
arXiv: math.PRxxxx.xxxxx

The Bayesian Analysis of Complex,

High-Dimensional Models:

Can it be CODA?

Y. Ritov†, P. J. Bickel, A. C. Gamst∗, B. J. K. Kleijn,

Department of Statistics, The Hebrew University, 91905 Jerusalem, Israel;
e-mail: yaacov.ritov@gmail.com; url: http://pluto.mscc.huji.ac.il/∼yaacov

Department of Statistics, University of California, Berkeley, CA 94720-3860, USA;
e-mail: bickel@stat.berkeley.edu; url: http://www.stat.berkeley.edu/∼bickel

Biostatistics and Bioinformatics, University of California, San Diego, CA 92093-0717,
USA; e-mail: acgamst@math.ucsd.edu; url: http://biostat.ucsd.edu/acgamst.htm

Korteweg-de Vries Institute for Mathematics, P.O.Box 94248, 1090 GE Amsterdam, The
Netherlands; e-mail: B.Kleijn@uva.nl; url: http://staff.science.uva.nl/∼bkleijn/

Abstract: We consider the Bayesian analysis of a few complex, high-
dimensional models and show that intuitive priors, which are not tailored
to the fine details of the model and the estimated parameters, produce
estimators which perform poorly in situations in which good, simple fre-
quentist estimators exist. The models we consider are: stratified sampling,
the partial linear model, linear and quadratic functionals of white noise,
and estimation with stopping times. We present a strong version of Doob’s
consistency theorem which demonstrates that the existence of a uniformly√
n-consistent estimator ensures that the Bayes posterior is

√
n-consistent

for values of the parameter in subsets of prior probability 1. We also demon-
strate that it is, at least, in principle, possible to construct Bayes priors giv-
ing both global and local minimax rates, using a suitable combination of
loss functions. We argue that there is no contradiction in these apparently
conflicting findings.
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1. Introduction

We show, through a number of illustrative examples of general phenomena, some
of the difficulties faced by application of the Bayesian paradigm in the analysis
of data from complex, high-dimensional models. We do not argue against the use
of Bayesian methods. However, we judge the success of these methods from the
frequentist/robustness point of view, in the tradition of Bernstein, von Mises,
and Le Cam; and more recently Cox (1993). Some references are: Bayarri and
Berger (2004), Diaconis and Freedman (1993), Diaconis and Freedman (1998),
Freedman (1963), Freedman (1999), Le Cam and Yang (1990), and Lehmann
and Casella (1998).
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The extent to which the subjective aspect of data analysis is central to the
modern Bayesian point of view is debatable. See the dialog between Goldstein
(2006) and Berger (2006a) and the discussion of these two papers. However,
central to any Bayesian approach is the posterior distribution and the choice
of prior. Even those who try to reconcile Bayesian and frequentist approaches,
cf. Bayarri and Berger (2004), in the case of conflict, tend to give greater weight
on considerations based on the posterior distribution, than on those based on
frequentist assessments; cf. Berger (2006b).

An older and by now less commonly held point of view, is that rational in-
quiry requires the choice of a Bayes prior and exclusive use of the resulting
posterior in inference, cf. Savage (1961) and Lindley (1953). A modern weaker
version claims: “Bayes theorem provides a powerful, flexible tool for examin-
ing the actual or potential ranges of uncertainty which arise when one or more
individuals seek to interpret a given set of data in light of their own assump-
tions and ‘uncertainties about their uncertainties’,” Smith (1986). This point
of view, which is the philosophical foundation of the Bayesian paradigm, has
consequences. Among them are the strong likelihood principle, which says that
all of the information in the data is contained in the likelihood function, and
the stopping time principle, which says that stopping rules are irrelevant to
inference. We argue that a commitment to these principles can easily lead to
absurdities which are striking in high dimensions. We see this as an argument
against ideologues.

We discuss our examples with these two types of Bayesian analysts in mind:

I. The Bayesian who views his prior entirely as reflecting his beliefs and the
posterior as measuring the changes in these beliefs due to the data. Note
that this implies strict adherence to the likelihood principle, a uniform
plug-in principle, and the stopping time principle. Loss functions are not
specifically considered in selecting the prior.

II. The pragmatic Bayesian who views the prior as a way of generating de-
cision theoretic procedures, but is content with priors which depend on
the data, insisting only that analysis starts with a prior and ends with a
posterior.

For convenience we refer to these Bayesians as type I and type II.
The main difference we perceive between the type II Bayesian and a frequen-

tist is that, when faced with a specific problem, the type II Bayesian selects
a unique prior, uses Bayes rule to produce the posterior, and is then commit-
ted to using that posterior for all further inferences. In particular, the type II
Bayesian is free to consider a particular loss function in selecting his prior and,
to the extent that this is equivalent to using a data-dependent prior, change the
likelihood; see Wasserman (2000). That the loss function and prior are strongly
connected has been discussed by Rubin; see Bock (2004).

We show that, in high-dimensional (non or semi-parametric) situations Bayesian
procedures based on priors chosen by one set of criteria, for instance, reference
priors, selected so that the posterior for a possibly infinite dimensional param-
eter β converges at the minimax rate, can fail badly on other sets of criteria,



Ritov, Bickel, Gamst, Kleijn/CODA Bayes? 3

in particular, in yielding asymptotically minimax, semi-parametrically efficient,
or even

√
n-consistent estimates for specific one-dimensional parameters, θ. We

show by example that priors leading to efficient estimates of one-dimensional
parameters can be constructed but that the construction can be subtle, and
typically does not readily also give optimal global minimax rates for infinite
dimensional features of the model. It is true, as we argue in the section 7, that
by general considerations, Bayes priors giving minimax rates of convergence
for the posterior distributions for both single or ‘small’ sets of parameters and
optimal rates in global metrics can be constructed, in principle. Although it
was shown in Bickel and Ritov (2003) that this can be done consistently with
the “plug-in principle”, the procedures optimal for the composite loss are not
natural or optimal, in general, for either component. There is no general algo-
rithm for constructing such priors and we illustrate the failure of classical type
II Bayesian extensions (see below) such as the introduction of hyperparameters.
Of course, Bayesian procedures are optimal on their own terms and we prove an
extension of a theorem of Doob at the end of this paper which makes this point.
As usual, the exceptional sets of measure zero in this theorem can be quite large
in non-parametric settings.

For smooth, low-dimensional parametric models, the Bernstein-von Mises
theorem ensures that for priors with continuous positive densities, all Bayesian
procedures agree with each other and with efficient frequentist methods, asymp-
totically, to order n−1/2; see, for example, Le Cam and Yang (1990). At the
other extreme, even with independent and identically distributed data, little
can be said about the extreme nonparametric model P, in which nothing at all
is assumed about the common distribution of the observations, P . The natural
quantities to estimate, in this situation, are bounded linear functionals of the
form θ =

∫
g(x) dP (x), with g bounded and continuous. There are unbiased, ef-

ficient estimates of these functionals and Dirichlet process priors, concentrating
on small but dense subsets of P yielding estimates equivalent to order n−1/2 to
the unbiased ones; see Ferguson (1973), for instance.

The interesting phenomena occur in models between these two extremes. To
be able to even specify natural unbounded linear functionals such as the density
p at a point, we need to put smoothness restrictions on P and, to make rate of
convergence statements, global metrics such as L2 must be used. Both Bayesians
and frequentists must specify not only the structural features of the model but
smoothness constraints. Some of our examples will show the effect of various
smoothness assumptions on Bayesian inference.

For ease of exposition, in each of our examples, we consider only indepen-
dent and identically distributed (i.i.d) data and our focus is on asymptotics and
estimation. Although our calculations are given almost exclusively for specific
Bayesian decision theoretic procedures under L2-type loss, we believe (but do
not argue in detail) that the difficulties we highlight carry over to other in-
ference procedures, such as the construction of confidence regions. Here is one
implication of such a result. Suppose that we can construct a Bayes credible re-
gion C for an infinite dimensional parameter β which has good frequentist and
Bayesian properties, e.g. asymptotic minimax behavior for the specified model,
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as well as P (β ∈ C |X) and P (β ∈ C(X) |β) > 1 − α. Then we automatically
have a credible region q(C) for any q(β). Our examples will show, however, that
this region can be absurdly large. So, while a Bayesian might argue that param-
eter estimation is less important than the construction of credible regions, our
examples carry over to this problem as well.

Our examples will be discussed heuristically rather than exhaustively, but we
will make it clear when a formal proof is needed. There is a body of theory in
the area, cf. Ghosal et al. (2000), Kleijn and van der Vaart (2006), and Bickel
and Kleijn (2012), among others, giving specific conditions under which some
finite dimensional intuition persists in higher dimensions. However, in this paper
we emphasize how easily these conditions are violated and the dramatic con-
sequences of such violations. Our examples can be thought of as points of the
parameter space to which the prior we use assigns zero mass. Since all points of
the parameter space are similarly assigned zero mass, we have to leave it to the
readers to judge whether these points are, in any sense, exceptional.

In Section 2, we review an example introduced in Robins and Ritov (1997).
The problem is that of estimating a real parameter in the presence of an infinite
dimensional “nuisance” parameter. The parameter of interest admits a very
simple frequentist estimator which is

√
n-consistent without any assumptions

on the nuisance parameters at all, as long as the sampling scheme is reasonable.
In this problem, the type I Bayesian is unable to estimate the parameter of
interest at the

√
n-rate at all, without making severe smoothness assumptions

on the infinite dimensional nuisance parameter. In fact, we show that if the
nuisance parameters are too rough, a type I Bayesian is unable to find any
prior giving even a consistent estimate of the parameter of interest. On the
other hand, we do construct priors, tailored to the parameter we are trying to
estimate, which essentially reproduce the frequentist estimate. Such priors may
be satisfactory to a type II Bayesian, but surely not to Bayesians of type I. The
difficulty here is that a commitment to the strong likelihood principle forces the
Bayesian analyst to ignore information about a parameter which factors out of
the likelihood and he is forced to find some way of connecting that parameter to
the parameter of interest, either through reparameterization, which only works
if the nuisance parameter is smooth enough, or by tailoring the prior to the
parameter of interest.

In Section 3, we turn to the classical partial linear regression model. We
recall results of Wang et al. (2011) which give simple necessary and sufficient
conditions on the nonparametric part of the model for the parametric part to
be estimated efficiently. We use this example to show that a natural class of
Bayes priors, which yield minimax estimates of the nonparametric part of the
model under the conditions given in Wang et al. (2011), lead to Bayesian estima-
tors of the parametric part which are inefficient. In this case, there is auxiliary
information in the form of a conditional expectation which factors out of the
likelihood but is strongly associated with the amount of information in the data
about the parameter of interest. The frequentist can estimate this effect directly,
but the type I Bayesian is forced to ignore this information and, depending on
smoothness assumptions, may not be able to produce a consistent estimate of
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the parameter of interest at all. The fact that, for a sieve-based frequentist ap-
proach, two different bandwidths are needed for local and global estimation of
parameters in this problem has been known for some time; see Chen and Shiau
(1994).

In Section 4, we consider the Gaussian white noise model of Ibragimov and
Hasminskii (1984), Donoho and Johnstone (1994), and Donoho and Johnstone
(1995). Here we show that from a frequentist point of view we can easily con-
struct uniformly

√
n-consistent estimates of all bounded linear functionals. How-

ever, both the type I and type II Bayesian, who are restricted to the use of one
and only one prior, must fail to estimate some bounded linear functionals at the√
n-rate. This is because both are committed to the plug-in principle and, as we

argue, any plug-in estimator will fail to be uniformly consistent. On the posi-
tive side, we show that it is easy to construct tailor-made Bayesian procedures
for any of the specific functionals we consider in this section. Again, reparam-
eterization, which in this case is a change of basis, is important. The resulting
Bayesian procedures are capable of simultaneously estimating both the infinite
dimensional features of the model at the minimax rate and the finite dimen-
sional parameters of interest efficiently, but linear functionals which might be of
interest in subsequent inferences and can not be estimated consistently remain.
We give a graphic example, in this section, to demonstrate our claims.

A second example, examined in Section 5, concerns the estimation of the norm
of a high-dimensional vector of means, β. Again, for a suitably large set of β, we
can show that the priors normally used for minimax estimation of the vector of
means in the L2 norm do not lead to Bayesian estimators of the norm of β which
are
√
n-consistent. Yet there are simple frequentist estimates of this parameter

which are efficient. We then give a constructive argument showing how a type
I Bayesian can bypass the difficulties presented by this model at the cost of
selecting a non-intuitive prior and various inconsistencies. A type II Bayesian
can use a data-dependent prior which allows for simultaneous estimation of
β at the minimax rate and this specific parameter of interest efficiently. These
examples show that, in many cases, the choice of prior is subtle, even in the type
II context, and the effort involved in constructing such a prior seems unnecessary,
given that good, general-purpose frequentist estimators are easy to construct for
the same parameters.

In Section 6, we give a striking example in which, for Gaussian data with a
high-dimensional parameter space, we can, given any prior, construct a stopping
time such that the Bayesian, who must ignore the nature of the stopping times,
estimates the vector of means with substantial bias. This is a common feature
of all our examples. In high dimensions, even for large sample sizes, the bias
induced by the Bayes prior overwhelms the data.

In Section 7 we extend Doob’s theorem, showing that if a suitably uniform√
n-consistent estimate of a parameter exists then necessarily the Bayesian es-

timator of the parameter is
√
n-consistent on a set of parameter values which

has prior probability one. We also give another elementary result showing that
it is in principle possible to construct Bayes priors giving both global and local
minimax rates, using a suitable combination of loss functions. We summarize
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our findings in Section 8.
In the appendix we give proofs of many of the assertions we have made in

the previous sections. Throughout this paper, θ is a finite-dimensional param-
eter of interest, β is an infinite-dimensional nuisance parameter, and g is an
infinite-dimensional parameter which is important for estimating θ efficiently,
but is missing from the joint likelihood for (θ, β); g might describe the sampling
scheme, the loss function, or the specific functional θ(β) = θ(β, g) of interest.
We use π for priors and g and β are given as g and β when it is easier to think
of them as infinite-dimensional vectors than functions.

2. Stratified Random Sampling

Robins and Ritov (1997) consider an infinite-dimensional model of continu-
ously stratified random sampling in which one has i.i.d. observations Wi =
(Xi, Ri, Zi), i = 1, . . . , n; the Xi are uniformly distributed in [0, 1]d; and Zi =
RiYi. The variables Ri and Yi are conditionally independent given Xi and take
values in the set {0, 1}. The function g(X) = E(R|X) is known, with g > 0
almost everywhere, and β(X) = E(Y |X) is unknown. The parameter of interest
is θ = E(Y ).

It is relatively easy to construct a reasonable estimator for θ in this problem.
Indeed, the classical Horvitz-Thompson (HT) estimator, cf. Cochran (1977),

θ̂ = n−1
n∑
i=1

Zi/g(Xi),

solves the problem nicely. Because,

E{RY/g(X)} = E {E(R|X)E(Y |X)/g(X)}
= EE(Y |X) = θ,

the estimator is consistent without any further assumptions. If we assume that
g is bounded from below, the estimator is

√
n-consistent and asymptotically

normal.

2.1. Type I Bayesian Analysis

As g is known and we have assumed that the Xi are uniformly distributed, the
only parameter which remains is β, where β(X) = E(Y |X). Let π be a prior
density for β with respect to some measure µ. The joint density of β and the
observations W1, . . . ,Wn is given by

p(β,W) = π(β)
∏

i :Ri=1

β(Xi)
Yi (1− β(Xi))

1−Yi

×
n∏
i=1

g(Xi)
Ri (1− g(Xi))

1−Ri ,
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as Zi = Yi when Ri = 1. But this means that the posterior for β has a density
π(β|W) with,

π(β|W) ∝ π(β)
∏

i :Ri=1

β(Xi)
Yi (1− β(Xi))

1−Yi . (1)

Of course, this is a function of only those observations for which Ri = 1, i.e.
for which the Yi are directly observed. The observations for which Ri = 0 are
deemed uninformative.

If β is assumed to range over a smooth parametric model, and the known g
is bounded away from 0, one can check that the Bernstein-von Mises theorem
applies, and that the Bayesian estimator of θ is efficient,

√
n-consistent and

necessarily better than the HT estimator. Heuristically, this continues to hold
for minimax estimation of θ and β over “small” nonparametric models for β;
that is, sets of very smooth β; see Bickel and Kleijn (2012).

In the nonparametric case, if we assume that the prior for β does not depend
on g, then, because the likelihood function does not depend on g, the type I
Bayesian will use the same procedure whether g is known or unknown, see (1).
That is, the type I Bayesian will behave as if g were unknown. This is prob-
lematic because, as Robins and Ritov (1997) argued and we now show, unless
β or g are sufficiently smooth, the type I Bayesian can not produce a consistent
estimator of θ. To the best of our knowledge, the fact that there is no consistent
estimator of θ when g is unknown, unless β or g are sufficiently smooth, has not
been emphasized before.

Note that our assumption that the prior for β does not depend on g is quite
plausible. Consider, for example, an in-depth survey of students, concerning
their scholastic interests. The design of the experiment is based on all the in-
formation the university has about the students. However, the statistician is
interested only in whether a student is firstborn or not. At first, he gets only
the list of sampled students with their covariates. At this stage, he specifies his
prior for β. If he is now given g, there is no reason for him to change what he
believes about β, and no reason for him to include information about g in his
prior.

The fact that, if g is unknown, θ cannot be estimated unless either g or β is
smooth enough, is true even in the one-dimensional case. Our analysis is similar
to that in Robins et al. (2009). Suppose the Xi are uniformly distributed on the
unit interval, and g is given by,

g(x) =
1

2
+

1

4

m−1∑
i=0

si ψ (mx− i) ,

where m = mn is such that mn/n → ∞; the sequence s1, . . . , sm ∈ {−1, 1}
is assumed to be exchangeable with

∑
si = 0, and ψ(x) = 1

(
0 ≤ x < 1

2

)
−

1
(

1
2 ≤ x < 1

)
. Furthermore, assume that β(x) ≡ 5/8 or β(x) ≡ g(x). With

probability converging to 1, there will be no interval of length 1/m with more
than one Xi. However, given that there is one Xi ∈ (j/m, (j + 1)/m), then the
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distribution of (Ri, Zi) is the same whether β(x) ≡ 5/8 or β(x) ≡ g(x), and
hence θ is not identifiable; it can be either 5/8 or 1/2. This completes the proof.

Note that, in principle, both E(Y R|X) = β(X)g(X) and E(R|X) = g(X)
are, in general, estimable, but not uniformly to adequate precision on “rough”
sets of (g, β). One can also reparameterize in terms of ξ(X) = E(Y R|X) and
θ. This forces g into the likelihood, but one still needs to assume ξ(X) is very
smooth. In the above argument, the roughness of the model goes up with the
sample size, and this is what prevents consistent estimation.

2.2. Bayesian Procedures with Good Frequentist Behavior

In this section we study plausible priors for Type II Bayesian inference. These
priors are related to those in Wasserman (2004), Harmeling and Toussaint
(2007), and Li (2010). We need to build knowledge of g into the prior, as we
argued in Section 2.1. We do so first by following the suggestion in Harmeling
and Toussaint (2007) for Gaussian models.

Following Wasserman (2004), we consider now a somewhat simplified version
of the continuously stratified random sampling model, in which the Xi are uni-
formly distributed on 1, . . . , N , with N = Nn � n, such that with probability
converging to 1, there are no ties. In this case, the unknown parameter β is just
the N -vector, β = (β1, . . . , βN ). Our goal is to estimate θ = N−1

∑N
i=1 βi.

To construct the prior, we proceed as follows. Assume that the components
βi are independent, with βi distributed according to a Beta distribution with
parameters pτ (i) and 1− pτ (i), and

pτ (i) =
eτ/gi

1 + eτ/gi
,

with τ an unknown hyperparameter. Let θ∗ = N−1
∑N
i=1 pτ (i). Note that under

the prior θ = N−1
∑N
i=1 βi = θ∗ + OP (N−1/2), by the CLT. We now aim to

estimate θ∗. In the language of Lindley and Smith (1972), we shift interest from
a random effect to a fixed effect. This is level 2 analysis in the language of
Everson and Morris (2000). The difference between θ and θ∗ is apparent in a
full population analysis, e.g., Berry et al. (1999) and Li (1999), where the real
interest is in θ∗.

In this simplified model, marginally,X1, . . . , Xn are i.i.d. uniform on 1, . . . , N ,
Yi and Ri are independent given Xi, with Yi|Xi ∼ Binomial (1, pτ (Xi)), and
Ri|Xi ∼ Binomial (1, g(Xi)). The log-likelihood function for τ is given by,

`(τ) =
∑
Ri=1

[Yi log pτ (Xi) + (1− Yi) log (1− pτ (Xi))] .
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This is maximized at τ̂ satisfying,

0 = n−1
∑
Ri=1

(
Yi
ṗτ̂ (Xi)

pτ̂ (Xi)
− (1− Yi)

ṗτ̂ (Xi)

1− pτ̂ (Xi)

)
= n−1

∑
Ri=1

ṗτ̂ (Xi)

pτ̂ (Xi) (1− pτ̂ (Xi))
(Yi − pτ̂ (Xi))

= n−1
∑
Ri=1

(Yi − pτ̂ (Xi)) /g(Xi)

= θ̂HT −
1

n

n∑
i=1

Ri
g(Xi)

pτ̂ (Xi),

where ṗτ is the derivative of pτ with respect to τ . A standard Bernstein-von
Mises argument shows that τ̂ is within oP (n−1/2) of the Bayesian estimator of

τ , thus θ̂∗B , the Bayesian estimator of θ∗, satisfies:

θ̂∗B =
1

N

N∑
i=1

pτ̂ (i) + oP

(
n−1/2

)
=

1

n

n∑
i=1

Ri
g(Xi)

pτ̂ (Xi) +OP

(
n−1/2

)
= θ̂HT +OP

(
n−1/2

)
.

(where OP and oP are evaluated under the population model).
The estimator presented in Li (2010) is somewhat similar; however, his esti-

mator is inconsistent, in general, and consistent only if E(Y |R = 1) = EY (as,
in fact, his simulations demonstrate).

With this structure, it is unclear how to define sets of β on which uniform
convergence holds. This construction merely yields an estimator equivalent to
the nonparametric HT estimator.

This prior produces a good estimator of θ∗ but, for other functionals, e.g.
E (Y |g(X) > a) or E

(
β′β

)
, the prior leads to estimators which aren’t even con-

sistent. So, if we are stuck with the resulting posterior, as a type II Bayesian
would be, we have solved the specific problem with which we were faced at the
cost of failing to solve other problems which may come to interest us.

3. The Partial Linear Model

In this section we consider the partial linear model, also known as the partial
spline model, which was originally discussed in Engle et al. (1986); see also
Schick (1986). In this case, we have observations Wi = (Xi, Ui, Yi) such that,

Yi = θXi + β(Ui) + εi. (2)
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where the (Xi, Ui) form an i.i.d. sample from a joint density p(x, u), relative to
Lebesgue measure on the unit square, [0, 1]2; β is an element of some class of
functions B; and the εi are i.i.d. standard-normal. The parameter of interest is θ
and β is a (possibly very non-smooth) nuisance parameter. Let g(U) = E (X |U).
For simplicity, assume that U is known to be uniformly distributed on the unit
interval.

3.1. The Frequentist Analysis

Up to a constant, the log-likelihood function equals,

`(θ, h, p) = − (y − θx− β(u))
2
/2− log p(x, u).

It is straightforward to argue that the score function for θ, the derivative of the
log-likelihood in the least favorable direction for estimating θ, cf. Schick (1986)
and Bickel et al. (1998), is given by,

˜̀
θ (θ, h) = (x− g(u)) (y − θx− β(u)) = (x− g(u)) ε,

and that the semiparametric information bound for θ is,

I = E [var(X|U)] .

We assume that I > 0 (which implies, in particular, that X is not a function of
U). Regarding estimation of θ, intuition based on (2) says that for small neigh-
borhoods of u, the conditional expectation of Y given X is linear with intercept
β(u), and slope θ which does not depend on the neighborhood. The efficient
estimator should average the estimated slopes over all such neighborhoods.

Indeed, under some regularity conditions, an efficient estimator can be con-
structed along the following lines. Find initial estimators g̃ and β̃ of g and β,
respectively, and estimate θ by computing,

θ̂ =

∑(
Xi − g̃(Ui)

)(
Yi − β̃(Ui)

)
∑(

Xi − g̃(Ui)
)2 .

The idea here is that θ is the regression coefficient associated with regressing Y
on X, conditioning on the observed values of U . In order for this estimator to
be
√
n-consistent (or minimax), we need to assume that the functions g and β

are smooth enough that we can estimate them at reasonable rates.
We could, for example, assume that the functions β and g satisfy Hölder

conditions of order α and and δ, respectively. That is, there is a constant 0 ≤
C <∞ such that |β(u)−β(v)| ≤ C|u− v|α and |g(u)− g(v)| ≤ C|u− v|δ for all
u, v in the support of U . We also need to assume that var(X|U) has a version
which is continuous in u. In this case, it is proved in Wang et al. (2011) that
a necessary and sufficient condition for the existence of a

√
n-consistent and

semiparametrically efficient estimator of θ is that α+ δ > 1/2.
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3.2. The Type I Bayesian Analysis

We assume that the type I Bayesian places independent priors on p(u, x), β and
θ, π = πp×πβ×πθ. For example, the prior on the joint density may be a function
of the environment, the prior on the nonparametric regression function might
be a function of an underlying physical process, and the third component of the
prior might reflect our understanding of the measurement engineering. We have
already argued that such assumptions are plausible. The log-posterior-density
is then given by,

−
n∑
i=1

(Yi − θXi − β(Ui))
2
/2 + log πθ(θ) + log πβ(β)

+

n∑
i=1

log p(Ui, Xi) + log πp(p) +A,

where A depends on the data only. Note that the posterior for (θ, β) does not
depend on p. The type I Bayesian would use the same estimator regardless of
what is known about the smoothness of g.

Suppose now that, essentially, it is only known that β is Hölder of order α,
while the range of U is divided up into intervals such that, on each of them, g
is either Hölder of order δ0 or of order δ1, with,

α+ δ0 < 1/2 < α+ δ1.

A
√
n-consistent estimator of θ can only make use of data from the intervals

on which g is Hölder of order of δ1. The rest should be discarded. Suppose
these intervals are disclosed to the statistician. If the number of observations
in the “good” intervals is of the same order as n, then the estimator is still√
n-consistent. For a frequentist, there is no difficulty in ignoring the nuisance

intervals – θ is assumed to be the same everywhere. However, the type I Bayesian
cannot ignore these intervals. In fact, his posterior distribution can not contain
any information on which intervals are good and which are bad.

More formally, let us consider a discrete version of the partial linear model.
Let the observations be Zi = (Xi1, Xi2, Yi1, Yi2), with Z1, . . . , Zn independent.
Suppose,

Xi1 ∼ N(gi, 1),

Xi2 ∼ N(gi + ηi, 1),

Yi1 = θXi1 + βi + εi1,

Yi2 = θXi2 + βi + µi + εi2,

εi1, εi2
iid∼ N(0, 1),

where Xi1, Xi2, εi1, εi2 are all independent, while gi, ηi, βi, and µi are unknown
parameters. We assume that under the prior (g1, η1), . . . , (gn, ηn) are i.i.d. inde-
pendent of θ and the (β1, µ1), . . . , (βn, µn) are i.i.d. This model is connected to
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the continuous version, by considering isolated pairs of observations in the model
with values differing by O(1/n). The Hölder conditions become ηi = OP (n−δi),
and µi = OP (n−α), where δi ∈ {δ0, δ1}, as above.

From a frequentist point of view, the (Xi1, Xi2, Yi1, Yi2) have a joint normal
distribution and we would then consider the statistic,[

Xi2 −Xi1

Yi2 − Yi1

]
∼ N

([
ηi

θηi + µi

]
,

[
2 2θ
2θ 2θ2 + 2

])
.

Now consider the estimator,

θ̂ =

∑
δi=δ1

(Xi2 −Xi1)(Yi2 − Yi1)∑
δi=δ1

(Xi2 −Xi1)2

= θ +

∑
δi=δ1

(Xi2 −Xi1)(εi2 − εi1)∑
δi=δ1

(Xi2 −Xi1)2
+

∑
δi=δ1

(Xi2 −Xi1)µi∑
δi=δ1

(Xi2 −Xi1)2

= θ +OP

(
n−1/2

)
+R,

where,

R =

∑
δi=δ1

ηiµi∑
δi=δ1

(Xi2 −Xi1)2
= oP

(
n−1/2

)
,

since α+ δ1 > 1/2.
Note that if the sum were over all pairs, and if the number of pairs with

δi = δ0 is of order n, then the estimator would not be
√
n-consistent, since now√

nR may diverge, almost surely. In general, this model involves 2n+ 1 param-
eters and the parameter of interest can not be estimated consistently unless the
nuisance parameters can be ignored, at least, asymptotically. However, these
parameters can only be ignored if we consider the smooth pairs – that is, those
pairs for which α + δi > 1/2, making the connection between variability, here,
and smoothness, in the first part of this section. Of course, the information on
which pairs to use in constructing the estimator is unavailable to the type I
Bayesian.

The type I Bayesian does not find any logical contradiction in this failure.
The parameter combinations on which the Bayesian estimator fails to be

√
n-

consistent have negligible probability, a priori. He assumes that, a priori, β and
g are independent, and short intervals are essentially independent since β and g
are very rough. Under these assumptions, the intervals on which g is Hölder of
order δ0 contribute, on average, 0 to the estimator. There are no data in these
intervals that contradict this a priori assessment. Hence assumptions, made
for convenience in selecting the prior, dominate the inference. The trouble is
that, as discussed in the appendix, even if we assume a priori that β and g are
independent, their cross-correlation may be non-zero with high probability, in
spite of the fact that this random cross-correlation has mean 0.
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4. The White Noise Model and Bayesian Plug-In Property

We now consider the white noise model in which we observe the process,

dX(t) = β(t) dt+ n−1/2dW (t), t ∈ (0, 1),

where β is an unknown L2-function and W (t) is standard Brownian motion.
This model is asymptotically equivalent to models in density estimation and
nonparametric regression; see Nussbaum (1996) and Brown and Low (1996). It
is also clear that this model is equivalent to the model in which we observe,

Xi = βi + n−1/2εi, εi
iid∼ N(0, 1), i = 1, 2, . . . , (3)

where Xi, βi, and εi are the i-th coefficients in an orthonormal (e.g., Fourier)
series expansion of X(t), β(t), and W (t), respectively. Note that all the sequence
X1, X2, . . . is observed, and n serves only as a scaling parameter. We are inter-
ested in estimating β = (β1, β2, . . .) as an object in `2 with the loss function

‖β̂−β‖2 and linear functionals θ = g(β) =
∑∞
i=1 giβi with (g1, g2, . . .) ∈ `2, also

under squared error loss. From a standard frequentist point of view, estimation
in this problem is straightforward. Simple estimators achieving the optimal rate
of convergence are given in the following proposition:

Proposition 4.1 Assume that β ∈ Bα = {β : |βi| ≤ i−α} and α > 1/2. The

estimator θ̂ =
∑
giXi is

√
n-consistent for any g ∈ `2 and the estimator,

β̂i =

{
Xi iα ≤ n1/2,

0 iα > n1/2,

achieves the minimax rate of convergence, n−(2α−1)/2α.

The proof is given in the appendix.

4.1. The failure of Type I Bayesian analysis

A critical feature of Bayesian procedures for estimating linear functionals is that
they necessarily have the plug-in property (PIP). For example, for squared error
loss, since,

Eg(β̂) =

n∑
i=1

giEβ̂i,

we have ĝ(β) = g(β̂), for any Bayesian estimators of g(β) and β based on the
same prior.

We say that β̂ is a uniformly efficient plug-in estimator for a set Θ of func-
tionals and model P if,{

r−2
n ‖β̂ − β‖22 + n sup

θ∈Θ

(
θ(β̂)− θ

)2
}

= OP (1),



Ritov, Bickel, Gamst, Kleijn/CODA Bayes? 14

and θ̂ = θ(β̂) is semiparametrically efficient for θ, where rn is the minimax rate
for estimation of β.

Bickel and Ritov (2003) argued that there is no uniformly efficient plug-in
estimator in the white noise model when Θ is large enough; for example, the
set of all bounded linear functionals. Every plug-in estimator fails to achieve
either the optimal nonparametric rate for estimating β or

√
n-consistency as

a plug-in-estimator (PIE) of at least one bounded linear functional g(β). The
argument given in Bickel and Ritov (2003), that no estimator with the PIP
can be uniformly efficient in the white noise model, can be refined, slightly, as
follows.

We need the following lemma, the proof of which is given in appendix B.

Lemma 4.2 Suppose X ∼ N(β, σ2), |β| ≤ a ≤ σ. Let β̂ = β̂(X) be the poste-
rior mean when the prior is π, assuming π is supported on [−a, a], and let bβ
be its bias under β. Then |bβ | + |b−β | > 2(1 − (a/σ)2)|β|. In particular, if π is
symmetric about 0, then |bβ | > (1− (a/σ)2)|β|.

This lemma shows that any Bayesian estimator is necessarily biased and puts a
lower bound on this bias. We use this lemma to argue that any Bayesian estima-
tor will fail to yield

√
n-consistent estimators for at least one linear functional.

Theorem 4.3 For any Bayesian estimator β̂ with respect to prior π supported

on Bα, with α > 1/2, there is a pair (g,β) ∈ `2×Bα such that n
[
g(β̂)− g(β)

]2 p→

∞. In fact, lim infn→∞ n(2α−1)/4α
[
Eβg(β̂)− g(β)

]
> 0.

Proof. It follows from Lemma 4.2 that for any i > 2n1/2α there are βi such
that if bi = Eβ̂i − βi then |bi| > 3i−α/4. Define,

gi =


0, i ≤ 2n1/2α,

Cn(2α−1)/4αi−α, i > 2n1/2α, bi > i−α/2,

−Cn(2α−1)/4αi−α, i > 2n1/2α, bi < −i−α/2,

where C is such that
∑∞
i=1 g

2
i = 1. (Note that C is bounded away from 0 and

∞.) We have,

E

[ ∞∑
i=1

gi

(
β̂i − βi

)]
≥ 3Cn(2α−1)/4α

∑
i>2n1/2α

i−2α/4

≥ 3Cn−(2α−1)/4α/4.

�
Thus, any Bayesian estimator will fail to achieve optimal rates on some pairs

(g,β). These pairs are not unusual. Actually they are pretty ‘typical’ members of

`2×Bα. In fact, for any Bayesian estimator β̂ and for almost all β with respect to
the distribution with independent uniform coordinates on Bα, there is a g such
that g(β̂) is inconsistent and asymptotically biased, as in the theorem. Formally,



Ritov, Bickel, Gamst, Kleijn/CODA Bayes? 15

let µ be a probability measure such that the βi are independent and uniformly
distributed on [−i−α, i−α]. Then, for any sequence of Bayesian estimators, {β̂n},

lim inf
n→∞

µ

{
β : sup

g∈`2
n(2α−1)/4α

[
Eβg

(
β̂n

)
− g(β)

]
> M

}
= 1,

for some M > 0. This statement follows from the proof of the theorem, noting
that µ {|bi| > i−α/2} > 1/2.

What makes the pairs that yield inconsistent estimators special, is only that
the sequences β1, β2, . . . and g1, g2, . . . are non-ergodic. Each of them have a
non-trivial auto-correlation function, and the two auto-correlation functions are
similar (see Appendix A). The prior suggests that such pairs are unlikely, and
therefore, that the biases of the estimators of each component cancel each other
out. If the prior distribution represents a real physical phenomenon, this ex-
act cancelation is reasonable to assume, by the law of large numbers, and the
statistician should not worry about it. If, on the other hand, the prior is a way
to express ignorance or subjective belief, then the analyst should worry about
these small biases. This is particularly true if the only reason for assuming that
these small biases are not going to accumulate is mathematical convenience.
Indeed, in high-dimensional spaces, auto-correlation functions may be complex,
with unknown neighborhood structures which are completely hidden from the
analyst.

We consider a Bayesian model to be honestly nonparametric on Bα, if the
distribution of βi, givenX−i, is symmetric around 0, and P (βi > εi−α |X−i) > ε,
for some ε > 0, where X−i = X1, . . . , Xi−1, Xi+1, . . . . That is, at least in some
sense, all the components of βi are free parameters. In this case, we have:

Theorem 4.4 Let the prior π be honestly non-parametric on Bα and 1/2 <
α < 3/4. Suppose g = (g1, g2, . . . ) ∈ Bα, and lim sup

√
n |
∑∞
i=νn1/2α giβi| = ∞

for some ν > 1. Then the Bayesian estimator of g(β) =
∑∞
i=1 giβi is not

√
n-

consistent.

Note that if the last condition is not satisfied, then an estimator that simply
ignores the tails (i > n1/2α) could be

√
n-consistent. However, for g,β ∈ Bα,

in general, all the first n1/(4α−2) terms must be used, a number which is much
greater than n1/2α for α in the range considered.
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Proof. Again, we consider the bias as in the second part of Lemma 4.2. Under
our assumptions, we have,

√
n

∣∣∣∣∣∣
∑

i>νn1/2α

gi

(
Eβ̂i − βi

)∣∣∣∣∣∣ =
√
n

∣∣∣∣∣∣
∑

i>νn1/2α

(1− di)giβi

∣∣∣∣∣∣ , 0 ≤ di ≤ ni−2α

≥
√
n

∣∣∣∣∣∣
∑

i>νn1/2α

giβi

∣∣∣∣∣∣−√n
∑

i>νn1/2α

n |giβi| i−2α

≥
√
n

∣∣∣∣∣∣
∑

i>νn1/2α

giβi

∣∣∣∣∣∣−√n
∑

i>νn1/2α

ni−4α

=
√
n

∣∣∣∣∣∣
∑

i>νn1/2α

giβi

∣∣∣∣∣∣− o(1).

�
Note that the assumptions of the theorem are natural if the prior corresponds

to the situation in which the βi tend to 0 slowly, so that we need essentially all
the available observations to estimate g(β) at the

√
n-rate. As in the last two

examples, if either βi or gi converges to 0 quickly enough – that is, β or g are
smooth enough – then the difficulty disappears, as the tails do not contribute
much to the functional g(β) and they can be ignored. However, when the prior

is supported on Bα, then the estimator β̂i = Xi is unavailable to the Bayesian
(whatever the prior!) and g(β) can not be estimated at the minimax rate with
g ∈ Bα, much less `2.

4.2. Type II Analysis

It is easy to construct priors which give the global and local minimax rates
separately. For the nonparametric part β, one can select a prior for which the
βi are independent and the estimator of βi based on Xi ∼ N(βi, n

−1) with βi
restricted to the interval [−i−α, i−α] is minimax; see Bickel (1981). For the para-
metric part, one can use an improper prior under which the βi are independent
and uniformly distributed on the real line. This prior works, but it completely
ignores the constraints on the coordinates of β. If one permits priors which are
not supported on the parameter space, then this prior is perfect, in the sense
that any linear functional can be estimated at the minimax rate.

If we are permitted to work with a prior which is not supported by the
parameter space, then we can construct a prior which yields good estimators
for both β and any particular linear functional. Indeed, suppose that gi 6= 0,
infinitely often, and change bases so that X̃ = B′X, where B is an orthonormal
basis for `2 with first column equal to g/‖g‖. Note that X̃1 =

∑∞
j=1 gjXj/‖g‖

and the X̃i are independent, with X̃i ∼ N
(
β̃i, n

−1
)

, i = 0, 1, . . . , where β̃1 is the
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Fig 1. Estimating Linear Functionals: (a) the vector β; (b) the observations X; (c) the
Bayesian estimator; (d) the functional g.

parameter of interest, and ‖β̃‖2 = ‖β‖2. Thus, a Bayesian who places a flat prior
on θ = β̃1 and a standard nonparametric prior on the other coordinates of β̃,
such that β̃i is estimated by X̃i, properly thresholded, will be able to estimate θ
efficiently and (β̃2, β̃3, . . .) at the minimax rate, simultaneously, cf. Zhao (2000).
Of course, this prior was tailor-made for the specific functional θ = g(β) and
would yield estimators of other linear functionals which are not

√
n-consistent,

should the posterior be put to such a task.

4.3. An Example

To demonstrate that the effects described above have real, practical conse-
quences, consider the following example. Take β = vec(M0) and g = vec(M1),
where M0 and M1 are the two images shown in Figure 1 (a) and (d), respectively.
That is, each image is represented by the matrix of the gray scale levels of the
pixels, and vex(M) is the vector obtained by piling the columns of M together
to obtain a single vector. These images were sampled at random from the images
which come bundled in the standard distribution of Matlab. The images have
been modified slightly, so they both have the same 367×300 geometry, but noth-
ing else has been done to them. To each element of β we added an independent
N(0, 169) random variable. This gives us X, shown in Figure 1 (b). Let π be
that prior which takes the βi i.i.d. N(µ, τ2), where µ =

∑
wiβi/

∑
wi, with wi

independent and identically uniformly-distributed on (0, 1) and τ2 = 315.786,
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Fig 2. A scatter plot and histograms of the data X and functional g. (a) A scatter plot of 5%
of all pairs, chosen at random. (b) Joint and marginal histograms.

the true empirical variance of the βi. The resulting nonparametric Bayesian esti-
mator is shown in Figure 1 (c). The mean squared error (MSE) of this Bayesian
estimator is approximately 65% smaller than that of the MLE. Now consider
the functional defined by g, shown in Figure 1 (d). Applying g to X yields
an estimator with root mean squared error (RMSE) of 1.04, but plugging-in
the much cleaner Bayesian estimator of Figure 1 (c) gives an estimator with a
RMSE of 19.01, almost twenty times worse than the frequentist estimator. Of
course, the biggest difference between these two estimators is bias: 0.01 for the
frequentist versus 19.00 for the Bayesian. These RMSE calculations were based
on 1000 Monte Carlo simulations.

There is no reason to suspect that these images are correlated – they were
sampled at random from an admittedly small collection of images – and they
are certainly unrelated, one image shows the results of an astrophysical fluid
jet simulation and the other is an image of the lumbar spine, but neither is
permutation invariant nor ergodic, and this implies that the two images may
be strongly positively or negatively correlated, just by chance; see Figure 2 and
Appendix A.

5. Estimating the Norm of a High-Dimensional Vector

We continue with our analysis of the white noise model, but we consider a
different, non-linear Euclidean parameter of interest: θ =

∑∞
i=1 β

2
i .

A natural estimator of βi is given in Proposition 4.1, and one may consider
a plug-in estimator of the parameter, given by θ̃ =

∑
β̃2
i =

∑
i<n1/2α X2

i . This

estimator achieves the minimax rate for estimating β and θ̃ is an efficient es-
timator of the Euclidean parameter, so long as α > 1. But β̃2

i has bias 1/n
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as an estimator of β2
i . Summing i from 1 to n, we see that the total bias is

n−1+1/2α, which is much larger than n−1/2 if α < 1. The traditional solution to
this problem is to simply unbias the estimator, cf. Bickel and Ritov (1988).

Proposition 5.1 Suppose 3/4 < α < 1, then an efficient estimator of θ is
given by,

θ̂ =
∑
i≤m

(
X2
i − n−1

)
, (4)

for n1/(4α−2) < m ≤ n.

Proof. Clearly the bias of the estimator is bounded by,∑
i>m

i−2α < m−(2α−1) = oP (n−1/2),

and its variance is bounded by,

n−1
∑
i≤m

(4β2
i + 2/n) = 4θn−1 + oP (n−1),

demonstrating
√
n-consistency. The estimator is efficient since θ̂ is asymptoti-

cally normal, and 1/4θ is the semiparametric information for the estimation of
θ. �

This is a standard frequentist approach: there is a problem and the solution
is justified because it works – it produces an asymptotically efficient estimator
of the parameter of interest – not because it fits a particular paradigm. The
difficulty with the naive, plug-in estimator

∑
i≤m β̂

2
i =

∑
i≤mX

2
i is that it is

biased, but this is a problem that is easy to correct. Of course, this simple fix
is not available to the Bayesian, as we show next.

5.1. The Bayesian Analysis: An Even Simpler Model

We start with a highly simplified version of the white noise model. To avoid
confusion, we change notation slightly and consider,

Y1, . . . , Yk independent with Yi ∼ N(µi, σ
2), (5)

θ = θ(µ1, . . . , µk; g1, . . . , gk) =

k∑
i=1

giµ
2
i , (6)

where the gi are known constants. Here, we consider the asymptotic performance
of estimators of θ with σ2 = σ2

k → 0 as k →∞. Let,

θ̂ =

k∑
i=1

gi
(
Y 2
i − σ2

)
.



Ritov, Bickel, Gamst, Kleijn/CODA Bayes? 20

Clearly,

Eθ̂ = θ, varθ̂ = 4σ2
k∑
i=1

g2
i µ

2
i + 2σ4

k∑
i=1

g2
i .

Suppose that the µi are a priori i.i.d. N(0, τ2), with τ2 = τ2
k known, and

consider the situation in which g1 ∼ · · · ∼ gk. If k−1/2σ2
k � τ2

k � σ2
k, then the

signal-to-noise ratio τ2/σ2 is strictly less than 1 and no estimator of µi performs

much better than simply setting µ̂i = 0. On the other hand, θ̂ remains a good

estimator of θ, with coefficient of variation, O
(√

kσ2/kτ2
)

, converging to 0. We

call this paradoxical regime the non-localizable range, as we can estimate global
parameters, like θ, but not the local parameters, µ1, . . . , µk.

A posteriori, the µi ∼ N
(
τ2Yi/(σ

2 + τ2), τ2σ2/(σ2 + τ2)
)

and the Bayesian
estimator of θ is given by,

k∑
i=1

giE
(
µ2
i |Yi

)
=
σ4 + 2τ2σ2

(σ2 + τ2)2

k∑
i=1

g2
i τ

2 +
τ4

(σ2 + τ2)2

k∑
i=1

gi
(
Yi − σ2

)
.

This expression has the structure of a Bayesian estimator in exponential families:
a weighted average of the prior mean and the unbiased estimator. If the signal-
to-noise ratio is small, τ2 � σ2, almost all the weight is put on the prior. This
is correct, since the variance of θ, under the prior, is much smaller than the
variance of the unbiased estimator. So, if we really believe the prior, the data
can be ignored at little cost. However, in frequentist terms, the estimator is
severely biased and, for a type II Bayesian, non-robust.

The Achilles heel of the Bayesian approach is the plug-in property. That is,
E
(∑m

i=1 µ
2
i |data

)
=
∑m
i=1 E

(
µ2
i |data

)
. However, when the signal-to-noise ratio

is infinitesimally small, any Bayesian estimator must employ shrinkage. Note
that, in particular, the unbiased estimator Y 2

i − σ2 of µ2
i can not be Bayesian,

because it is likely to be negative and is an order of magnitude larger than µ2
i .

A ‘natural’ fix to the non-robustness of the i.i.d. prior, is to introduce a
hyperparameter. Let τ2 be an unknown parameter, with some smooth prior.
Marginally, under the prior, Y1, . . . , Yk are i.i.d. N(0, σ2 + τ2). By standard

calculations, it is easy to see that the MLE of τ2 is τ̂2 = k−1
∑k
i=1

(
Y 2
i − σ2

)
.

By the Bernstein-von Mises theorem, the Bayesian estimator of τ2 must be
within oP (k−1/2) of τ̂2. If g1 = · · · = gk and we plug τ = τ̂ into the formula
for the Bayesian estimator, we get a weighted average of two estimators of θ,
both of which are equal to θ̂. But, in general, τ̂ is strictly different from θ̂ and
this estimator is inconsistent. Of course, the Bayesian estimator is not obtained
by plugging-in the estimated value of τ , but the difference would be small here,
and the Bayesian estimator would perform poorly.

Although the prior would be arbitrary, we can, of course, select the prior
so that the marginal variance is directly relevant to estimating θ. One way to
do this is to assume that τ2 has some smooth prior and, given τ2, the µi are
i.i.d. N(0, (τ2/gi) − σ2). Then, Yi ∼ N(0, τ2/gi), marginally, and the marginal
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log-likelihood function is,

−k log(τ2)/2−
k∑
i=1

giY
2
i /2τ

2.

In this case, τ̂2 = k−1
∑k
i=1 giY

2
i and the posterior mean of

∑k
i=1 giµ

2
i is ap-

proximately
∑k
i=1 gi

(
τ̂2/gi − σ2

)
=
∑k
i=1 gi

(
Y 2
i − σ2

)
, as desired.

This form of the prior variance for the µi is not accidental. Suppose, more
generally, that µi ∼ N

(
0, τ2

i (ρ)
)
, a priori, for some hyperparameter ρ. Then the

score equation for ρ̂ is
∑k
i=1 wi(ρ̂)Y 2

i =
∑k
i=1 wi(ρ̂)

(
τi(ρ̂) + σ2

)
, where wi(ρ) =

τi(ρ)τ̇i(ρ)/
(
τi(ρ̂) + σ2

)2
. If we want the weight wi to be proportional to gi, then

we get a simple differential equation, the general solution of which is given by(
τi(ρ) + σ2

)−1
= giρ+ di. Hence, the general form of the prior variance is,

τ2
i (ρ) = (giρ+ di)

−1 − σ2.

The prior suggested above simply takes di = 0, for all i. If the type II Bayesian
really believes that all the µi should have some known prior variance τ2

0 , he can

take di =
(
τ2
0 + σ2

)−1 − gi, obtaining the expression,

τ2
i (ρ) =

τ2
0 + (ρ− 1)(τ2 + σ2)σ2gi
1 + (ρ− 1)(τ2 + σ2)σ2gi

.

If the variance of the µi really is τ2
0 , then the posterior for the hyperparameter

ρ will concentrate on 1 and the τ2
i will concentrate on τ2

0 . If, on the other
hand, τ2 is unknown, the resulting estimator will still perform well, although
the expression for τ2

i is quite arbitrary.
The discussion above holds when we are interested in estimating the hyperpa-

rameter
∑k
i=1 giτ

2
i (ρ). This is a legitimate change in the rules and the resulting

estimator can be used to estimate θ in the non-localizable regime, because the
main contribution to the estimator is the contribution of the prior, conditioning
on τ2

i (ρ). However, when τ2
i (ρ) ≈ σ2, there may be a clear difference between

the Bayesian estimators of
∑k
i=1 τ

2
i (ρ) and

∑k
i=1 µ

2
i , respectively.

We conjecture that a construction based on stratification might be used to
avoid the problems discussed above: the use of an unnatural prior and the differ-
ence between estimating the hyperparameter and estimating the norm. In this
case, we would stratify based on the values of the gi and estimate

∑
µ2
i sepa-

rately in each stratum. The price paid by such an estimator is a large number
of hyperparameters and a prior suited to a very specific task.

The discussion above shows that θ̂ can at least be approximated by a Bayesian
estimator, but the corresponding prior has to have a specific form and would
have to have been chosen for convenience rather than prior belief. This presents
no difficulty for the type II Bayesian, who is free to select his prior to achieve
a particular goal. However, problems with the prior remain. The prior is tailor-
made for a specific problem: while β1, . . . , βk i.i.d. N(0, τ2) is a very good prior
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for estimating
∑k
i=1 µ

2
i , when the parameter of interest is not permutation in-

variant, the estimator is likely to perform poorly in frequentist terms. Also, the
prior is appropriate for regular models but not sparse ones. Consider again the
non-localizable regime in which

√
kσ2 � θ � kσ2, but suppose that most of the

µi are very close to zero, with only a few taking values larger than σ2 in absolute
value. A Bayesian estimator based on the prior suggested above will shrink all
the Yi toward 0, strongly biasing the estimates of the µi, whereas a standard
(soft or hard) thresholding estimator will have much better performance. A com-
pletely different prior is need to deal with sparsity. See Greenshtein et al. (2008)
and van der Pas et al. (2013) for an empirical Bayes solution to the sparsity
problem.

5.2. A Bayesian Analysis of the White Noise Model

Returning to original model, Xi ∼ N(βi, 1/n), |βi| < i−α, with θ =
∑n
i=1 β

2
i ,

we can use a prior for which the βi are i.i.d. N(0, τ2), for i = 1, . . . ,m, and 0,
otherwise, where m = n1/(4α−2)+ν , for some ν > 0. This gives us a Bayesian
estimator of θ which is asymptotically equivalent to the unbiased estimator,
θ̂ =

∑n
i=1

(
X2
i − n−1

)
, and asymptotically efficient. However, the correspond-

ing estimator for β is not even consistent and, when we try to estimate βi,
even for i relatively small, we see that the Bayesian estimator shrinks Xi to-
ward 0 by a factor of 1 − ρ where ρ is asymptotically larger than θm/n =
θn−(4α−3)/(4α−2)−ν � n−1/2. So our estimate of βi fails to be

√
n-consistent.

A more reasonable approach, in this situation, is to partition the set X1, . . . ,
Xn into blocks, {Xkj−1

, . . . , Xkj}, j = 1, . . . , J , and use a mean-zero Gaussian
prior with unknown variance in each of the blocks. One possible assignment is
k0 = 1, k1 = o(

√
n), and kj = 2kj−1, j > 1. Thus, O(log n) blocks are needed.

The analysis presented above shows that this prior would yield a good estimator
of θ without, hopefully, sacrificing our ability to estimate the βi at the

√
n-rate.

Of course, this prior is not supported on the parameter space Bα: it forces
uniform shrinkage of the observations in each block (and bypasses the plug-
in property by estimating block-wise hyperparameters). But there is nothing
‘natural’ about these blocks and nothing in the problem statement suggests this
grouping.

As before, this “objective” prior was constructed with a specific parameter
in mind and is unlikely to be effective for other parameters; it can not represent
prior beliefs. The prior will also fail when sparsity makes the block structure
inappropriate. The unbiased, frequentist estimator has no such difficulty. The
Bayesian is obliged to conform to the plug-in principle and, because of this,
at some stage, must get stuck with the wrong prior for some parameter which
wasn’t considered interesting initially.

Consider a general prior π. Let πi be the prior for βi given X−i = (X1, . . . ,
Xi−1, Xi+1, . . . ). For i > n1/2α+ν with ν > 0 arbitrarily small and m =
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n1/(4α−2)+ν , as in Proposition 5.1,

Eπ(β2
i |X1, . . . , Xm) =

∫ i−α
−i−α t

2ϕ (n(Xi − t)) dπi(t)∫ i−α
−i−α ϕ (n(Xi − t)) dπi(t)

∈ (a−1Eπiβ
2
i , aEπiβ

2
i ), (7)

where for I = {i : n1/2+ν < i ≤ n1/(4α−2)+ν},

max
i∈I

log a ≤ max
i∈I

|ti|<i−α
n
∣∣(Xi − t1)2 − (Xi − t2)2

∣∣ p→ 0,

since maxi∈I n
1/2−ν |Xi|

p→ 0. But this means that the estimate of β2
i depends

only weakly on Xi itself. It is mainly a function of X−i and the prior. Moreover,
if the estimate of θ is to be close to the unbiased one, then this must be achieved
through the influence of Xi on the estimates of βj , for j 6= i. This is the case
in the construction above where, formally, we are estimating a hyperparameter
of the prior, rather than θ, itself. The result is a non-robust estimator which
works for the particular functional of interest but not others. In fact, we have
the following theorem.

Theorem 5.2 Let β−i = (β1, . . . , βi−1, βi+1, . . . ). Let π be the prior on β.
Suppose that there is an η > 0 such that a.s. under the prior π: Pπ(d4i2αβ2

i e =
κ|β−i) > η, i = 1, 2, . . . , and κ = 1, . . . , 4. There exists a set S = Sn with
π(Sn)→ 1, such that for all β ∈ S there is a sequence g1, g2, . . . , for which the
Bayesian estimator of

∑
giβ

2
i with respect to π is not

√
n-consistent.

The proof is given in the appendix. The conditions in the theorem are needed to
ensure that support of the the prior does not degenerate to a finite-dimensional
parametric model.

6. Data-Dependent Sample Sizes and Stopping Times

The stopping rule principle (SRP) says that, in a sequential experiment, with
final data xN (τ), inferences should not depend on the stopping time τ ; see
Berger and Wolpert (1988). In so much as Bayesian techniques follow the strong
likelihood principle (SLP), they must also follow the SRP.

To see that high dimensional data represents a challenge for the SRP, consider
another version of the white noise model. Let n−2α < βi < 3n−2α, i = 1, . . . , k =
bn2αc, and 1/6 < α < 1/4. Suppose that, for each i, Xi(·) is a Brownian
motion with drift βi, and that Xi is observed until some random time Ti. Take
X̄i(t) = Xi(t)/t and note that this is the sufficient statistic for βi given {Xi(s) :
s < t}. Of course, X̄i is also the MLE. Finally, let πi be the prior for βi given
X−i = (X1, . . . , Xi−1, Xi+1, . . .). Let fi(·) be the density of the distribution of
Xi(Ti) given X−i; fi = πi ∗ N(0, 1/Ti). We assume that the prior πi is non-
parametric in the sense that πi is bounded away from 0 on the allowed support,
so that X−i does not give us too much information about βi.
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Fig 3. (a) the MLE; (b) the Bayesian estimator.

It is well known that the posterior mean of βi given the data satisfies,

E(βi |data) = X̄i(Ti) +
1

Ti

f ′i (Xi(Ti))

fi (Xi(Ti))
.

If Ti = O(n), then fi ≈ πi and X̄i(Ti) ≈ βi. Suppose Ti is correlated with

gi(βi), where gi = f ′i/fi, then the MLE of
∑k
i=1 βi, given by

∑k
i=1Xi(Ti) is

unbiased and has a random error on the order of nαn−1/2, while the Bayesian
estimator has a bias which is ∼ n2αn2α/n, with n2α terms each contributing
O(n2α) to the bias, from gi, and a term of O(1/n) from 1/Ti. With 1/6 < α <
1/4, the Bayes bias dominates the random error!

6.1. An Example

We consider again the vector β represented in Figure 1 (a), but this time the
vectorized version of the spine image shown in Figure 1 (d) is used to specify
the random number of observations associated with each element of β. Adding
noise to Figure 1 (a), we get the observed data and MLE, shown in Figure 3 (a).
This SNR is higher here than before (+2.72db) and, as a result, the Bayesian
estimator shown in Figure 3 (b) is much smoother.

Here, we used a prior with independent Gaussian components, each with a
mean equal to the mean of β and variance equal to the variance of the βi. We
have two processes on the unit square: one represents β and the other corre-
sponds to random stopping times, with the number of observations proportional
to the gray-scale value of the corresponding pixel in the image of the spine. As
we have already seen, these images are correlated, although there is no reason,
a priori, to expect they would be, having been chosen at random from a collec-
tion of unrelated images. This correlation causes trouble: In 500 Monte Carlo
simulations, the RMSE of the Bayesian estimator of the sum of the βi is 0.05,
whereas the RMSE of the MLE is 0.009. The difference is due almost entirely
to bias. If we replace the stopping times with a fixed time, the Bayesian esti-
mator performs better, achieving a RMSE of 0.0071 versus the RMSE of the
MLE = 0.0072. This example shows clearly that the Bayesian estimator can be
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badly biased when the stopping times and the unknown parameters happen to
be correlated.

7. Bayesian Procedures are Efficient under Bayesian Assumptions

Freedman (1965) proves that in some very weak sense consistency of Bayesian
procedures is ‘rare’. We, however, start with a version of Doob’s consistency re-
sult and show that the existence of a uniformly

√
n-consistent estimator ensures

that the posterior distribution is
√
n-consistent with prior probability 1.

To simplify notation we consider the Markov chain β0 → Xn → βn, where
β0, βn ∈ B, β0 ∼ π, Xn ∼ Pβ0

, and given Xn, β0 and βn are i.i.d. That is, given
Xn, βn is distributed according to the posterior distribution πXn . Let P be the
joint distribution of the chain. With some abuse of notation, Pβ0

is also the
conditional distribution of the chain given that it starts at β0. Let dn be a semi-
metric on the parameter space, normalized to the sample size. Typically, in the
nonparametric situation considered in this paper, dn(β, β′) =

√
n|θ(β)− θ(β′)|

for some real-valued functional θ of the parameter.
We consider an estimator β̃n to be dn consistent uniformly on B, if for ev-

ery ε > 0 there is an M < ∞ such that for all β ∈ B and n large enough,

Pβ

{
dn(β̃n, β) ≥M

}
≤ ε. The posterior is dn consistent uniformly on B if for

every ε > 0 there is an M < ∞ such that for all β0 ∈ B and n large enough,
Pβ0 {dn(βn, β0) ≥M} ≤ ε.

Thus we consider the inference to be dn uniformly consistent if the frequentist
Markov chain, β0 → Xn → β̃n, or the Bayesian one, β0 → Xn → βn lands in an
Op(1) dn-ball.

Theorem 7.1 Suppose there is an estimator which is dn consistent uniformly
on B. Then there is a B′ ⊆ B such that π(B′) = 1 and the posterior is dn
consistent uniformly on B′.

The proof is given in appendix B.
Thus, the existence of a uniformly good frequentist estimator ensures that

the there is a set with prior probability one such that the Bayes posterior is uni-
formly consistent at the right rate on that set. The difficulty with this statement
is that, in high dimensional spaces, there is no natural extension of Lebesgue
measure and null sets of very natural-looking priors are sometimes much larger
than one would expect. For a simple example, consider a prior with hyperpa-
rameters of the type we considered for the white noise models: τ has standard
exponential distribution, and βi, . . . , βk are, given τ , i.i.d. N(0, τ2). Consider the

set S = {β : k−1
∑k
i=1(βi − β̄k)4 < 2.5(k−1

∑k
i=1(βi − β̄k)2)2}. The probability

of S is 0.82 if k = 5. It drops to approximately 0.27 when k = 50. It is 0.0025 for
k = 500, and negligible when k = 5000. (These numbers are based on 100,000
Matlab simulations.) The set S is not so unusual or unexpected that it can be
really ignored a priori and, unlike most sets, S is simple to comprehend. If infer-
ences depend on whether or not the fourth moment of the parameter is exactly
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three times the square of the second, as implied by the normality assumption,
which was made for convenience, these inferences would not be robust.

Theorem 7.1 does not contradict our findings. In the stratified sampling and
partial linear model examples of Sections 2 and 3, the difference between the
Bayesian estimator and the frequentist one, is that the former ignores the infor-
mation that restricts the model to a subset of the parameter space which has
prior probability 0. In the white noise models of Sections 4 and 5, the require-
ment that the prior be “honestly non-parametric” limits β1, β2, . . . to regular
sequences obeying a law of large numbers and, as a result, the set of non-
ergodic sequences is given prior probability 0. And, in these examples, there
are two phenomena which make this theorem irrelevant. First, Bayesian esti-
mators must obey the plug-in principle, restricting estimators to those of the
form θ(β̃) for β̃ ∈ B, while the frequentist estimator can not be written in this
form. Second, each prior fails for a different functional, but, if the functional
and the parameter are chosen together, as we have argued might well happen,
this theorem has no consequences.

The second result of this section gives an easy abstract construction which
shows that, under some conditions, a type II Bayesian is able to choose a prior
with good frequentist properties. Our setup is as follows. In the n-th problem
we observe X(n) ∼ P ∈ P(n) � ν, with density p = dP/dν. Estimators take
values in the set A, and a loss function `n : P(n)×A → R+ is used to assess the
“cost” associated with a particular estimate. We assume that `n is bounded by
Ln <∞ for all n and that,

A1 The loss function is Lipschitz: for all a ∈ A and P, P ′ ∈ P(n): |`n(P, a) −
`n(P ′, a)| ≤ cn‖p− pn‖, where ‖ · ‖ is the variational norm.

A2 Given ε > 0 there exists a finite set P(n)
K ⊂ P(n) with cardinality κn,ε, such

that supP∈P(n) inf
P ′∈P(n)

K

‖P − P ′‖ ≤ ε.
A3 Let Rn(P, δ) = EP `n(P, δ(X)), where δ : X (n) → A, or more generally, δ is

a randomized procedure (or Markov kernel from X (n) to A). Let Rn(δ) =
supP∈P(n) Rn(P, δ). There exist δ∗ such that Rn(δ∗) = infδ Rn(δ) ≡ rn ≤
r <∞ for all n.

Let µn be a probability measure on P(n)
K . The corresponding posterior dis-

tribution is µn(Pj |X(n)) = µn(Pj)pj(X
(n))/

∑κ
k=1 µn(Pk)pk(X(n)). Let δµn be

the Bayesian procedure with respect to µn.

Theorem 7.2 If conditions A1–A3 hold, then for all ε′ > 0, there exist µn,ε′

on P(n), such that Rn(δµn,ε′ ) ≤ rn + ε′.

The proof is given in appendix B and can be used to argue that, under the
conditions above, it is always possible (for a type II Bayesian) to select a prior
such that the corresponding Bayesian procedure estimates both the global and
local parameters at their minimax rates:

Corollary 7.3 Consider an estimation problem in which P(n) satisfies the con-
ditions of Theorem 7.2; `1n(P, a), `2n(P, a) are two loss functions, each satisfy-
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ing condition A1, with Lipschitz constants c1n and c2n, respectively, and,

inf
δ

max
P∈P(n)

EP `kn(P, δ) = O(b−1
kn ), k = 1, 2,

For some b1n, b2n. Then, given ε > 0, there exist µn on P(n) such that, simul-
taneously,

max
P∈P(n)

EP `kn(P, δµn) = O(b−1
kn ) k = 1, 2.

The corollary follows by applying the theorem to the combined loss function
`n(P, (a1, a2)) = b1n`1n(P, a1) + b2n`2n(P, a2).

The conditions essentially hold in our examples (technically, in the stratified
sampling and partial linear model examples, before applying the theorem, one
should restrict the parameter space to a compact set). However, note that the
prior may depend on information that may not be known a priori, such as the
loss function, and on parameters that “should not” be part of the loss, such as
the weight function in the stratified sampling example, the (smoothness of the)
conditional expectation of U given X in the partial linear model, and the linear
functional in the white noise model.

Note, however, that the theorem as proven does not say that there exists a
prior such that the two Bayesian estimators for each of the two loss functions
achieve the corresponding minimax rates. Indeed, a single estimator is produced
which balances the two objectives.

8. Summary

In this paper we presented a few toy examples in which a nonparametric prior
fails to produce estimators of simple functionals that are

√
n-consistent, in spite

of the fact that efficient frequentist procedures exist (and are often easy to
construct). In these examples, minimal smoothness was assumed, but we do
not believe that this is necessary in order for the Bayesian paradigm to have
difficulty with high-dimensional models. With minimal smoothness, it is easy
to prove that bias accumulates and global functionals cannot be estimated at
minimax rates (while with smoother objects, this would be more difficult to
demonstrate).

Bayesian procedures are always unbiased with the respect to the prior on
which they are based. Bayesian estimators tend to replace parameters buried
in noise by their a priori means. This would be a reasonable strategy if the
prior represented a physical reality, but is not workable if the prior represents a
subjective belief or is selected for computational convenience. In the latter case,
to the extent that the beliefs or assumptions fail to match the physical reality,
the Bayesian paradigm will run into difficulty.

Several difficulties with the Bayesian approach were demonstrated by our
examples, including:

1. The possibility of de facto cross-correlation between two independent pro-
cesses, as discussed in Appendix A, is ignored by the Bayesian estimator.
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The effect of such spurious correlations can be seen in the stratified sampling
example of Section 2, the partial linear model of Section 3, and the discus-
sion on estimating linear functionals in the white noise model of Section 4.
Because the spurious correlations observed have mean value 0, the Bayesian
estimators are unbiased, on average, but this average is only with respect to
the prior. In any other sense, the Bayesian estimators are biased.

2. For linear functionals with squared error loss, the Bayesian paradigm re-
quires the analyst to follow the plug-in principle, estimating functionals θ of
high-dimensional parameters β by θ̃ = θ(β̃). The fact that universal plug-in
estimators do not exist shows that strict adherence to the Bayesian paradigm
is too rigid. This was shown in Section 4.

3. Having selected a prior, the Bayesian may assume that some functionals of
the unknown parameter are known – for example, weighted means of many
unknown parameters. But, as a matter of fact, these unverified assumptions,
hidden in the selected prior, force the resulting estimator to be non-robust.
See, for example, the discussion of the partial linear model in Section 3.

4. On the other hand, replacing components of signal buried deeply in noise
by their prior means may cause an accumulation of bias, destroying estima-
tors of functionals which can be estimated without bias and with bounded
asymptotic variance. This is clear from the discussion in Section 5.

5. Finally, the Bayesian paradigm forces the analyst to follow the strict like-
lihood principle, cf. Berger and Wolpert (1988), and this may force him to
ignore auxiliary information which could be used to produce asymptotically
unbiased, efficient estimators. This was the core of the argument in the strati-
fied sampling example of Section 2 in which the type I Bayesian can not make
use of information on the sampling probabilities, at all, and can not produce
a
√
n-consistent estimator of the population mean, in general, as a result.

The same is true in the partial linear model example of Section 3, in which
the Bayesian analyst can not make use of information on smoothness, and in
the stopping times example of Section 6.

Real-life examples are more complex and less tractable than the toy problems
we have played with in this paper and, as a result, it would be more difficult
to determine the real-life effect of assumptions hidden in the prior on the fre-
quentist behavior of Bayesian estimators in such situations. It is very difficult
to build a prior for a very complicated model. Typically, one would assume a
lot of independence. However, with many independent or nearly-independent
components, the law of large numbers and central limit theorem will take effect,
concentrating what was supposed to have been a vague prior in a small corner
of the parameter space. The resulting estimator will be efficient for parameters
in this small set, but not in general. It is safe to say that Bayes is not curse of
dimensionality appropriate (or CODA, see Robins and Ritov (1997)).
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Appendix A: Independent but Correlated Series

Much of the analysis in this paper is based on presenting counterexamples on
which a given estimation procedure fails. This is satisfactory from a minimax
frequentist point of view: one example is enough to argue that the result de-
pends on the unknown parameter and is not uniformly valid, or asymptotically
minimax. However, this may not convince a Bayesian, who might claim that the
counter example is a priori unreasonable. A typical example of the argument
was presented in the stratified sampling example of Section 2. This argument can
be characterized by constructing two a priori independent processes (β and g),
which happen to be “similar”. For the Bayesian this is a very unlikely event. Af-
ter all, he assumes that they are independent; for example, one of them depends
on biology and the other on budget constraints. In this section, we argue that
such correlations can actually be quite likely. Harmeling and Toussaint (2007)
write: “Let us now get to the core of Robins and Ritov (1997). The authors
consider uniform unbiasedness of an estimator. This means that the estimator
has to be unbiased for every possible choice of θ and ξ. In the experiment we
performed above, though, we chose θ and ξ independently and thus it was very
unlikely that we ended up with an accidentally correlated θ and ξ, e.g., where
θ tends to be large whenever also ξ is (or inversely).” (We should remark that
they consider also a scenario in which the process are correlated.) We claim that
this criticism ignores the fact that two processes can be independent and yet,
with high probability, have an empirical cross-correlation which is far from 0.
This would be the case, for example, if the processes are non-ergodic and have
similar autocorrelation functions.

Suppose U1, . . . , Un and V1, . . . , Vn are two independent simple random walks.
Then of course Un and Vn are uncorrelated. But we may consider the correlation
between these two series R = n−1

∑n
i=1(Ui − Ūn)(Vi − V̄n), where Ūn and V̄n

are the empirical means of the two series, respectively. R is a random variable
and clearly it has mean 0. However, it is far from being close to 0, even if n is
large. In fact, asymptotically, R is almost uniformly distributed on most of the
interval (−1, 1), cf. McShane and Wyner (2011). The reason for this somewhat
surprising fact is that random walks and Brownian motions are less wild than
they are sometimes thought to be. In fact given Un, the best predictor of Ubn/2c
is Un/2, where bac is the largest integer less than a, and the sequence tends
to be, very roughly speaking, monotone. But if both U1, . . . , Un and V1, . . . , Vn
are “somewhat” monotone, then they will be cross-correlated; maybe positively
correlated, maybe negatively, but rarely uncorrelated. Consider now two general,
independent mean 0 random, non-mixing sequences U1, . . . , Un and V1, . . . , Vn.
Suppose that the two sequences have the autocorrelation functions A(i, j) =
cov(Ui, Uj) and B(i, j) = cov(Vi, Vj), where we assume var(Ui) = var(Vi) = 1
(although, in the standard engineering usage, autocorrelation refers to what
some would like to call autocovariance). We do not assume that the series are
stationary, and we do not know their autocorrelation functions. The picture
we have in mind is that each (Ui, Vi) is a characteristic of points in a large
graph, and neighboring nodes are highly correlated, but we do not know the
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neighborhood structure of the graph. Define,

R = 〈U, V 〉0 ≡ n−1
n∑
i=1

UiVi − n−2
n∑
i=1

Ui

n∑
i=1

Vi,

where 〈·, ·〉0 is the empirical cross-covariance between two sequences. Then ER =
0, while direct calculations give,

var(R) = n−1
n∑
i=1

〈A(i, ·), B(i, ·)〉0 −
〈
n−1

n∑
j=1

A(·, j), n−1
n∑
j=1

B(·, j)
〉

0
.

To get some sense of the size of var(R), suppose that n−1
∑n
j=1A(i, j) ≡

n−1
∑n
j=1B(i, j) ≡ c. Then we get,

var(R) = n−2
n∑
i=1

n∑
j=1

(A(i, j)− c) (B(i, j)− c) .

Clearly, if the two series are mixing and
∑
j A(i, j) =

∑
j B(i, j) = O(1), then

var(R) = O(n−1). However, if they are not mixing, and have similar autocor-
relation functions, then most realizations of these two series will have non-zero
cross-correlation.

Appendix B: Proofs

Proof. [Proof of Proposition 4.1] Clearly,

E
∞∑
i=1

(
β̂i − βi

)2

= bn1/2αc/n+
∑

i>n1/2α

β2
i

≤ n−(2α−1)/2α +
∑

i>n1/2α

i−2α

≤ 2αn−(2α−1)/2α/(2α− 1).

That this is the minimax rate is established by considering the prior Π which
makes β1, β2, . . . independent, with Π (βi = ±i−α) = 1/2. �

Proof. [Proof of Lemma 4.2] First note that because of the monotone likeli-

hood ratio property, θ̂(x) is a monotone increasing function of x. We have,

1 + ḃθ = ∂EθEπ (Θ |X) /∂θ

=
∂

∂θ
Eθ

∫
te−(X−t)2/2σ2

dπ(t)∫
e−(X−t)2/2σ2dπ(t)

,
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where Eθ is the expectation assuming the true value of the parameter is θ,
(Θ, X) is a pair of random variables such that Θ ∼ π, and X|Θ ∼ N(Θ, σ2),
and Eπ is the expectation under this joint distribution. Note that Eπ is a formal
expression, since we assume that X ∼ N(θ, σ2). Let Z ∼ N(0, σ2) then,

1 + ḃθ =
∂

∂θ
Eθ

∫
te−(Z+θ−t)2/2σ2

dπ(t)∫
e−(Z+θ−t)2/2σ2dπ(t)

=
1

σ2
E
{∫ t(t− Z − θ)e−(Z+θ−t)2/2σ2

dπ(t)∫
e−(Z+θ−t)2/2σ2dπ(t)

−
∫
te−(Z+θ−t)2/2σ2

dπ(t)∫
e−(Z+θ−t)2/2σ2dπ(t)

∫
(t− Z − θ)e−(Z+θ−t)2/2σ2

dπ(t)∫
e−(Z+θ−t)2/2σ2dπ(t)

}
=

1

σ2
Eθ{var(Θ |X)}.

Hence 0 ≤ 1 + ḃθ ≤ (a/σ)2, or ḃθ ∈ [−1,−(1− (a/σ)2)]. The lemma then follows
from the mean value theorem. �

Proof. [Proof of Theorem 5.2] Let β ∼ π. For any i, let Fi be the distribu-
tion of bi = E

(
β2
i |X−i

)
. Note that bi and βi are independent given β−i. By

assumption, conditionally on β−i, Pπi×Fi(|β2
i − bi| > i2α/4) > η. But then it

follows from (7) that for n large enough, Pπ(|β2
i − β̂2

i | > i2α/4) > η/2. Let

c′i(β) = 1
{
Eβ(β̂2

i − β2
i ) < −i2α/4

}
, c′′i (β) = 1

{
Eβ(β̂2

i − β2
i ) > i2α/4

}
, and

ci(β) =

{
c′i(β),

∑m
i=n1/2α+ν c′i(β) > η/3(m− n1/2α+ν)

c′′i (β), otherwise.

Now,
∑
ci(β)β̂2

i picks exactly those β2
i which are estimated with bias, positive

bias if ci = c′′i and negative if ci = c′i. �

Proof. [Proof of Theorem 7.1] The proof is based on the two lemmas which
follow. Suppose the posterior is not dn consistent on B′ with π(B′) > 0. Then,
by Lemma B.1, (8) must hold for β0 ∈ B′. By Lemma B.2, (10) must hold. But
(10) contradicts π(B) = 1, since then, for all M , we have π{β : Pβ(dn(β̃n, β) ≥
M)} > 0. �

Recall that β0 is the true parameter. It has a prior probability π. βn is a
random variable which, given the data Xn, has the posterior distribution πXn .
The first lemma says that if there is a dn consistent estimator, but dn(βn, β0)
is not tight, then neither is dn(βn, β̃n):

Lemma B.1 Suppose that,

1. There is a statistic β̃n such that lim supn Pβ0

(
dn(β̃n, β0) ≥M

)
→ 0 as

M →∞.
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2. For all M <∞, lim supn Pβ0 (πXn(dn(βn, β0) ≥ 2M) ≥ 2ε) ≥ 2d.

Then there is an M which may depend on β0 such that

lim sup
n→∞

Pβ0

(
πXn(dn(βn, β̃n) ≥M) ≥ ε

)
≥ d. (8)

Proof.

Pβ0

(
πXn(dn(βn, β̃n) ≥M) ≥ ε

)
≥ Pβ0

(
{πXn(dn(βn, β0) ≥ 2M) ≥ 2ε} ∩ {dn(β̃n, β0) ≤M}

)
≥ Pβ0 (πXn(dn(βn, β0) ≥ 2M) ≥ 2ε)− Pβ0

(
dn(β̃n, β0) ≥M

)
By assumption the limsup of the first term on the right-hand side is bounded
by 2d, while we can choose M large enough such that the second term on the
right-hand side is bounded by d for all n large enough. The lemma follows. �

The reverse is given in the following lemma:

Lemma B.2 Suppose there is a statistic β̃n and M, ε, d > 0 such that

Pβ0

(
πXn(dn(β̃n, βn) ≥M) ≥ ε

)
≥ d (9)

for all β0 ∈ B′ and π(B′) ≥ γ > 0. Then for all M <∞:

P (dn(β̃n, β0) ≥M) ≥ εdγ, (10)

Proof. If U, V,W are three random variables, then E(E(E(U |V )|W ) = E(U).
Computing the expected value of (9), we obtain (10). �

Proof. [Proof of Theorem 7.2] Let P, P ′ ∈ P(n). Then

|Rn(P, δ)−Rn(P ′, δ)| =
∣∣∣∣∫ ` (p, δ(x)) p(x) dν(x)−

∫
` (p′, δ(x)) p′(x) dν(x)

∣∣∣∣
≤
∫
|`(p, δ(x))− `(p′, δ(x))| p(x) dν(x)

+

∫
`(p′, δ(x)) |p(x)− p′(x)| dν(x).

The first term on the right-hand side is bounded by cn‖P −P ′‖, and the second
by Ln‖P − P ′‖, so that,

|Rn(P, δ)−Rn(P ′, δ)| ≤ (cn + Ln)‖P − P ′‖, (11)

for all δ, P , and P ′.
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By the complete class theorem, for any ε′ > 0 there is a µn supported on

P(n)
K such that,

max
P∈P(n)

K

Rn(P, δµn) ≤ inf
δ

max
P∈P(n)

K

Rn(P, δ) + ε′. (12)

By (11), we also have,∣∣∣ max
P∈P(n)

K

Rn(P, δ)− max
P∈P(n)

Rn(P, δ)
∣∣∣ ≤ (cn + Ln)ε. (13)

Combining (12) and (13), applied to δ and δµn ,

max
P∈P(n)

Rn(P, δµm) ≤ inf
δ

max
P∈P(n)

Rn(P, δ) + (cn + Ln)ε+ ε′.

Since ε, ε′ > 0 are arbitrary, the assertion follows. �
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