{|fO@)| : %, F € Fppgp <0, i =01 ...,m.
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Proof of Theorem 1: Evidently to establish Theorem 1 it is enough to
consider the asymmetric estimate

Bz = 2(— 1) | [ hE (z—t) dF'y(t) dFy(@).

—Up S R (o X ) B (@ Xo) dv
igi<isny

We begin by estimating the conditional bias
B(Bi| F)—0u(F,) = 2(— 1)k | fE9 (2) f (e

7 4-1
—2 {my(m;— 1)} 1_2 2 B (=X WP (a—Kog) do= [ {f210))* do.

But
(—DE[fEO@)f, (@) = [ [Pe)fd()de
= ny! nZ‘.l BN — X s )f P () d
i=1
= {ny(n;—1)}7? Z D [ EW(@— X f O () d.
=1 1< j&I< ny
Hence

B0l B)—0u(F,) = 2=} B 5 {iPe—Xa)—f00)
(PN — X g)—F P (x)}dee. e (3.0)

We obtain from (3.1) that

B By Ou(F,) = | {fB(e)—fPa))d .. (32)
where f,, = fur by. ' |
But
FE(@)—fP (@) = § h(t) {fP(z-+0t)—fP(e)}ds
— [A() {Wﬁ_lm 't'}dt L 33
i=1
[0 g U o) — PPt

rm in the RHS of IQ Q\ igs null by the construc-

T 3L UAO i 5 U Oy

where 0 < * € o. Th
tion of h. Since F, ¢ Fy, py W bound the mtegrand in the second term

and obtain :
[f®(@)—fB ()| < g @)omte=t [|¢|mta~k|h()|ds. - (34)
A 3-13 !
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Combine (3.2) and (3.4) to conclude that
| B B 0u(F,)| < llgl mtimra-Ritrantia (§ [¢]mwreB|h(E) [dD)> ... (3.5)

Next we estimate var (E(9k2|17"1)). Note that E(@kzlﬁl) was written in

n, i—1
Bl | F)—0x(F,) = 2mm—D}* = 2 UXnt Xog)

&2
jemlj=1

{3.1) as a U-stati
say.
By standard U-statistic theory,
var (B(fe| £} = 0 {Ovar[E (U (Xn, o) | Xaal)

+0 mt var U(Xy, X} ... (3.6)
Now
B U (2, X,9) = § (P (—2)—f20) {FRO—fP)} dt

= [ 8(t) (P (—2)—fP(O)3dh,
say. Hence,

var [B{U(X 1, Xp) | Xna}] = BO@) (1P (@ — X ) —f @)} deP
= B | ] 8y) 8(x) (PPy—X o) —f2W) (1P (w— X ) —fR @)} dw dy
< [ § 8() 8(w) APy— kP @—0f, () di de dy
= [ {JS@P(x—t)da} S, (¢) dt
< 615 o2 {§| A (@) | da}® = 0o +*720) . (37)

by (3.4). At the same time, the random variable [EB @— X )P (o — X ) dee
is bounded by o2=1 |A®|3 and is equal to zero unless [ XXl < 20
Since f, is bounded this last event has probability of the same order as o.

Hence
var { O(@—X ) ie— X} = 0 (0. 077%).

Since | {f#(x) . KP(@—Xny)de| | [P o= [ | R E(2)] doe we conclude that
var {U (X1, Xpo)} N

= var[] {iP@—X ) hPe—Xns)—f O — X ) — fO@D (@ — X o)} d2)]

= O(c—*-1). (3.8)

We obtain from (3.1), (3.4), (3.6), (8.7), and (8.8) that
var {E (B2 F )} = O(n-lo'2(m+a—2k)+n—za--47;-1)

o O(n/-S(m+a—k)/(1+4m+ 4'a)).,
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for o given in the statement of Theorem 1. Hence (3.5) implies that
E{E (9k2| ﬁ’l)—ek(Fn)}2 =0 (n—S(m+u—k)/(1+4m+4a))_ e (3.9)

We have proved that E ! ﬁl)—ﬁk (F,) is of the right order (in parti-
cular it is op(n~Y/2) if m+4o > 2k-+1/4). We turn to the investigation. of the
behaviour of O, —E 9k2|ﬁ’ This will be carried on separately for the two
cages : 2k+4-1/4 < m-a and k < m—}—oc 2k+1/4.

(i) Suppose 2k+4-1/4 < m--a. In the light of (3.9) we need only to
consider the conditional variance of 0., given the first sub sample. But,
given Xy, ..., X nny 0, is just a sum of ¢.i.d. random variables, hence

—1% = N
25 g (X +0uT) By )

A
vary g, —
‘ N—Ty j=p+1

< A pen @) —f® @)P ], @) d

n—mnyg
So  var {9k2—2 (— 1)t J £ (2) dBy) - Ou(F,) lﬁ"l}
—f @)} f(@)do+— j{var f{?’“ ()}de. |
— e (3.10)

Now (3.9) and (3.10) imply the validity of (2.5). Since by Lemma 1, f, is
uniformly bounded, the first part of Theorem 1 follows.

(ii) Suppose k < m4o < 2k+1 /4. We separate into two cases, 2k <m
2k > m. If 2k < m, .
| B (@)—f )] = | J B @—0f, Odt—f @)|
= | 118 =0k OU—f$ @)]
= | TS (a—ot) =1 @)h(dt]

= 0(1)
so that .
Ef{® () = 0(1). .. (311)
Also,

var (f0 @)} < - | (8 @— 0, (0

< o= fllo T ROME, . (312)
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Then,

B var (G| B) < o [ BUSE @) falole

= 0 (n?2o%14{n1)
, = O (n-8tmta—k)/(1+am-+10)), ... (3.13)
If 2k > m we compute, .
| BfEo@)| = | [ 7EW (m—0)f, ()]
= | PR @— )]
= g2htm | [ peRE-m)() fom (@ —ot)dt]|
= o=2k+m| [ peEm(E) {f @—ot)—fi (x)dt |
< glx) o"”“"“"“ § | E=m(3) | dt .. (8.14)
Again, by (3.12) and (3.14)
E var (B, | 1)) = O (n2 o~k |t gim+a—2k)
= O (n-8mta—T)(Ar4n-+42)) .. (3.15)
The result follows by (3.13), (3.15) and (3.9). [

Proof of Theorem 2: (i) Let {F,} be a sequence of distributions with
densities f, and square root of densities s,. Suppose lisy—Soll3— 0 and
S {0 ) —fEP@)F fo(@)dz — 0. :

Write, with some abuse of notation, 6x(s,) = Ok(F,). Then,

Oi(s,) = [ {fP@)Pda+2 [ [ @) f0 @) —fP @)}de+ [{fiP @) —fP @)} da.
’ .. (3.18)
Now

I AP ()P e = 1) | fEP@)f,@)da—Ox(so)
= J{(— L RO — Ol @), .. (3.17)

and ; ,
HIP @) —fP @i
= (—DFJ{ @) o)} (F @) ()
— 1), (@) —so(@)}? {f20@)—fE))de
F2(— L)k [sy@){s, (@) —so(a)} {FFP)—f§P (@)}
< IFED 1P ullsy— sollE-+2lls, —solls LI E) —f @) P fole)dar ]2
= 0(||sy—Soll2)- ... (3.18)
(" (8.16), (8.17) and (3.18) imply that
Or(sy) = On(so)-+2f{(—1)¥fFx)— On(F )} [y (@)dz—+O(llsy— Sol2)-
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This means that Os) is Fréchet differentiablé aﬂong such paths with
derivative 4{(—1)% f&H—0y(F,)}s, and the result follows by standard theory.

(i) Here, as in Ritov and Bickel (1987) we prove the assertion by
presenting a sequence of Bayes problems. In the nth problem we observe
X,,.... X, iid, X; ~ FeFy, 4 4 The loss function is Ly(d, d) = 1“67‘1‘ > o-lne,

F is picked according to a measure II, to be described next. Note that the
sequence II,, II,,... is constructed such that the union of their supports F* is
compact with F, its only accumulation point. Let FycFy a4 be arbitrary.
Clearly, f, is bounded away from zero on some interval. For simplicity we
take this interval to be [0, 1]. To simplify the notation we assume also that

sup g(x) < 1.
2€[0, 1]

We now describe II,. Let h;, 2=0, 1,..., v—1 be a sequence of

1
functions such that [ hi(@)dz = 0, KP(O0) = AP(1) =0, j=0,., m+ 1,
0

+1/y
[P@) de=1and | WPGw—i)f@@)ds = 0. Let f equal 0,1,...,r—1
iy

with probability 1/r and let A,,..., A,_; be iid, independent of § and each equal
to--1 with probability 1/2. Let F be the random measure with density

(@) = fola)FBr-tmt ) Ay —i) on [ify, (i-+1)[»).

Thé measure that governs the selection of F is IT,. Clearly, for any F in the
support of IT, by our assumptions of h;,

Op(F) = Ox( ) BRy—2m+ayt2k,

‘That is 0x(F) equals Gy(Fo)+jv2mte=Rif g = j.
We show that if
nPy~Umttatl_y Q .. (8.19)

$hen the variational distance between the probability measures of Xy, ..., X,
under f =i and B = jtends to 0. Assume that this is the case and F is
distributed according to II,, IT, satisfies (3.19) and

' v—2(m+a—k)cnn7 — 0 300 (3.20)
where '

-y = dmta—k)|(1+-4m+4a).
This is possible if k' <m+ta. If

gy = {1 Ta— 0 (Fp)| <[eawl}
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then by construction for n sufficiently large the Ay are digjoint. - The Bayes
risk for estimating 6 (F) using our loss function is

. 1 r
13 (n)
I D n
=1-g 2B (dn)

But, by the equivalence of P[.|f = ¢]and P[.] B = j] we have observed
P (Ang)—P§P (Ang)—> 0 for each j.

So,
1 —0 T
lim R, > 1—— Lim X PP (Aag)
e P}
1 — LS 1
e 1 Tim P® .
i~ Tim P§ (ngM) >1-—-.
Finally

inf sup Pplc, ' |To—0u(F)] > 11 > E,.
T, FeF*

Hence, since r is arbitrary,

lim inf sup Pplc, »’|T,—0k(F)| 2 1]=1
— T, FeF*

as advertised. This combines ideas of Hasmingkii (1979) and Stone (1983).

We turn to the proof that (3.22) implies convergence of the variational
distance. Let Ny ¢ = 0, ..., v—1 be the number of X’s in [i/y, ¢+ 1)/v) and
let X;4,..., X@'N,- be the set of observations in that interval. Note that the

random vector (N, ..., N,_,) is independent of £ and (A,,..., A,_), and that
the blocks (X, ..., XiNi) and (Xj, ..., Xij), ¢ #%j are independent given

N; and N;. Without loss of generality consider =0 and f = 1.

y—1
The likelihood ratio of # = 1 to # = 0is L = II L; where

i=0

w N
L = 1/2j£li1 {1+V—(m+“)hd(Ui7)/fo(Uij)}+1/2551 {1—v= o+ by (Usy) [fo(Usg)}

. hi(U
1t 5 mers 3 Um) )
=1 J1s e dat fO(Uﬁl) fo(U'le)
all different

where Uy = vXy—i and [«] is the greatest integer not larger than 2.
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Note that, (@) : — [ » {F, (“21) 7, (iv)} ]_1f0(“;” ) is the density of

14

Uy under f,. We show that L 5 1 under F,, which implies that the varia-
tional distance between the two conditional distribution tends to 0.

Since } hy(x)dz = 0,
0
E(Li—1|N;) = 0. .. (3.21)

Since ||f,| < o by the lemma and the infimum of f, on [0, 1] is > 0 by
construction we obtain

fﬁﬁ”f‘ ol f&;[4FJ&%£»“F%%)}T1<[ m;jMwP<:w‘

0 2 €l0,1]

Let A = s_up(:[ J572(u) fi(u) 3(u) du. Then

/2] N;
var (Li—1|Ny) < =yttt ( >A2l,
1=1 2l
and

v—1 v—1 [¥i/2]

2 (Li—1)}= Li—1p KBS = ptomran (8 4m (3,22
var{ ¥ (Li—1)} B (L-1f}<BT X (o) (3.22)
Let p; = Fy ((s--1)/v)—Fy(ifv). Straightforward calculations give

[y/2]
E 5_{; y—dmra)l (N i) A2
1=1
L ) [4/21 j
= X I (1—m )0~ X (Ayp—2imtan2l
=2 (j )p,( P z=1( ¥ ) (21 )
_ (dy-2miar)ar n! & 1 Pi(1—py)nd
=1 (21)' o G—20) T (n—j) !
[n/2] iy P22l (p—20) !
= % (4y—2mta))2i Y o T g2l (1— )2l
- (dv ) (21) = j'(n—2l ])' D (1—py)
1n/2] n
- —2(m-+a))2l
z—z_-ll (4pv ) <2l )
[n/2l 1
< @T (nd pg v-2m)2 L exp{ndp; v-3mOPE—1 .. (3.23)
1-1 :

= (1+0(1))A%n?p? v~4m+2) = O(n y(2mt2atl))

since v py < [[folleo-
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We obtain from (3.22) and (3.23) that
v=1 -
var { pX (Li~1)} = O(n—2y~m+x+l))
=0
Therefore, from (3.19) and (3.21) we obtain :

EI (Li—1) = op(1) a,nd.vi1 (Li—1)2 = 0p(1)

=0 i=0

both under F,. Hence
v=1 v=—1 P
log I = & (Li—1)+0 (2 (Li—1)F) 50
i=0 i=0 ’ :
under F, proving the assertion. [}

Proof of Lemma 1: It is enough to prove that for any a; > 0 and d; < o0,

sup  {[fO@) D) |/|lo—y|"} < & .. (3.24)
0<IZs 1

implies that ' » S -
' 1fPlle < e : ... (3.25)

where ¢; < o0 is a function of &; and d; only. Suppose (3.24) implies (3.25) then
|Fe V(@) =Dy | = |fOE") | |e—y| < ale—y]| for 0 < jo—y| <1

and the lemma follows by backward induction from m.

Suppose (3.1) holds. TLet b; be an arbitrary number lying in (0, 1] and
assume that fO(z) > di(bi/2)" for a point « ¢R. Then

) > a = fO@)—dBi2" >0 - ... (3.26)
for all y ¢ [x—b;/2, w+b:/2] = Ji. | |

Then f4-Y(x) is monotone on J; and | fé ()|, y € Ji, can be smaller than
a;_y = 1/4a;b; only on an interval of length smaller than 1/2b;. This leaves
an interval J,_; of length b;_; > 1/4b; on which either inf {f¢(y)} > a;_,

. “yedi_q .
or sup {f*V(y)} < —a;1. Continue ‘this line of argument inductively and
yeJ -1 5 3 g

obtain that (3.26) entails that f(y) > ao > a:bi/2i%1 on the interval J, whose
length is by > 4~¢ b;.  But f(") is a probability density function and hence

1> ab, > 2—ili+8) g, b’i,+1.
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Therefore, N
FO@) = ait-dibif2)"
< QIE+DB-(+D1 g (by/2) ™.

Hence f% is bounded and the lemma follows. []

Acknowledgment. P. Hall and S. Marron pointed out a gap in our
original proof of Theorem 2 which we have corrected.
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