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This viewpoint article is intended as a brief intro-
duction to the emerging subject of field-theoretic
simulations (FTS) of charged polymers. While
the direct numerical simulation of field theory
models has begun to impact several traditional
areas of polymer science, including blends and
block copolymers, polyelectrolytes have hitherto
not been the subject of field-theoretic simulations.
Here we report on a preliminary FTS study of poly-
electrolyte complexation that demonstrates the
potential of this novel numerical approach.

Polyelectrolytes are ubiquitous in nature and in
applications ranging from personal care products
to paints, coatings, and processed foods. Indeed,
practically all biopolymers are polyelectrolytes. In
the application context, the introduction of disso-
ciable groups is one of the most powerful ways to
confer water solubility on a polymeric material.
Scientifically, the polymer bound charges, which
are compensated by a sea of oppositely charged
counterions, produce a coupling between chain
conformations and electrostatics that leads to an
incredible richness of polyelectrolyte phenomena.
However, this richness comes with a price: charged
polymers are among the most difficult polymer
systems to study theoretically or to simulate on
the computer.1–4 The explanation lies in the long
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range nature of Coulomb interactions—charged
segments feel each other at much larger distances
than segments in neutral polymer systems.

The situation becomes particularly challenging
for the dense polyelectrolyte complexes that are
the subject of the present work. Analytical theo-
ries based on assumptions of low concentration or
weak interactions break down, and equilibration
times in numerical simulations become prohib-
itively long. To conduct such simulations, poly-
electrolytes are often modeled as coarse-grained
chains of charged beads and the counterions are
taken to be point particles, usually embedded in an
implicit solvent with uniform dielectric properties.
The long-ranged character of Coulomb interac-
tions is problematic for such “particle-based” mod-
eling approaches, however, because Ewald sums
and other expensive computational techniques are
required to evaluate contributions to electrosta-
tic energies and forces that extend beyond the
computational cell.5–7 The confluence of this long-
range effect with the intrinsically slow kinetics
of particle-based simulations at high density and
molecular weight produces significant challenges
for these methods.

A different strategy to tackle such problems
was proposed long ago by Edwards.8 The idea
is to replace the coordinates and momenta of
particles (polymer segments) with collective vari-
ables, or fields. One can introduce, for example,
fields that describe the density of polymer seg-
ments and the density of charge. Moreover, by
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augmenting these fields with certain conjugate
fields, such as a chemical potential (conjugate
to segment density) and an electrostatic poten-
tial (conjugate to charge density), it is possible
to exactly transform any classical (equilibrium)
particle-based model into a statistical field theo-
ry.9 This field-based description is particularly
useful for dense polymer systems, such as concen-
trated solutions and melts, where there is strong
overlap among polymers. In such cases, the mean-
field approximation, also known as self-consistent
field theory (SCFT), can be applied with confi-
dence. Within this approximation, the saddle point
of the Hamiltonian dominates the partition func-
tion, and the field fluctuations around the saddle
point are ignored.10 The SCFT method has yielded
some remarkable analytical and numerical results
for a wide variety of dense equilibrium polymer
systems, perhaps most notably in the field of block
copolymers.11,12

Besides its restriction to systems at equilib-
rium, a major limitation of SCFT is that the
assumption of negligible field fluctuations breaks
down rapidly as polymers are diluted in a sol-
vent. This is especially problematic for the study
of polyelectrolytes, since they are highly solvated
in most applications. Moreover, polyelectrolytes
are characterized by very strong charge correla-
tions in addition to the density correlations of
neutral polymer solutions. Evidently the well-
tuned machinery of SCFT is not the appropri-
ate tool for investigating solutions of charged
macromolecules.

One way to address the limitations of SCFT,
while still preserving the field-based collective
variable approach, is to return to the exact statis-
tical field theory and to account for the field fluctu-
ation effects. Analytically, this procedure leads to
a so-called “loop” expansion, in which systematic
corrections to the free energy or other thermo-
dynamic quantities (one-loop, two-loop, etc.) are
developed in terms of integrals over field fluc-
tuations about the saddle point of the theory.
Such loop expansions can be further augmented
by renormalization techniques in cases of strong
fluctuations.1,13 While powerful in the context of
homogeneous phases of charged and uncharged
polymers, these analytical methods can be very
difficult to implement in more general inhomoge-
neous situations where interfaces or mesophases
are present.

It has recently been demonstrated that statisti-
cal field theory models of polymers can also serve
as the basis for computer simulations—so-called

field-theoretic simulations (FTS).9,14 While simi-
lar conceptually to numerical SCFT, field-theoretic
simulations aim to numerically sample the sta-
tistically important field configurations of the full
theory, rather than just the saddle point config-
uration. This statistical sampling is problematic
because the Hamiltonians of the relevant field
theories are complex, rather than strictly real; a
manifestation of the famous “sign problem”. We
have found that a powerful way to circumvent this
difficulty is to adopt the complex Langevin stochas-
tic procedure,15,16 which adaptively samples field
configurations along nearly constant phase tra-
jectories. Although FTS is computationally more
expensive than SCFT, recent numerical advances
have made high resolution FTS feasible for a wide
variety of polymer systems.17

Polyelectrolytes have been the subject of exten-
sive theoretical and computational research for
decades.1–4,18–33 Statistical field theory models
have played a significant role in these theoreti-
cal investigations, and both mean-field and non-
mean-field approaches have been employed to gain
insights into the structure and thermodynamics
of a wide variety of polyelectrolyte systems.21–28

Prior to this work, however, there has been no
general numerical tool for simulating a field the-
ory model of polyelectrolytes without the use of
simplifying approximations.

This article describes the first application of
FTS to polyelectrolytes, and specifically to a phe-
nomenon that is known to occur in aqueous mix-
tures of two oppositely charged polymers. Under
appropriate conditions of charge density, solvent
quality, and molecular weight, a phase transition
can occur in such a system, with two phases being
formed: one rich in both polymers and the other
consisting of nearly pure solvent.18,19,34–40 This
process is usually referred to as polyelectrolyte
complexation in the physics community or as com-
plex coacervation in the physical chemistry, colloid
science, and biological communities. The resulting
polymer-rich coacervate phase has two important
properties: it is dense yet liquid, and it is charge
neutral.

Coacervates and related polyelectrolyte com-
plexes have a variety of important applications.
For example, complexes can be employed as car-
rier systems for charged macromolecules includ-
ing protein drugs, enzymes, and DNA. In such
systems, one of the polyelectrolytes serves as a
chaperon with properties that can be tailored to
assist targeted delivery, while the other represents
the macromolecular payload.18 Another industrial
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Figure 1. Two model polyelectrolyte mixtures. Both
are symmetric, with half of all chains being positively
charged (shown in black) and the other half negatively
charged (in gray). (a) The total charge ±σN is evenly
distributed over the entire length of each chain. (b) The
same total charge is concentrated in blocks of N/4 seg-
ments near one end of each chain. Uncharged portions
are shown in white.

use of complex coacervation is in cements, glues, or
adhesives, where the coacervate phase can serve
as a precursor to the formation of a solidified
structural material. Examples of such coacervate
precursors are also encountered in nature; for
example, sand-castle worms produce a strong
protein-based cement that sets in sea water and
is used to construct meter-scale reefs out of sand
and shells.41 Other existing and potential appli-
cations of polyelectrolyte complexes include water
purification, DNA sensors,42 and encapsulation of
food and pharmaceuticals.

Polyelectrolyte complexation is driven by sev-
eral competing factors.18,19,34–39 In addition to the
direct electrostatic attraction between oppositely
charged polyions, there are other factors play-
ing an important role: electrostatic screening by
small ions (salt or counterions), excluded volume
interactions of polymer backbones mediated by
the solvent, small ion translational entropy, and
polymer conformational entropy. In many cases
these factors are competitive rather than reinforc-
ing, so it can be difficult to anticipate the condi-
tions under which coacervate phases will form.
For example, excluded volume interactions oppose
complexation, while the translational entropy of
counterions tends to favor it.

To investigate the physics of complex coacer-
vation we have chosen a simple yet fundamental
model system [Fig. 1(a)]. Specifically, we consider
a symmetric polycation-polyanion mixture in an
implicit solvent without salt. Such a system could
be realized by mixing a polyacid with a polybase in
water. The symmetric assumption implies that the
molecular weights and charge densities of the two
types of polymers are the same, and they are com-
bined in equal amounts. The polymer backbones
are modeled as flexible (Gaussian) chains of length
(number of statistical segments) N, differing only

by the sign of the charge per statistical seg-
ment (charge density), ±σ . We employ a canonical
ensemble in which n polyanions and n polyca-
tions are mixed to form a solution of volume V .
The chains are assumed to interact by means
of electrostatic and excluded volume interactions,
characterized by the Bjerrum length lB = e2/εkBT
and the excluded volume parameter u0, respec-
tively. The solvent dielectric constant is denoted
by ε, and e is the fundamental unit of charge. Note
that the addition of salt, consideration of asym-
metric polyions, or explicit inclusion of the solvent
constitute only minor modifications of the formal-
ism, although these variations will not be pursued
here.

The thermodynamic properties of the earlier
model can be deduced from a configurational par-
tition function Z, which is a sum over all pos-
sible states (represented by the coordinates of
all polymer segments) of the Boltzmann factor
exp(−U/kBT). The energy of each state U can
be expressed as a sum of three contributions:
Gaussian chain connectivity, excluded volume
interactions, and electrostatic (Coulomb) interac-
tions. Rather than working with this “particle-
based” statistical mechanical description, we reex-
press the partition function in terms of collec-
tive field variables.9 Indeed, Z can be written
as a sum (a functional integral) over all field
configurations:

Z = Z0

∫∫
DwDφ exp(−H[w, φ]), (1)

where Z0 is the partition function of an ideal gas
of noninteracting polymers, w(r) is a real chemical
potential field conjugate to the segment density,
and φ(r) is a real electrostatic potential field conju-
gate to the total charge density. The energy of each
state is now replaced by an effective Hamiltonian,
which for our model is

H[w, φ] = 1
2u0

∫
ddr[w(r)]2 + 1

2KdlB

∫
ddr|∇φ(r)|2

− n ln Q[iw + iσφ] − n ln Q[iw − iσφ]. (2)

In this effective Hamiltonian, direct interactions
between polymers decouple, and the remaining
interactions are field-field and field-polymer. Poly-
mers interact with the fields only via the single-
chain partition function Q[ψ], where ψ(r) corre-
sponds to the two purely imaginary fields iw± iσφ

in eq 2. This partition function is calculated as a
volume integral of a chain propagator, which in
turn can be obtained from the solution of a com-
plex diffusion equation in the imaginary field ψ .9

Journal of Polymer Science: Part B: Polymer Physics
DOI 10.1002/polb



3226 J. POLYM. SCI. PART B: POLYM. PHYS.: VOL. 45 (2007)

Kd is the coefficient in front of the Green’s function
of the Laplacian in d dimensions (4π in 3D and 2π

in 2D).
It is important to note that this field theory

is an exact reformulation of the original particle-
based model. While the fundamental model is
not new, previous field-theoretic approaches to
polyelectrolyte complexation22,23,27 have simpli-
fied the field theory by use of weak inhomo-
geneity expansions. This simplification is not
exact, nor is it desirable or necessary. We fur-
ther note that the long-ranged Coulomb interac-
tion in the particle description is replaced by a
short-ranged “square gradient” interaction |∇φ|2
in the field theory. From a computational stand-
point, this is very attractive. The field-theoretic
representation is also convenient for analytical
studies of field fluctuation effects, such as loop
expansions.

A convenient place to begin our discussion of
the field theory model is with the mean-field
approximation, or equivalently, SCFT. The mean-
field solution neglects all field fluctuations and
replaces the sum over field configurations in eq 1
by a single most probable configuration–a sad-
dle point located off the real axis in the complex
plane. For the present model (subject to periodic
boundary conditions) the saddle point configura-
tion, obtained from the simultaneous equations
δH/δw = 0 and δH/δφ = 0, is homogeneous (a
constant pure imaginary number) in both fields.
Furthermore, because of global charge neutrality,
the saddle point solution has a distinctive feature:
the mean electrostatic potential is constant so that
every positive charge is compensated by an equal
negative charge. It follows that the Coulomb inter-
actions are irrelevant in the mean-field limit and
the polyelectrolyte mixture should behave exactly
as an analogous mixture of neutral polymers. This
leaves open no possibility for complexation, and
indeed we shall see that it is necessary to include
fluctuations and account for charge correlations
to obtain a coacervate phase. Thus, the mean-
field approximation breaks down completely in the
case of a simple mixture of cationic and anionic
polyelectrolytes.

Analytically, the next level of sophistication is
to account for quadratic field fluctuations about
the saddle point solution in the evaluation of
eq 1. This is the leading term in a system-
atic loop expansion13 known as the Gaussian
or one-loop approximation. Calculations of this
type have been reported previously for mod-
els of polyelectrolyte complexation.22,23,27 For our

symmetric polycation-polyanion mixture, fluctua-
tions of the w and φ fields decouple at the one-loop
level. Moreover, it turns out that the system is
parameterized by only three dimensionless com-
binations of variables: reduced polymer concen-
tration C = 2nRd

g/V , reduced excluded volume
parameter B = u0N2/Rd

g, and reduced Bjerrum
length E = KdlBσ 2N2/Rd−2

g . Here Rg = (Nb2/2d)1/2

is the size of an ideal non-interacting polymer
(which coincides with its radius of gyration in
3D), b is the statistical segment length, and d
is the number of dimensions. Thus, the one-loop
approximation provides relevant combinations of
parameters responsible for the thermodynamic
state of the system.43 It should be noted that the
electrostatic interactions are manifested only in
the parameter E.

The one-loop approximation yields analytical
expressions for correlation lengths in the poly-
electrolyte mixture. In particular, it predicts that
polymer segment density fluctuations are corre-
lated on the scale of the well-known Edwards
length.8 Of greater interest is the prediction that
charge density fluctuations are correlated on the
scale of the polyelectrolyte length

ξPE = Rg

(2EC)1/4
=

(
b2

4dKdlBσ 2ρ

)1/4

, (3)

where ρ = 2nN/V is the segment density. This
correlation length, which has been previously
identified in 3D,23,30 has several important charac-
teristics. First, it is specific to charged polymers, as
can be observed from its dependence on the Bjer-
rum length and the statistical segment length.
Second, ξPE is independent of the chain length N,
as is expected for dense polymer systems. Finally,
it is proportional to the −1/4 power of the segment
density and hence is qualitatively different from
the Debye-Hückel length ξDH = (1/KdlBσ 2ρ)1/2

for small ions of density ρ carrying charge ±σ .
Thus, the attachment of charges to polymer chains
creates a coupling between chain conformational
statistics and charge density that dramatically
changes the electrostatic correlation properties of
the solution compared with a conventional small
ion electrolyte.

Beyond correlation lengths, the one-loop approx-
imation provides an analytical expression for the
Helmholtz free energy that can be used to derive
expressions for standard thermodynamic quanti-
ties. For example, the fluctuational electrostatic
contribution to the osmotic pressure scales as
−Ad(EC)d/4kBTR−d

g ∼ −kBT/ξd
PE, where Ad > 0 is a
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known numerical coefficient dependent on dimen-
sionality d. This expression is again qualitatively
different from the analogous electrostatic term
in Debye–Hückel theory for simple electrolytes.
Because the net contribution from charge corre-
lations is negative, the one-loop theory can predict
polyelectrolyte complexation and the coexistence
of dilute and coacervate phases. The spinodals and
binodals for this two-phase region follow directly
from the one-loop osmotic pressure expression.
While some of these predictions were obtained pre-
viously by slightly different methods,22,23,27 their
validity has been difficult to assess because the
next term in the loop expansion (two-loop order)
is very tedious to evaluate.

With the advent of the FTS method, we now
have a numerical technique that can be used to
simulate the full field theory without the assump-
tion of weak charge and density correlations that
underpins the loop expansion. Computer simula-
tions of the full field theory can provide test beds
for the analytical loop expansions, just as particle
simulation methods complement analytical virial
expansions in the particle-based theory.

The advantage (or disadvantage) of FTS over
conventional particle-based simulation techniques
can be assessed by comparing computational costs.
The cost of particle-based simulations depends on
the total number of atomistic or coarse-grained
particles in the system. State-of-the-art particle-
based methods require a number of operations per
MD step or MC cycle on the order of nN ln nN
for n polyelectrolytes, each with N beads or
segments.6 On the other hand, the cost of an
FTS field update depends on the spatial dis-
cretization of the system, rather than the num-
ber of particles. When the computational cell is
divided into a lattice of size M, each update
requires of order NM ln M operations.9 In a melt,
M < n if the lattice spacing 	x in the FTS
approach can be taken larger than V1/3

p , where
Vp ∼ N is the volume of a polymer. This is
met, for example, by choosing 	x to be a frac-
tion of Rg ∼ N1/2. Thus, FTS has an obvious
computational advantage for dense systems of
long polymers in which a coarse computational
grid suffices to capture mesoscopic structure at
and beyond the Rg scale. On the other hand,
particle-based methods are advantaged under
more dilute conditions,when fewer molecules need
to be described on microscopic scales, or when
full chemical details are required. These consid-
erations are rough guides, and further studies
are needed to fully elucidate the conditions under

which FTS is competitive with existing simulation
techniques.

We employ complex Langevin (CL) sampling
in our FTS to avoid the sign problem associated
with the complex Hamiltonian H and the non-
positive definite character of the statistical weight
exp(−H) in the field theory. This method was
originally devised as a strategy for sampling gen-
eral types of quantum field theories with complex
actions15,44 and has been more recently applied
in polymer physics.16,45,46 The idea behind this
method is to extend the real fields into the com-
plex plane and to compute ensemble averages of
observable quantities by sampling fields along a
stationary stochastic trajectory in the complex
function space. While this extension to the com-
plex plane doubles the number of field degrees of
freedom, the relevant statistical weight becomes
a real non-negative distribution of fields P[W, 
],
where W ≡ wR + iwI and 
 ≡ φR + iφI.

A stochastic CL dynamics in the complex func-
tion space is employed to generate a Markov
sequence of complex fields with stationary distri-
bution P[W, 
]. The complex Langevin equations
are ∂W/∂t = −λ(δH/δW)+η and a similar expres-
sion for the 
 field. Here W and δH/δW (or 


and δH/δ
) are complex, but the thermal noise
η(r, t) is a real Gaussian white noise, satisfy-
ing the usual fluctuation-dissipation theorem with
dissipative coefficient λ. Since the thermal noise
is placed asymmetrically only on the real part
of the CL dynamics, the imaginary parts of the
equations ensure the sampled fields have nearly
constant phases HI along the Langevin trajec-
tory. This removes rapid oscillations and improves
convergence. Recent improvements in stochastic
integration algorithms for the CL equations have
enabled high-resolution, three-dimensional (3D)
field-theoretic simulations.17

Here we report on the application of CL-FTS to
polyelectrolyte complexation phenomena, specif-
ically to the same symmetric binary polycation-
polyanion model that was used for the analyt-
ical one-loop calculations. A particular focus of
our CL-FTS study is the location and size of
the two-phase region where coacervation takes
place. An example of such a phase diagram (in
3D) is provided in Figure 2. Spinodals and bin-
odals for the field theory of eq 2 are surfaces in
the three-parameter space of the reduced vari-
ables C, B, and E. The figure represents a cross-
section of this three-dimensional space by a plane
E = 14, 400; hence the diagram involves only
the C and B variables. The diagram features
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Figure 2. Phase diagram for the symmetric poly-
electrolyte mixture in 3D plotted in reduced polymer
concentration C and reduced excluded volume B at fixed
reduced Bjerrum length E. Solid and dashed lines are
the analytical one-loop binodal and spinodal, respec-
tively. Symbols are the result of complex Langevin
simulations; the dotted line is a power-law fit. Numer-
ical simulations were conducted in a cubic cell of size
4Rg × 4Rg × 4Rg with periodic boundary conditions.

both the CL-FTS results (symbols and dotted-
line fit) and the one-loop analytical approxima-
tion to the binodal (solid line) and the spinodal
(dashed line). The one-phase region (disordered
homogeneous phase) is above and to the right of
the lines, and the two-phase region is below and
to the left. The tie lines in the two-phase region
are horizontal (constant B) and connect nearly
pure solvent (C ≈ 0) with a coacervate phase
at the binodal concentration. The two symbols
for the CL simulation data at each concentra-
tion C represent the hysteresis upon varying the
solvent quality B, with the upper symbol corre-
sponding to superheating (increasing B) and the
lower one corresponding to supercooling (decreas-
ing B).

Remarkably, the analytical and numerical
results nearly coincide in the high concentration
region of the figure, despite the limitations of each
method. The numerical results are subject to finite
cell size and chain discretization limitations, while
the analytical predictions neglect two-loop and
higher order terms in fluctuations. Nonetheless,
our numerical supercooling result practically fol-
lows the analytical spinodal, and the analytical
binodal yields nearly the same exponent (−1.31)

as is obtained from a power-law fit to the numer-
ical superheating points (−1.40). The cause for
the discrepancy between theory and simulation for

the location of the binodal is unclear at present,
although the overall semi-quantitative agreement
indicates that both approaches have utility for this
class of problems.

Our future work in polyelectrolyte complex-
ation will extend beyond the symmetric model
presented here to include unequal chain lengths,
counterions, salt, and explicit solvent. The latter
will allow for the treatment of polyelectrolytes
with hydrophobic backbones. It is important to
emphasize that these are straightforward exten-
sions that do not complicate the particle-to-field
transformation of the model, nor do they make
analytical loop expansions or CL simulations any
more difficult.

Another extension is to investigate the effect of
charge distribution and polymer architecture on
polyelectrolyte complexation. This brings us into
the realm of block copolyelectrolytes and branched
and dendritic polyelectrolyte systems—all of con-
siderable experimental interest. As a preliminary
example, we have explored a simple variation of
our binary polycation–polyanion model where all
the charge of each species is concentrated into a
small “charged block” at the chain end; compare
Figure 1(b). The remaining longer portion of each
chain constitutes a “neutral block”. In our simple
model, the charged blocks should drive complex-
ation because of the correlation-induced electro-
static attraction, while the neutral blocks repel
each other due to the excluded volume interactions
in the (assumed) good solvent. These competing
tendencies can drive aggregation to form micellar
structures with charged blocks in the micelle cores
and the neutral blocks in the coronas. At relatively
low concentrations, the micelles are expected to
form a disordered micellar phase, while at higher
concentrations they can pack into periodic lat-
tices to form mesophases of various symmetry.
Such structured coacervate phases would seem
to be of considerable interest for a variety of
applications.

In accord with expectations, complex Langevin
simulations of the symmetric binary block copoly-
mer model show that the redistribution of charges
along the polyelectrolyte chains leads to the
formation of aggregates qualitatively similar to
micelles. Figure 3 illustrates the dramatic dif-
ference between the phases formed by uniformly
charged chains and unevenly charged chains
with the same total charge concentrated into
a block of length N/4. The uniformly charged
chains [Fig. 3(a)] form macrophases, that is,
large homogeneous phases (a dilute phase and a
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Figure 3. Snapshots of equilibrated field-theoretic
simulations. Normalized total polymer density is pre-
sented for the cases of (a) uniformly charged chains and
(b) unevenly charged chains, with the same amount of
total charge concentrated on 25% of the chain length.
Macrophases are formed in the uniformly charged case,
and a mesoscopic structure develops in the case of block
polyelectrolytes. Both systems are in 2D with periodic
boundary conditions. Cell size is 16Rg × 16Rg, and the
same parameters C = 6.0, B = 0.3, and E = 64, 000
were used in both cases.

coacervate phase) constrained only by the size of
the computational cell. On the other hand, the
oppositely charged block copolymers [Fig. 3(b)]
form a mesophase with structure on the scale of Rg.

The core of each micelle predominantly consists of
charged blocks, while the neutral blocks form the
repulsive corona. We are aware of at least one body
of experimental work that confirms these (as yet)
qualitative predictions.47,48

In summary, field-theoretic simulation meth-
ods based on the introduction of auxiliary fields
have considerable promise for the investigation
of polyelectrolyte complexation phenomena. These
methods possess several distinctive and attractive
features. First, FTS involves exact Hamiltonians
and accounts for arbitrarily large fluctuations and
strong inhomogeneities. Thus the technique is
not limited in the same ways as the available
analytical tools. Second, field-theoretic methods
are especially convenient for treating the long-
range Coulomb interaction, which is replaced by a
short-ranged square-gradient operator in the aux-
iliary field representation.Third,FTS methods are
computationally advantaged over particle-based
simulations when the systems are dense, polymer
chains are long, and the length scale of interest
is large (mesoscopic). Finally, inclusion of addi-
tional species (either long chains or small ions)
neither does lead to a substantial elaboration of
the field-theoretic models, nor does it complicate
the simulations.

With continued advances in algorithms, we
anticipate that FTS methods will enable the study
of broad classes of polyelectrolyte systems and
phenomena that are beyond the reach of current
analytical methods and particle-based computer
simulations. The importance of analytical the-
ory and particle-based simulations will not be
diminished, however, by the emergence of FTS
techniques. We see these approaches as comple-
mentary, with each contributing valuable insights
into the rich structure and thermodynamics of
charged polymeric fluids.
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