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Abstract

Dynamic sampling utilizes the option of varying the sampling rates according to
the situation of the systems, by that obtaining procedures with improved efficiencies.
In this paper, the technique is applied to a typical problem in optimal control theory,
that of tracking and controlling the position of an object. It is shown that the dynamic
sampling results in a significantly improved procedure for this case, even when applying
a suboptimal policy which can be analyzed in a closed form.
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1 Introduction and Summary

Consider a typical problem in control theory, such as a tracking or regulator problem. As a
specific illustration we study the problem of tracking and controlling an object using a radar
system. The trajectory is governed by a system of differential equations depending on the
specification and the control applied. Our goal is to keep the object on path, taking the
cost of the control into account. Our knowledge regarding the current state of the object is
obtained by continuous tracking by the radar system.

The main difficulty of the tracking system is the presence of noise and we make the
distinction between two types of noise. The first is a noise affecting the actual movement
of the object and the tracking system, due to various factors such as unpredictable weather
conditions or inadequate modelling. The second type is the measurement noise present in
the tracking system, which results in an imprecise “reading” of the exact position. While
both noises are present in the models studied in this paper, the main focus is the second
type. In the dynamic sampling formulation, it is assumed that this second type of noise can
be adjusted at any time according to our will.

A common model, which is used in the theoretical as well as in the applied work, is
that the noise is a Gaussian white noise with fixed variance coefficient which depends on
the characteristics of the tracking system, see e.g., Refs. 1–3. In a multitracking system the
variance is inversely proportional to the amount of the resources devoted to the particular
object. This merely reflects the fairly trivial fact that the more resources allocated — the
better the performance. See Ref. 4.

The basic idea studied in this paper is the following. Rather than allocating a fixed
amount of the resources to each tracked object, apply a “dynamic allocation” procedure.
Using this approach, the allocation is under our control and can be changed any time ac-
cording to actual need. Thus, when the location of a given object is known fairly well, most
of the resources may be shifted to the tracking of the other objects.

Mathematically, we study a somewhat simplified version of this problem in which a single
object is being tracked, but rather than having a fixed measurement rate, this rate is under
our control and a cost (or constraint) is associated in accordance with the rate selected.
Thus, in this model, the “tracking intensity” may be selected at any given instant according
to all current known information at that time. In particular the intensity may depend on
the current estimated state of the object and the variance of the estimate. The surprising
result is that under the optimal strategy the sampling rate may be infinity. This may be not
too practical, but we believe that this is a fair mathematical approximation to what can be
done in practice when most of the resources are devoted to the particular unit under study.

A review of the results for the basic model (with a fixed sampling rate) is given in Section
2. The dynamic sampling formulation of the problem, as well as some basic conclusions, is
presented and analyzed in Section 3. In Section 4 we propose a suboptimal sampling-and-
control policy which can be analyzed in closed form. The performance of this policy is then
compared to the fixed rate one in Section 5, and it is shown that the improvement obtained
by dynamic sampling is indeed most significant. For ease of reference, we include a short
appendix with a summary of the basic results for stochastic processes needed in the analysis.

It should be emphasized that the main feature of the dynamic sampling method is that it
provides a highly improved performance without using any additional “physical” resources.
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2 Basic Model

The model described may be thought of as a simplified version of tracking and controlling
the position of an object. We consider a one dimensional movement of an object whose
current position can be estimated. Our goal is to keep the object on track that for simplicity
we take to be identically 0. Deviations from the desired position are assumed to result in a
cost proportional to the square of the distance of the object from 0.

To make the description precise, we consider the following model. Let (tζ , sζ , uζ), ζ > 0,
be a path in R3 describing accumulated “real time”, “sampling time”, and “control time”.
The functions tζ and sζ are non-decreasing in ζ, (t0, s0, u0) = (0, 0, 0), 1 ≤ ṫζ + ṡζ + |u̇ζ | < ∞
(where dot denotes the corresponding derivative with respect to ζ) and limζ→∞ tζ = ∞. In
the standard model, tζ is simply time, sζ = tζ describes sampling at a fixed rate of unity,
and u̇ζ equals the control intensity. The control time is the integral of the control intensity.

Mathematically, this unusual parameterization enables us to describe policies with pos-
sible infinite sampling rate and control intensity without worrying about regularity issues.
From a practical point of view, an infinite control or sampling rate will typically serve as
an approximation to situations in which a very high rate is employed. To keep the corre-
sponding cost within reason, this high rate will be used for very short time durations. The
“infinite” rate is the limit as the rate goes to infinity while the time duration goes to zero.

The true position of the object is a random process described by yζ = y(tζ , sζ , uζ):

dy(tζ , sζ , uζ) = duζ + σ2 dBy(tζ), y(0, 0, 0) = 0.

The position y is not observed directly. Instead, we observe the process zζ which is given by

dzζ = dz(tζ , sζ , uζ) = y(tζ , sζ , uζ) dtζ + σ1 dBz(sζ)

The processes By and Bz are two independent standard Brownian motions, and σ1, σ2 are
assumed positive and known. Let {Fζ}ζ>0 be the smallest filtration that makes the z(·)
measurable. To be precise, we should say that the process {(tζ , sζ , uζ), ζ > 0} is adaptive
to {Fζ}. Let

xζ = x(tζ , sζ , uζ) = E
{
yζ

∣∣ Fζ

}
, ζ > 0

vζ = v(tζ , sζ , uζ) = E
{
(yζ − xζ)

2
∣∣ Fζ

}
, ζ > 0,

be the current estimate of the object’s position and the a-posteriori variance of this position.
It is well known that the state trajectory, (xζ , vζ)

T is described by the following differential
equation:

d

(
x(tζ , sζ , uζ)
v(tζ , sζ , uζ)

)
=

(
0
σ2

2

)
dtζ +

(
(vζ/σ1) dBx(sζ)
−v2

ζσ
−2
1 dsζ

)
+

(
duζ

0

)
, (1)

where Bx is some standard Brownian motion.
The objective considered in this paper is that of minimizing the long run average expected

cost per unit time given by

lim
T→∞

1

T
E

{∫ [
y2(tζ , sζ , uζ) dtζ + c | duζ |

]
1(tζ ≤ T )

}
, (2)
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where 1 is the indicator function. Since E{y2
∣∣ Fζ} = x2

ζ + vζ the objective (2) is equivalent
to

lim
T→∞

1

T
E

{∫ [
(x2

ζ + vζ) dtζ + c | duζ |
]
1(tζ ≤ T )

}
. (3)

For the basic model tζ = sζ and the result is well known. Clearly vζ → σ1σ2. The
control is of the 0-∞ type. Formally, for some µ > 0 depending on c in (3), the control
time is a step function with steps whenever |xζ | = µ to enforce |xζ | ≤ µ. The process x̃(·),
x̃(tζ) = x(tζ , sζ , uζ)) becomes a Brownian motion with variance coefficient σ2

2 and reflecting
barriers at −µ and µ. This can be observed as a limit of the the bounded control case, see
Ref. 3. The resulting controlled process is with impulsive control, see Ref. 5 for a general
discussion and Ref. 6 for the separation principle for impulsive control. See Ref. 7 for
application of similar models.

3 Dynamic Sampling Formulation

3.1 Preliminaries

Think of σ2
1 as the variance due to sampling error when sampling at some standard rate of

unity. When sampling is done in this fixed rate, a sampling amount of ∆t is accumulated
for every ∆t real time units, resulting in an estimator with variance σ2

1/∆t as described in
the basic model. Note that in the basic model sampling time and real time are equal by
definition.

Applying dynamic sampling, the following generalization is studied: Suppose that rather
than sampling at a fixed rate we may vary the sampling rate as we please, as long as some
constraint on the average sampling rate is satisfied. (Alternatively a cost on sampling may
be imposed rather than constraint.)

This possibility may be particularly appealing when a large number of objects should be
observed in parallel. Rather than giving each object a fixed share of the observer (either in
terms of observer units or time slots) we may want to divide the observer between the objects
depending on their state and the importance of an immediate updating of the position of
each of them. As an example, any procedure which results in devoting to each object two
time slots per cycle half of the time and no time slots for the remaining half, will keep the
long run average sampling rate at the same level of the fixed rate sampling procedure which
constantly devotes one time slot per object.

Dynamic sampling is the idea behind the cumbersome description of the previous model.
Namely, we permit paths with sζ 6= tζ . We actually permit “infinite” sampling rate, that is,
paths with intervals where sζ is strictly increasing while tζ remains constant.

3.2 Optimality Equation

It is easier to write the version with costs rather than constraints. Let c1 be the cost of one
unit of control time and c2 the cost of one unit of sampling time. Next write the formal
optimality equation with the objective of minimizing the average cost per unit time.
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Begin with some state (x, v), apply the control rate u̇ and sampling rate a for ∆t units
of time, and proceed optimally from the resulting state onwards. The general theory of
dynamic programming and control (with average cost criteria) suggests to try and find a
number l and a function F (x, v) satisfying, up to o(∆t) terms:

F (x, v) + l∆t (4)

= inf
a,u̇

{
c1|u̇|∆t + c2a∆t + (x2 + v)∆t + E{F (x + ∆X, v + ∆V )}}

where the third term in the RHS of (4) is the cost due to the square deviation from 0,
“variation cost” henceforth, during the given time interval and the expectation in the fourth
term is for the distribution of ∆X and ∆V which in turn depends on the choice of u̇ and
a. In the Taylor expansion of the last term, both E(∆V )2 and E(∆X · ∆V ) are o (∆t)
terms. Carrying on this expansion, yields, after cancelling F (x, v) from both sides of (4) and
omitting all o (∆t) terms

l = inf
a,u̇

[
c1|u̇|+ c2a + x2 + v + u̇F ′

1(x, v) (5)

+ av2F
′′
11(x, v)/2σ2

1 +
(
σ2

2 − av2/σ2
1

)
F ′

2(x, v)

]
.

Rearrange (5) to obtain

l − x2 − v − σ2
2F

′
2(x, v) (6)

= inf
u̇,a

{
|u̇|[c1 − |F ′

1(x, v)|] + a
[
c2 + v2σ−2

1

(
F
′′
11(x, v)/2− F ′

2(x, v)
)]}

.

For formality, assume that we are restricted to a, |u̇| ≤ B. Since the term inside the infimum
on the right hand side of (6) is linear in the sampling rate a and piece-wise linear in the control
u̇, it follows that the minimizing values are 0 or B for a and −B, 0, or B for u̇, depending
on the signs of the appropriate quantities. Take the limit as B →∞ to heuristically deduce
that the optimal sampling and control rates are 0—∞. Hence the optimal policy consists of
a partition of the half plane {(x, v) : −∞ < x < ∞, v ≥ 0} into at most six regions.

The 0—∞ policy of Section 2 follows immediately from (4) when we consider F (x, v) =
F (x) and the infimum is taken only over u̇.

To obtain the general structure of these regions we can use the following heuristic argu-
ments:

H1 The optimal control is symmetric in x.

H2 A control period should not be followed by a sampling period, and there should not be a
period of control and sampling. Rationale: since the state moves in a deterministic way
during a control period, then if there is a sampling period after the control period, it be
beneficial to change the order of these two periods, it may be that the sampling period
would reveal that there is no need for control. Hence there are three types of regions: C
in which only control is applied, S in which we sample and R in which nothing is done.
We conclude that if (x, v) ∈ C, and |x′′| > |x| > |x′| then (x′, v) ∈ C ∪R and (x′′, v) ∈ C.
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H3 After “doing nothing”, there should be a sampling period. Hence if (x, v) ∈ R and v′ > v
then (x, v′) ∈ R ∪ S.

H4 If (x, v) ∈ S, then after the sampling period starting at (x, v) the path cannot end
necessarily in C, nor necessarily in R. We sample to get a “practical” conclusion.

H5 If (x, v) ∈ R and |x′| < |x| then (x′, v) ∈ R.

H6 If (x, v) ∈ R and v′ < v then (x, v′) ∈ R.

H7 If (x, v) ∈ S and v′ > v then (x, v′) ∈ S.

Careful analysis of the heuristic arguments reveals that the general structure of the
optimal policy must be of the form described in Figure 1. The main points are as follows: The
policy is symmetric by H1 . By H7 S is open from above, and by H2 , C∩{(x, v) : x > 0)}
is open to the right. Next, by H2 the boundary between C and R is not empty. By H3
and H6 the line N of Figure 1 must be vertical. By H4 the boundary between S and C
is not empty. The line M of Figure 1 should be horizontal by H2 and H5 . By H4 the
boundary between S and R is not empty. The line L is decreasing by H5 .

It is worth noting that using a policy of this type forces the (x, v) process to remain along
the line L almost always on the real time scale, excluding perhaps some initial transient
period. The state moves along this line in a non-continuous path.

4 Rectangular Policy and Its Analysis

The optimization problem described at the end of Section 3 requires explicit solutions to
the equations of the lines L, M, and N. This is a two dimensional free boundary problem
involving a p.d.e. Problems of this type can rarely be solved explicitly, and the present one
does not seem to be an exception. In this section we focus on a class of suboptimal policies
which can be analyzed in a closed form.

Definition 4.1 The rectangular policy, with parameters ν1, ν2, and µ0 (such that 0 < ν1 <
ν2, µ0 > 0), is defined by

(ṫζ , ṡζ , u̇ζ)(x, v) =





(1, 0, 0) |x| ≤ µ0, v < ν2

(1, (σ1σ2/ν2)
2, 0) |x| ≤ µ0, v = ν2

(0, 0,−1) x > µ0, v ≤ ν1

(0, 0, 1) x < −µ0, v ≤ ν1

(0, 1, 0) otherwise

In other words, we may begin with a transient period. Afterwards, as long as |x| < µ0,
we sample at a constant rate to keep the a-posteriori variance equal ν2. After “crossing” the
µ0 line we “examine“ the position more carefully (in negligible real time), until either the
estimate becomes less than µ0 or the variance drops down to ν1. In the latter case, a fast
control brings the position back into the (−µ0, µ0) interval. Note that after the transient
period, the object is kept almost always (on the real time scale) along the boundary of the
no-sample/no-control region.
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Theorem 1 Suppose we use the rectangular policy, then the long run average sampling,
variation, and control per unit time are given by S/R, Q/R, and 1/R, respectively, where:

S =
σ2

1

ν2
2

[
2µ0 +

√
2

π

(ν2 − ν1)
1/2

ν1/ν2

+
ν

1/2
2√
2π

log

(
1 +

√
1− ν1/ν2

1−
√

1− ν1/ν2

)]

Q =
2

σ2
2

[
µ0

(
1

3
µ2

0 + ν2

)
+

√
2

π

√
ν2 − ν1

(
1

3
ν1 +

2

3
ν2 + µ2

0

)]

and

R = 2σ−2
2

[
µ0 +

√
2/π

√
ν2 − ν1

]

Corollary 2 The results for constant rate sampling are given by the theorem with ν1 = ν2.
In particular, the case of unit sampling rate is given by ν1 = ν2 = σ1σ2.

The rest of the paper is devoted to the discussion and proof of the theorem.
Using the rectangular policy, the state of the system (xζ , vζ) follows a renewal process

(to be exact, a delayed renewal process for some initial transient period). It thus suffices
to compute quantities of interest for some specific renewal cycle. We find it convenient to
consider cycles beginning and ending at the top right corner (the point (µ0, ν2)). Symmetry
of the whole process w.r.t. the vertical axis will be used in an obvious way. Furthermore, we
split the above cycle into two parts and compute the expected real time R, sampling time S
, total variation Q, and total control needed U for each of the two parts.

I. First part of the cycle. Consider the quantities starting at (µ0 − ε, ν2) until reaching
either (µ0, ν2) or (−µ0 + ε, ν2). If (µ0, ν2) is reached first, then the second part of the cycle
begins at that state. If (−µ0 +ε, ν2) is reached first — the complete cycle is terminated (and
another one begins starting at the symmetric point (−µ0 + ε, ν2) ). Quantities for this first
part of the cycle will be indexed by 1.

It follows from (1) that to sustain the fixed error variance ν2 we should sample with
constant sampling rate: ds = (σ2

1σ
2
2/ν

2
2) dt. Moreover, it follows from (1) that during that

period the x coordinate is distributed as µ0−ε+σ2B1(t) (when the first part starts at t = 0).
Hence, we can use (14) to conclude that

R1 = 2(µ0 − ε)ε/σ2
2.

Hence

S1 = 2(µ0 − ε)σ2
1ε/ν

2
2 .

Since no control is applied during this stage we also have

U1 = 0 (7)

Finally we compute the expected square deviation during the first part of a cycle, Q1.

Q1 = E

∫ τ

0

(x2(t) + ν2) dt
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= E

∫ τ

0

x2(t) dt + ν2R1,

where τ is the real time needed for the first part of a cycle. By (17) with b = 2(µ0 − ε) and
c = µ0 − ε:

Q1 =
2µ0

σ2
2

(
µ2

0

3
+ ν2

)
ε + o (ε) .

II. Second part of the cycle. Here we consider the process starting at (µ0, ν2) until it
returns to (µ0− ε, ν2). In the most general case this consists of some sampling time followed
by a control time and ending in real time (during which neither sampling nor control are
applied). In the sampling period we sample until either x is equal to µ0 − ε or v is equal to
ν1, whichever comes first. In the latter case, we use control to bring x to µ0 − ε, otherwise,
no control is applied. In the final stage, we simply wait until reaching the point (µ0 − ε, ν2)
again.

A key observation for computing the relevant quantities, indexed by 2, for this part of the
cycle is that random factors occur only during the sampling period. Let A be the amount
of reduction along the vertical axis and let B be the coordinate of the horizontal axis, both
upon termination of the sampling portion. We further clarify by pointing out that both A
and B are random, 0 ≤ A ≤ ν2 − ν1 with an atom at ν2 − ν1 and ν2 −A is the actual value
of v(t) upon termination of sampling. Also B ≥ µ0 − ε with an atom at µ0 − ε.

Next, let x̃(s), be the current estimate of the position and ṽ(s) the variance of the actual
position given its estimate after sampling the amount s during the sampling period. It
follows from (1) that ˙̃v(s) = −ṽ2(s)/σ2

1. Since ṽ(0) = ν2, we have

s = σ2
1(ṽ

−1(s)− ν−1
2 ). (8)

Moreover, x̃(·)− µ0 is distributed like

W

(
σ−2

1

∫ ·

0

ṽ2(s) ds

)
= W (ν2 − ṽ(·)) ,

where W (·) is a standard Brownian motion, stopped at time ν2 − ν1 or when it hits −ε for
the first time. If we denote this stopping time by T , then A ∼ T and B − µ0 + ε ∼ W (T ).

In the real time period, the conditional variance increases at a rate σ2
2, see (1). It follows

that R2 = E(A/σ2
2). By (18) of the Appendix:

R2 = 2εσ−2
2

√
2/π(ν2 − ν1)

1/2 + o (ε) , (9)

Similarly for S2, by (8)

S2 = σ2
1E

(
1

ν2 − A
− 1

ν2

)

which after some elementary calculation and applying (20) results in

S2 =
σ2

1

ν2

[√
2

π

(ν2 − ν1)
1/2

ν1

+
1√
2π

1

ν
1/2
2

log

(
1 +

√
1− ν1/ν2

1−
√

1− ν1/ν2

)]
ε + o (ε)
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For the computation of U2, note that

U2 = E(B − µ0 + ε) = E(B − µ0 + ε
∣∣ B > µ0 − ε) P(B > µ0 − ε).

Using (15) and (16)

U2 = 2εΦ
(−ε/

√
ν2 − ν1

)

Hence, as ε → 0,

U2 = ε + o (ε) . (10)

Finally, to compute the expected variation note that it is only accumulated with real
time, i.e., during the third phase. During this time the x coordinate is fixed at µ0 − ε,
contributing (µ0 − ε)2R2. The variance however changes from ν2 − A to ν2 at a rate σ2

2,
taking a real time of r = r(A) = A/σ2

2. The contribution of this part is hence

∫ r

0

(ν2 − A + σ2
2s) ds,

which, after simple integration and rearrangement, equals

ν2A/σ2
2 − A2/2σ2

2.

Thus

Q2 = ν2E(A)σ2
2 − E(A2)/2σ2

2 + (µ0 − ε)2R2.

Using (9), (19) and (20) of the appendix we have

Q2 = 2

√
2

π

√
ν2 − ν1

σ2
2

(
1

3
ν1 +

2

3
ν2 + µ2

0

)
ε + o (ε) .

Summary of quantities for the complete cycle By (13), the probability of reaching µ0

before reaching −(µ0 − ε) (in the first part of the cycle) is 2(µ0 − ε)/(2µ0 − ε) = 1 + O (ε).
Hence the total expected real time for a cycle is R1 + R2 + o (ε), similar expressions for S,
U , and Q. For all practical purposes, the quantities of interest are S/R, U/R, and Q/R
representing, respectively, the long run average sampling, control, and variation per unit
time. Consider these ratios as ε → 0, so that R = R1 + R2, S = S1 + S2, U = U1 + U2, and
Q = Q1 + Q2. This completes the proof of the theorem.

5 Efficiency and Asymptotic Results

In this section we compare the efficiency of the optimal procedure for the basic model (de-
scribed in Section 2) to that of the rectangular policy (which is suboptimal for the dynamic
sampling formulation). Note, that the basic model (with a possible control of the fixed
sampling intensity) is a particular case of the rectangular policy with ν2 = ν1.
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In the basic model we may select the value µ0 according to our will. In addition, we may
also select the fixed sampling intensity by a proper choice of ν2 (= ν1), or equivalently by
adjusting the value of σ2

1. Given any choice of these two parameters, we denote the values
of U/R, Q/R and σ−2

1 S/R by uc, qc and sc respectively.
It may easily be checked that, given any prescribed values for the quantities U/R = u > 0

and Q/R = q > 0, such that 12qu2 > 1, one may find µ0 and ν2 (= ν1) such that the
performance of the basic policy with these parameters satisfies uc = u and qc = q. A similar
result holds when setting prescribed values for any other two of the three quantities.

The situation for the rectangular policy is similar but requires a bit more care. The
rectangular policy has three parameters, and any selection of these parameters leads to values
U/R, Q/R and σ−2

1 S/R. For any two prescribed values of U/R = u > 0 and Q/R = q > 0
however, there are many values of µ0, ν1, ν2 such that the performance of the corresponding
rectangular policy matches u and q. Of these values it is evidently best to take a minimizer
of the third quantity, σ−2

1 S/R. Again, this argument can be extended to any two of the three
quantities of interest.

The notation ur, qr and sr will be used to denote the performance of a rectangular policy
which is the best in this sense.

A simple way to compare the two methods is to fix any two of the quantities U/R, Q/R,
and σ−2

1 S/R and consider the ratio of the obtained values of the remaining quantity. To
ease the comparison, we set, without loss of generality, σ2 = 1 (this is a matter of using a
different time scale).

First note that for all values of ν1 (= ν2) and µ0:

qc = s−1/2
c + 1/(12u2

c). (11)

Define the sampling efficiency of a rectangular policy as the ratio between the sampling
rate of a constant policy (sc) and the obtained sampling rate of the rectangular sampling
policy (sr) when the two policies have the same variation and control rates (i.e., qc = qr and
uc = ur). By (11)

sr/sc = sr

(
qr − 1/12u2

r

)2

The sampling efficiency can be quite large. The most extreme case occurs when ν2 =
1, ν1 → 0, µ0 → ∞ and µ0ν1 → ∞. It follows from Theorem 1 that sr → 1 while
qr − 1/(12u2

r) → (π − 2)/π. Hence the sampling efficiency is π2/(π − 2)2 ∼ 7.5732. That
is, sampling at a constant rate consumes, in this limiting case, 7.57 times more resources
than sampling using the rectangular policy with the same average variation and control.
The sampling efficiency can be considerable at less extreme cases as well. For example,
with µ2

0 = ν2, (that is the maximum tolerable estimated variation is equal to the estimated
standard error) the sampling efficiency of 192% is obtained with ν1/ν2 = 0.26.

Similarly, we can consider the control efficiency, that is the ratio between the control rate
of a constant policy (uc) and the obtained control rate of the rectangular sampling policy
(ur) when the two policies have the same sampling and variation rates (i.e., sc = sr and
qc = qr). By (11)

ur/uc = ur

√
12(qr − s

−1/2
r ) (12)
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The control efficiency can be extremely high. The extreme case is achieved when ν1/ν2 →
1, µ0/ν

1/2
2 → 0 and µ0/(ν2−ν1)

2 → 0. Formally, this can be checked with substituting µ0 = 0
and ν2 = 1, and then taking the limit as ν1 ↗ 1. One may note that the control efficiency
does not depend on ν2 per se, but only through ν1/ν2 and µ0/ν

1/2
2 . Let y = 1− ν1/ν2. Then

sr =
1

2

(
1

1− y
+

1

2
√

y
log

(
1 +

√
y

1−√y

)
+ o

(
y2

))

= 1 + 2y/3 + 3y2/5 + o
(
y2

)

qr = 1− y/3 + o
(
y2

)

ur = (1 + o (1))
√

π/2y

as y → 0. Therefore it follows from (12) that

ur/uc =
√

πy/5 + o
(
y1/2

)

and the efficiency (uc/ur) converges to infinity as y → 0. As a concrete example, if µ0 = 0.1,
ν1 = 0.83 and ν2 = 1 then the efficiency is 219.5%.

The asymptotic result for the control efficiency may seem paradoxical, since ν2/ν1 → 1
seems to mean that the efficiency is maximal when the rectangular policy is almost equal to
a constant sample policy. The efficiency is large when a large rate of control is needed to
satisfy the average variation and control demands. At the limit (when the product qrsr → 1
which entails µ0 → 0 and ν2/ν1 → 1) the system is in one of two states, either no sampling
and no control or extremely fast sampling to find if a control is needed and, if needed, in
what direction. In particular, there is no constant sampling period. This adaptive second
stage enables the efficient usage of the controller and the sampling.

6 Concluding Remarks

In this paper a particular simple control problem with the possibility of dynamic sampling
is investigated and the form of an optimal policy is heuristically deduced. Its exact form
however appears intractable and hence the rectangular policy is suggested and studied in
detail. The rectangular policy closely imitates the basic characteristics of the optimal one,
and its performance is shown to be extremely efficient compared to fixed rate sampling.

The rectangular policy (as well as the optimal one) utilizes control and sampling at
“infinite” rates, and a precise mathematical formulation is set and analyzed for this case.
From a practical point of view the use of infinity requires further clarification. Control at
an infinite rate has been studied fairly widely in the literature (the resulting policy is often
referred to as a control-limit policy), and we hence focus on the infinite sampling introduced
in this paper. In practice sampling at infinite rate will typically be approximated by using
the highest rate possible (and reasonable) under the circumstance at hand. In an example
of controlling N objects using a radar, fixed rate sampling allocates, all the time, the same
amount of sampling to any of the objects. The rectangular policy on the other hand suggests
allocating most of the resources to one specified object for a short (and random) time, and
then shifting the resources to another specified object.
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It should be emphasized that the dynamic sampling procedure is suitable for those sit-
uations in which the intensity of the sampling equipment (e.g., radar) may be adjusted
according to our will. We believe that the basic ideas presented and studied in this paper
can be used in many relevant problems and complex situations to yield highly improved
efficiencies.

7 Appendix: Results for Brownian Motion

The appendix lists several results which are used in the paper. All results are fairly standard
or may easily be derived from such. Basic and convenient references are Refs. [8]– [10].

The notation used in this appendix is as follows. The standard Brownian motion is
denoted by {B(t), t ≥ 0}, B(0) = 0 unless otherwise stated. Let W (·) = σB(·), Ta = inf{t :
W (t) = a} and a ∧ b = min{a, b}. The results needed are:

For any a, ε > 0

P(T−ε < Ta) =
a

a + ε
. (13)

σ2E(T−ε ∧ Ta) = E
{
W 2(T−ε ∧ Ta)

}
= aε. (14)

P

{
inf

0≤s≤t
B(s) ≤ −ε

}
= 2Φ

(
−ε/

√
t
)

. (15)

E

{
B(t)

∣∣ inf
0≤s≤t

B(s) > −ε

}
= 2εΦ(−ε/

√
t)/

[
1− 2Φ(−ε/

√
t)

]
. (16)

E

{∫ Tb∧T−ε

0

(W (t) + c)2 dt

}
=

1

6σ2

(
ε
(b− c)4 + b(c + ε)4

b + ε
− c4

)

=
1

6σ2

(
b3 − 4b2c + 6bc2

)
ε + o (ε) . (17)

For the remaining results let T = T (ε, t) = T−ε ∧ t and σ = 1.

E T = 2
√

2t/π ε + o (ε) . (18)

E T 2 =
4

3

√
2/π t3/2ε + o (ε) . (19)

E

{
T

b− T

}
=

√
2

π

(
t1/2

b− t
+

1

2b1/2
log

(
1 +

√
t/b

1−
√

t/b

))
ε + o (ε) (20)
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List of Figures

Figure 1: Schematic description of the different (a, u̇) regions. Arrows describe
direction of the state change.
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