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Abstract: Existing methods for fitting spatial autoregressive models have various strengths and
weaknesses. For example, the maximum likelihood estimation (MLE) approach yields efficient
estimates, but is computationally burdensome. Computationally efficient methods, such as gen-
eralized method of moment (GMM) and spatial two-stage least squares (2SLS), typically require
exogenous covariates to be significant, a restrictive assumption that may fail in practice. We pro-
pose a new estimating equation approach, termed combined moment equation (COME), which
combines the first moment and the covariance conditions of residual terms. The proposed es-
timator is less computationally demanding than MLE, and does not need the restrictive exoge-
nous conditions as required by GMM and 2SLS. We show that proposed estimator is consistent
and establish the asymptotical distribution. Extensive simulations demonstrate that the proposed
method outperforms the competitors in bias, efficiency and computation. We apply the proposed
method to analyze an air pollution study, and obtain some interesting results about the spatial dis-
tribution of PM2.5 concentrations in Beijing. The Canadian Journal of Statistics : 1-31; 2011
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1. INTRODUCTION
Spatial data are collected often from studies in meteorology, environmental sci-
ence, ecology, epidemiology and economics; see Cliff and Ord (1973), Anselin
(1988a), Cressie (1993), and Anselin and Bera (1998). Among many spatial
models, spatial autoregressive (SAR) models (Cliff and Ord, 1973) have emerged
as a powerful tool when modeling spatially correlated data based on neighbor-
hood relationships. Though SAR models have been known for decades in the
econometrical and statistical literature, their application and research have been
limited because of intensive computation (Cressie, 1993; Rangel and Bini, 2006),
and elusive statistical properties. For example, the asymptotic properties of the
maximum likelihood estimator were not established until recently by Lee (2004).
A key assumption of SAR modelling is that the value of the dependent vari-
able in a location is related to its values measured in the neighborhood. SAR
models are typically estimated by maximum likelihood estimation (MLE) or
quasi-likelihood method (QML) (Ord, 1975; Smirnov and Anselin, 2001; Kazar
and Celik, 2012; LeSage and Pace, 2009; Lee, 2004), generalized method of mo-
ment (GMM) estimation (Kelejian and Prucha, 1999; Lee, 2007a, 2001; Bell and
Bockstael, 2000; Lee, 2007b; Liu et al., 2010), spatial two-stage least squares
(28LS) method (Land and Deane, 1992; Lee, 2003; Anselin, 1990; Kelejian and

Prucha, 1997, 1998; Anselin, 1988b), and /least squares estimation (LSE) (Huang

* Author to whom correspondence may be addressed.
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etal., 2019; Zhu et al., 2020). However, MLE or QML requires the computation
of the determinant of an n X n matrix with an unknown autoregression coeffi-
cient, which is computationally demanding when the sample size is large. GMM
or 2SLS reduces computational burden and also relaxes the normality assump-
tion on the error terms which is required by MLE. However, GMM may lose the
efficiency if the instrumental variables(IVs) are not optimal. Lee (2007a) further
propose an efficient GMM method by using optimal IVs, However, the optimal
IVs involve the inverse of an n X n matrix and fourth order moments, as a result,
the efficient GMM is computationally intensive when the sample size is large
and may be unstable for small sample size. In fact, the simulation results from
Lee (2007a) show that the two GMMs perform similar with the efficient GMM
being slightly worse for small sample size. On the other hand, 2SLS builds an
estimator with a matrix of instrumental variables (IVs), which require that the
exogenous covariates in the model to be statistically significant to ensure the
consistency of the resulting estimators. In reality, significant exogenous covari-
ates may not always be available; even if they do exist, testing their significance
is challenging Lee (2007a). Recently, under the assumption that Y follows the
multivariate normal distribution, Huang et al. (2019) and Zhu et al. (2020) pro-
pose a least squares estimation (LSE) based on the conditional expectation of
response Y; given Y(_; = (Y1, - ,Y;_1,Y;11,Y,). The assumption of normal

distribution is crucial for LSE, which may not hold in practice. In addition, LSE
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is less efficient due to the partially using of correlation information among Y.
These observations are also confirmed by the results of our simulation studies
in Tables 1-3, which shows that LSE had a much bigger SD and RMSE than
the proposed COME and MLE even the normal assumption is satisfied, and get
worse when the measurement error is generated from the uniform distribution.

We propose a new estimating equation approach, which is derived based on
the combination of the first moment and the covariance conditions of residual
terms. Our approach, termed combined moment equation (COME), presents sev-
eral advantages. First, based on the observation that autoregression coefficient p
fully express the spatial autocorrelation, we construct the equation for p by ex-
actly removing the correlation among n individuals. Hence, deviating from the
IV based methods such as GMM and 2SLS, our method does not require I'V vari-
ables or significant exogenous covariates. Second, COME is based on moment
equation, consequently, allows the distribution of error terms to be unspecified.
Third, COME is computationally efficient without the need to compute the deter-
minant or inverse of an n x n matrix. Finally, we have established consistency
and asymptotic distributions for the proposed estimator.

The rest of the paper is organized as follows. In Section 2, we present the
COME method. In Section 3, we establish the large sample properties of the
COME estimator, and in Section 4, we conduct simulations to investigate the

performance of the proposed method. We apply the proposed method to analyze
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a PM2.5 air pollution dataset in Section 5 and conclude the paper in Section 6.

Technical proofs are relegated to the Appendix.

2. PROPOSED COMBINED MOMENT EQUATIONS (COME)

Fori=1,...,n,a SAR model stipulates that
Yi = pW;Y + X8 + ¢, )]

where Y; is the response and X; is the p-dimensional covariate vector of indi-
vidual ¢, W; = (w;1, ..., w;,) with w;; =1 if j € N(i) and O otherwise, and
Y = (Y3, -+ ,Y,)". Here, N(i) is the index set for the neighborhoods of individ-
ual i, 7 ¢ N(i), and the ¢;s are identically and independently distributed random
errors with mean zero. The vector 3 and the autoregressive spatial parameter p
are the coefficients to be estimated.

Given p = pg, since X; and ¢; are independent, we can estimate 3 by the
traditional least square errors, that minimizing

Qi(p.B) = % Z & (p.8), (2)
i=1

with respect to 3, which is based on the first moment of the error term, where
eil(p,B) =Y; — pW;Y — X/ 3.

Because ¢; is correlated with Y}, when j € N (), through its connection with
Y;, W,Y is correlated with ¢; and is termed an endogeneous term (Lee, 2004).

As a result, the estimator for p based on minimizing Q) (p, 3) is biased. A key
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observation that leads to our proposed estimation for p is that p measures the
spatial autocorrelation. That is, if p = pg, then Y; — pW;Y — X;,Bo,z' =1,---,n

are uncorrelated; otherwise, they are correlated. To see this, with ¢ # j, we have

E(Y; — pWiY = X80)(Y; — pW;Y — X;ﬂo)

= (0= po) {(p = po) EW:YW;Y) — E(W;Ye; + W;Yei)} .

Therefore, E(Y; — pW;Y — Xi8)(Y; — pW;Y = X'B) =0 if p = py and B =
Bo, where pg and 3, are the true values of p and 3, respectively. Replacing
the theoretical quantity by its empirical version, we can estimate p and 3 by
minimizing
2
Qs(p.3) = {ﬁ ;exp,mq(p,m} .

This leads to the estimating equations

=0, and 9Q2(0,8) _ 3)

0B

aQQ (pa ﬁ)
dp

As aresult, we estimate v by combining the estimating equations as follows

0Q2(p.B) _ (g 2222.B) | 0Qi(p. )

op 19)6] op

=0, @)

where A > 0 is a weight, striking a balance between the equations based on the
covariances and the first moment of the error terms. Particularly, when \ = 0,
the estimator for 3 is based on only the second moment condition Q2(p, 3),

and is more determined by the first moment condition Q;(p, 3) when A gets
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larger. By (4), we estimate 3 using extra information from the second moment
condition, hence is more efficient than the traditional LSE only based on the
first moment condition Q1 (p, 3). Equations (4) are termed combined moment
equations (COMEs) of the first and second moments of the error terms.
Directly solving (4) is computationally difficult. By recognizing the solutions
to (4) solve two optimization problems, we propose an efficient iterative algo-

rithm as follows.

Step 0. Choose initial estimates of 3 and p, denoted by 3[°! and p[’!. For exam-
ple, the 2SLS estimates can serve as the initial estimates.
Step 1. Given an estimate of p at the previous step, i.e. p*~ !, estimate 3 by

minimizing

2

1 i )

{a;rg%}ﬁ—dk“%Y—XWXE—Mk%mY_gﬂ%
i#£]

A
SN (Y = I Y - XB)°.
+n;; p B)
Step 2. Given an updated estimate of 3, i.e. 3*], re-estimate p by minimizing
n 2
{Z(n — pWY = X;8"M) (V) — pW;Y — X}ﬁ[’”)} :

i£]

Steps 1 and 2 are iterated until convergence.

Remark 1 We recommend to use the R optim for Steps I and 2. Specifically, we
adopt the BEGS method for Step 1 and the Brent method for Step 2. In addition,

the simulation studies in Section 4 show that the COME estimator is not sensitive
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to the choice of \. For simplicity, we choose A = 1 in all of the simulation studies
and real data analysis, the resulting estimator suggests A = 1 works well. In
practice, we can use the following BIC (Schwarz et al., 1978; Zhang and Yu,

2018) to select a rough A,

BIC(X\) = n*log(RSS/n) + p *log(n), )

-~

where RSS =Y, (Yi — pW,Y — X!3). A brief simulation study shows that

the BIC criterion works well.

3. ASYMPTOTIC PROPERTIES

We establish consistency and the asymptotic distributions for our estimator and
defer the proofs to the Appendix. Denote by X = (Xy, - ,X,,), Su(p) = I, —
pW for any value of p, S,, = S,(po), b.(v) = (I, — pW)S X8y — X3, G,, =
WS g, = (S,'XB8)'W'C,, C, = ﬁlnlg — ﬁ[n where 1,, is a n x
1 all-ones vector and I, is a n X n identity matrix, by, (v) = b, (7) Crbn(7y)

and X = (xq,---,X,) with x; being column j of X. The following regularity

assumptions are set.

Assumption 1. The ¢;s are i.i.d. with mean zero and var(¢;) = o2 < oo. Its mo-
ment F(|e;|*™) for some 1 > 0 exits.

Assumption 2. The matrices W and 5" are uniformly bounded in both row
and columns sums in absolute value.

Assumption 3. The matrix .S,, is nonsingular.

The Canadian Journal of Statistics/ La revue canadienne de statistique DOLI:



2011 9

Assumption 4. The X;’s are bounded. The elements of C,XX'C,, ¢.qx
and C,x;q, for j=1,---,p are at most O,(n), Oy(1) and O,(1), and
the corresponding matrices in row and columns sums C,XX'C,, are uni-
formly O,(h,n), O,(h,) and O,(h,) respectively. Furthermore, we as-
sume that the limits for lim,, .. X'X/n, lim,, . 1/, X/n, lim,, ., tr(q,q,)/n,

limy, 0o X'WS X8y /0 and lim,, o0 £ (t7(CrX1gyn), - -+, tr(CrXpqy)) exist,

C1, b
denoted as A, a, ¢, ¢y, b respectively. Let W = be non-singular

)\C(), AA

matrix.

Assumption 5. Let the sum of vector b, () are O(y/n) uniformly in a compact
parameter space I'. The true parameter -y, is in the interior of I'.

Assumption 6. lim,,, inf_ 5, [EU(7)| > 0, where N () is the comple-

ment of an open neighborhood of ~,.

Assumptions 1-3 are specified in Lee (2004), concerning model (1). Par-
ticularly, Assumptions 1 demonstrate the features of the disturbance and the
weights matrix. Assumption 2 ensures the existence of mean and variance of
Y while Assumption 3 is a condition that limits the spatial correlation to a
manageable degree. Assumption 5 requires that the regressors are bounded, and
that multi-collinearity among the regressors of X is ruled out. In fact, combin-
ing Assumptions 2-3, we have 2X'WS X8, = O,(1), tr(¢,q.)/n = O,(1),
X'X,,/n = 0,(1) and X(tr(CpX1qn),- -+ ,tr(CrXpqn))’ = O,(1) which renders
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Assumption 4 is reasonable. That U~ ! exists ensures the existence of asymptotic
variance of the proposed estimator for . Assumption 5 is a mild regularity con-
dition assumed in Lee (2007b) and Amemiya (1985). Assumption 6 ensures the

existence of a locally unique solution of EU () = 0.

Theorem 1.  Under Assumptions 1-6, ~ is identifiable and v is a consistent

estimator of v,.

Theorem 2.  Under Assumptions 1-6,

P = po )
Vn ~ Ulg(Z), (6)

o~

B — Bo
where Z is a multivariate normal variable with mean 0 and covariance > and
g(+) : R*™3 — RPTY is a continuous mapping, which are defined in the Ap-

pendix.

As the asymptotic variances of p and B in Theorem 2 involve unknown pa-
rameters and are infeasible to compute, we adopted a bootstrap procedure (Jin

and Lee, 2012) to estimate the variances.

(1) Obtain the estimates for .

-~

(2) Compute € = (€1, ,6,) by & =Y; — (pW;Y + X/3). For each X;, draw
the independent residuals ¢ from the empirical distribution of the centered

residuals (I — 1,1/ /n)e. Let

Y= pWY + X3+,

1
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and calculate the estimator ~* based on {X;, Y;*} ;.
(3) Repeat Step (2) for a total of B times, obtaining B estimated v, say, v, ,b =

1,--+, B, and compute the sample covariance.

4. NUMERICAL STUDIES

We compared the finite sample performance of COME with the existing meth-
ods, which are 2SLS (Kelejian and Prucha, 1997); GMM (Lee, 2007a); MLE
(Ord, 1975) and LSE (Huang et al., 2019). We use (X, WX, W’X) as IV to
obtain 2SLS. To perform GMM estimator, we use IV’s (X, WX, W2X) and
(W, W? — {tr(W?)/n)}1,) for linear moments and quadratic moments, respec-
tively. Based on Trefethen and Bau (1997), the computational complexity is
O(n?) for MLE, while O(n?) for 2SLS, GMM, LSE and COME methods. Hence
2SLS, GMM, LSE and COME have computational advantage than MLE. We
used the R spdep package (Bivand and Anselin, 2011) to implement 2SLS and

MLE.

Data were generated from the model,

Y = (I, — pW) (L5 + X152 + Xof35 + €), (N

where X, = (Xp1, ..., Xgn), for k =1,2, and € = (¢, ..., ¢,) were indepen-
dent vectors. Also, X;, Xy and € had i.i.d components. We considered three cases.
Case (1): p=0.9,3, =1, 3 =1, 33 = —1 and Xy;, Xo;, ¢; ~ N(0,0.5%);
Case (2): p=0.9,3, =1, 3, =0.1, 3 = —0.1 and Xy;, Xp;, ¢; ~ N(0,0.5%);

DOLI: The Canadian Journal of Statistics/ La revue canadienne de statistique
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Case (3): p=—0.9, 5 =1, 3, = 0.3, 33 = —0.3 and X1;, Xo;,¢; ~ N(0,0.5%).
Case (4): p=—0.9, 5, =1, 3, = 0.3, B3 = 0.3 and Xy;, Xo; ~ N(0,0.5?), ¢; ~
U(—1,1).

In Cases (1)-(3), the effects of exogenous covariates were designed to be
strong, weak and moderate, respectively. Case (4) is used to investigate the per-
formance of various methods when the measurement error ¢; is generated from
non-Gaussian distribution. For each case, we varied the sample size by taking
n =49, 98, 490, 980 and 2450. When n = 49, we took W = W, where W, was
specified as in Anselin (1988b); when n = 98,490, 980 and 2450, we took W
to be Iy ® Wy, I1g @ Wy, Irg ® Wq and I59 @ Wy, respectively, where & is the
Kronecker product operator. We evaluate the performance of the competing es-
timators using the criteria of absolute bias (BIAS), empirical standard deviation
(SD), the root of the mean square error (RMSE) and the average CPU time per
run in seconds (7'(s)). For each parameter configuration, we generated a total of
1,000 independent datasets, and Tables 1-3 report the results based on these 1000
replications for Cases (1)-(4). We set A = 1 for Cases (1)-(4). We summarize the
findings below.

First, the coefficients of the exogenous covariates, /3, and (33, estimated by the
methods except of LSE, were comparable, which confirmed that the asymptotic
variances for 35 and 33 were the same. LSE estimates for 35 and 33 had slightly

larger SD and RMSE than others. Second, the estimates of COME for p and [,
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on average, were close to the truth in all of the cases considered. In contrast,
the MLEs of p and 3; were much biased when the sample size was small (n =
49,98); see Cases (1) and (2) in Tables 1 and 2. The 2SLS estimate of p and /;
were biased when the effect of exogenous covariates was small, as shown in Case
(2). Even in Cases (1) and (3) where the exogenous covariates had moderate to
large effects, COME had a much smaller SD and RMSE than 2SLS, especially
when the sample size was small (n = 49, 98); the gap became larger for Case
(2). The GMM and LSE had larger bias and SD for p and f; in all of the cases
considered, and the LSE get worse when the measurement error is far away from
the normal distribution, see Case (4) in Table 3.

Finally, when comparing the computing time in Figure 1(a), we found that
MLE took much more CPU time than COME, GMM and 2SLS, especially with
large sample sizes. For example, the T'(s) of MLE increased drastically from
.96 seconds to around 100 minutes, while that of COME increased from 0.36
seconds to about 8 minutes.

To investigate the performance of the bootstrap described in Section 3, we
calculated the standard errors(SE) based on the bootstrap with 200 bootstrap
samples. The standard deviations, denoted by SD, based on 200 simulations can
be regarded as the true SE. The average and the SD of 200 estimated SE, denoted
by SE.ave and SE.std, summarize the performance of the bootstrap. As shown in

Table 5, we conclude that the performance of the standard error, obtained from
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bootstrap, is quite satisfactory.

Finally, we also investigate the effect of varying A on the resulting estimates.
The bias, SD and RMSE against A for Case (1) are shown in Table 4, which sug-
gest that the resulting estimates are insensitive to A. In practice, we can choose
a rough A by BIC criterion. We plot the average of BIC versus RMSE when
A =0.001,0.05,0.5,1 for Case (1) in Figure 1(b), which shows that BIC in-
creases as RMSE increases, suggesting that formula (5) provides a reasonable

estimator of \.
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TABLE 1: Comparisons of competing methods in bias, empirical standard error (SD), root of mean squared

error (RMSE) and CPU time (7'(s)) for Case (1) based on 1000 replications.

p=0.9 B2 =1 By =—1 pr=1 T(s)
n bias(SD)[RMSE] bias(SD)[RMSE] bias(SD)[RMSE] bias(SD)[RMSE]
COME .019(.090)[.092] .010(.310)[.311]  .011(.304)[.304]  .173(1.249)[1.261] 014
49 LSE .061(.153)[.165] .008(.366)[.366]  .009(.357)[.357]  .566(1.862)[1.946] .029
MLE .048(.076)[.090]  .013(.307)[.307]  .017(.297)[.297]  .486(1.131)[1.231] .148
GMM  .014(.154)[.155] .006(.317)[.317]  .005(.309)[.309]  .121(1.782)[1.786] 011
2SLS .049(.150)[.158]  .025(.306)[.307]  .021(.294)[.295]  .486(1.711)[1.778] .004
COME .003(.048)[.048] .002(.206)[.206]  .003(.211)[.211] .014(.758)[.758] .024
98 LSE .039(.114)[.120]  .004(.247)[.247]  .002 (.245)[.245] .395(1.32)[1.38] .047
MLE .019(.038)[.043] .007(.204)[.204]  .004(.207)[.207] .190(.690)[.718] 187
GMM  .008(.087)[.087] .005(.211)[.211]  .006(.219)[.219] .087(1.05)[1.05] .026
2SLS 041D 112]  .016(.208)[.209]  .019(.211)[.212] 151(1.25)[1.26] .009
COME .002(.016)[.016] .002(.091)[.091]  .001(.091)[.091] .011(.306)[.307] .356
490 LSE .007(.045)[.046]  .003(.109)[.109]  .002(.107)[.107] .069(.548)[.552] 541
MLE .004(.014)[.015]  .003(.090)[.090]  .000(.091)[.091] .036(.299)[.301] 964
GMM  .001(.024)[.024] .001(.093)[.093]  .001(.095)[.095] .006(.387)[.387] 581
2SLS .002(.034)[.034]  .002(.093)[.093]  .006(.093)[.093] .002(.416)[.417] 157
COME .001(.012)[.012]  .000(.064)[.064]  .000(.066)[.066] 010(.21D)[.211] 1.358
980 LSE .003(.030)[.030]  .000(.077)[.077]  .002(.080)[.080] .032(.372)[.374] 16.90
MLE .002(.010)[.010]  .000(.064)[.064]  .000(.066)[.066] .019(.210)[.210] 17.210
GMM  .001(.012)[.012] .000(.066)[.066]  .001(.069)[.069] .009(.234)[.234] 2.109
2SLS .003(.022)[.022]  .002(.065)[.065]  .003(.067)[.067] .002(.290)[.290] 7187
COME .000(.008)[.008] .001(.043)[.043] .000(.041)[.041] .006(.140) .140] 14.944
2450 LSE .001(.019)[.019]  .001(.048)[.048]  .001(.047)[.047] .015(.232)[.233] 97.833
MLE .001(.006)[.006]  .001(.042)[.042]  .000(.041)[.041] .004(.135)[.136] 99.577
GMM  .000(.007)[.007] .002(.043)[.043]  .001(.042)[.042] .001(.145)[.145] 43.951
2SLS .000(.014)[.014]  .000(.043)[.043]  .001(.042)[.042] .001(.188)[.188] 10.362
DOLI: The Canadian Journal of Statistics/ La revue canadienne de statistique
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TABLE 2: Comparisons of competing methods in bias, empirical standard error (SD), root of mean squared

error (RMSE) and CPU time (7'(s)) for Cases (2) and (3) based on 1000 replications.

Case (2)

p=20.9 B2 =0.1 fs = —0.1 b =1 T(s)

n bias(SD)[RMSE] bias(SD)[RMSE] bias(SD)[RMSE] bias(SD)[RMSE]
COME  .001(.065)[.065]  .001(.204)[.204] .005(.208)[.208] 0.021(0.878)[0.878]  0.018
LSE L039(.112)[.119]  .004(.247)[.247] .002(.244)[.244] 0.392(1.307)[1.364]  0.037
98 MLE .023(.045)[.050]  .001(.203)[.203] .003(.207)[.207] 0.224(0.735)[0.768]  0.146
GMM  .167(.210)[.268]  .004(.226)[.226] 011(.23D)[.231] 1.684(2.252)[2.812]  0.042
2SLS A14(181)[.214]  .004(.203)[.203] .006(.210)[.210] 1.149(1.923)[2.241]  0.007
COME  .001(.035)[.035]  .001(.090)[.090] .002(.091)[.091] 0.001(0.428[0.428]  0.143
LSE .007(.045)[.046]  .003(.109)[.109] .002(.107)[.107] 0.069(0.548)[0.552]  0.399
490  MLE .005(.016)[.016]  .001(.090)[.090] .002(.091)[.091] 0.040(0.309)[0.312]  0.711
GMM  .138(.160)[.211]  .010(.100)[.100] .012(.100)[.101] 1.388(1.646)[2.153]  0.663
2SLS .090(.154)[.180]  .004(.091)[.091] .007(.092)[.092] 0.900(1.538)[1.781]  0.114
COME  .001(.015)[.015]  .000(.063)[.063] .000(.066)[.066] 0.013(0.232)[0.233]  1.465
LSE .003(.03D[.031]  .000(.077)[.077] .002(.080)[.080] 0.036(0.379)[0.381]  4.095
980  MLE .002(.01DH[.011]  .001(.063)[.063] .000(.066)[.066] 0.024(0.218)[0.220]  4.169
GMM  .030(.09D)[.096]  .003(.067)[.067] .005(.069)[.070] 0.313(0.945)[0.995]  2.025
2SLS .082(.135)[.157]  .004(.063)[.063] .005(.066)[.066] 0.819(1.356)[1.584]  0.593

Case (3)

p=-09 B2 =0.3 b3 =—0.3 pf1=1 T(s)

n bias(SD)[RMSE] bias(SD)[RMSE] bias(SD)[RMSE] bias(SD)[RMSE]
COME  .025(.223)[.224]  .001(.300)[.300] .001(.291)[.291] 0.011(0.831)[0.831]  0.002
LSE 304(.540)[.619]  .029(.502)[.503] .033(.471)[.472] 0.166(1.396)[1.405]  0.005
49 MLE L001CI8D[.181]  .006(.299)[.299] .001(.287)[.287] 0.014(0.816)[0.816]  0.162
GMM  .033(.222)[.224]  .025(.391)[.392] .023(.360)[.360] 0.130(1.288)[1.295]  0.003
2SLS .060(.774)[.776]  .022(.317)[.318] .008(.305)[.305] 0.058(0.925)[0.927]  0.001
COME  .008(.167)[.167]  .001(.202)[.202] .006(.204)[.205] 0.008(0.577)[0.577]  0.004
LSE .100(.215)[.237]  .002(.290)[.290] .000(.284)[.284]  0.048(0.809) [0.810] 0.014
98 MLE .000(.134)[.134]  .002(.201)[.201] .005(.205)[.205] 0.006(0.577)[0.577]  0.167
GMM  .016(.154)[.154]  .002(.204)[.204] .004(.214)[.214] 0.002(0.609)[0.609]  0.009
2SLS .027(.743)[.743]  .021(.217)[.218] .018(.216)[.217] 0.020(0.741)[0.741]  0.002
COME  .003(.095)[.095]  .001(.090) [.090] .002(0.091[0.091]  0.005(0.262)[0.263]  0.106
LSE .025(.074)[.078]  .006(.116)[.116] .001(.120)[.120] 0.004(0.340)[0.340]  0.283
490  MLE .000(.057)[.057]  .001(.090)[.090] .002(.090)[.090] 0.006(0.262)[0.262]  0.574
GMM  .005(.065)[.065]  .000(.093)[.093] .002(.093)[.093] 0.001(0.280)[0.280]  0.460
2SLS .021(.397)[.398]  .006(.093)[.093] .009(.095)[.095] 0.018(0.336)[0.336]  0.147
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TABLE 3: Comparisons of competing methods in bias, empirical standard error (SD), root of mean squared

error (RMSE) and CPU time (7'(s)) for Cases (4) based on 500 replications.

p=—-0.9 B2 =0.3 B3 =0.3 B1=1 T(s)
n bias(SD)[RMSE] bias(SD)[RMSE] bias(SD)[RMSE] bias(SD)[RMSE]

COME  .005(.224)[.224]  .019(.366)[.367] .013(.341)[.341] .056(1.065)[1.067]  0.006

LSE 291(.574)[.644]  .031(.563)[.564] .011(.528)[.528] .298 (1.545)[1.574] 0.004

49 MLE L003C.19D[.191]  .020(.363)[.364] .016(.336)[.337] .072(1.027)[1.029] 0.149
GMM .033(.222)[.224]  .025(.391)[.392] .023(.360)[.360]  .130(1.288)[1.295]  0.005

2SLS .014(.770) [.770]  .025(.387)[.387] .040(.357)[.359]  .111(1.574)[1.578] 0.001

COME  .007(.175)[.175]  .009(.246)[.246]  .007(.232)[.232]  .012(0.721)[0.721]  0.008

LSE A17(:277D[.3017  .009(.331)[.331]  .011(.321)[.322] .143(1.007) [1.017] 0.016

98  MLE  .006(.137)[.137]  .004(.241)[.241] .009(.230)[.230]  .019(0.693)[0.693]  0.130
GMM .014(.155)[.156]  .005(.269)[.269] .011(.258)[.258] .031(0.817)[0.818]  0.012

2SLS .052(.744)[.746]  .010(.263)[.263]  .024(.244)[.245] .131(1.237) [1.243]  0.002
COME  .003(.074)[.074]  .002(.104)[.104] .001(.097)[.097] .001(0.292)[0.292]  0.142
LSE .030(.083)[.088]  .000(.136)[.136] .001(.134)[.134]  .036(0.390)[0.392]  0.390

490 MLE .004(.059)[.059]  .002(.104)[.104] .001(.097)[.097] .001(0.291)[0.291]  0.556
GMM .008(.068)[.069]  .002(.108)[.108] .001(.101)[.101]  .006(0.319)[0.319]  0.232

2SLS .013(.415)[.416]  .006(.108)[.108] .009(.101)[.102]  .013(0.658)[0.658]  0.047
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TABLE 4: The results of bias, empirical standard error (SD), root of mean squared error (RMSE) and CPU

time (7'(s)) of COME for Case (1) under different \.

=09 B =1 B3 =—1 B =1 T(s)

n A bias(SD)[RMSE]  bias(SD)[RMSE]  bias(SD)[RMSE]  bias(SD)[RMSE]
.001  .002(.048)[.048] .002(.206)[.206] .004(.211)[.211] .014(.744)[.744] .027
.005 .003(.048)[.049] .003(.206)[.206] .004(.211)[.211] .015(.753)[.753] .028
98 0.50 .003(.048)[.048] .002(.206)[.206] .003(.211)[.211] .014(.758)[.758] .025
1.00 .003(.048)[.048] .002(.206)[.206] .003(.211)[.211] .014(.758)[.758] .024

TABLE 5: True and estimated standard errors and CPU time (7'(s)) of COME for Case(1).

14 :0() fg =1 /,33 =—1 Ajl =1 T(S)
n SD(SE.ave)[SE.std] SD(SE.ave)[SE.std] SD(SE.ave)[SE.std] SD(SE.ave)[SE.std]
98 .089(.074)[.045] .202(.212)[.059] .206(.214)[.062] 1.030(.962)[.389] 0.835
490 .033(.034)[.009] .092(.093)[.006] .093(.093)[.007] 0.408(.428)[.078] 15.515
2 -124.2719
4000 i
/ 2 1242719
2000
-124.2719
S e -124.2720
0 250 5000 7500 10000 1.22404 1.22406 1.2240
n RMSE of Paramters
(b)

FIGURE 1: (a) Computing time (7'(s)) of the LSE (dashed), MLE (dotted), GMM (twodash), 2SLS
(longdash) and COME (solid) for Case (1) as n increases from 49 to 9800, (b) BIC versus RMSE using

A = 0.001,0.05,0.5,1 for Case (1).
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5. A STUDY OF PM2.5 DISTRIBUTIONS IN BEIJING

Small particulate matters (PM) are detrimental to human beings’ health. PM, 5,
with a mean aerodynamic diameter less than 2.5 pm, poses more serious risks
on individuals, as small matters can be inhaled deeply into lungs and even blood-
streams. As the sources of PM2.5 are still debatable, it is of interest to understand
the distribution of PM; 5 in a specific region and how it is impacted by human
activities, such as driving. We analyze an atmospheric particulate matter data col-
lected from the internet. The data consist of hourly measurements of PM; 5 from
36 air-quality monitoring sites displayed in Figure 2 from Zhang et al. (2017)
in Beijing. By exploring the spatial correlation patterns of PMs 5 concentration,
we investigate the difference in the spatial autocorrelation of PMs 5 between dif-
ferent time points, such as between morning rush hours and evening rush hours
or between weekdays and weekends, to understand better the possible causes,
occurrence and development of PMs 5. The data document the concentration of
PM,; 5 measured in n = 36 monitoring sites from 7am to 9 pm on January 12,
2017 and January 14, 2017, which are a weekday (Thursday) and a weekend
day (Saturday), respectively. As wind speed (Speed), temperature (T'emp), at-
mospheric pressure (Press) may influence PM, 5 concentrations, we control for

them when fitting the following SAR model at a given ¢:

Yii = pWiYo + Buy + Tempy ;o + Speed, i Bs + Press, iBu + ¢riy  (8)
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where Y, ;, Temp,;, Speed;; and Press;; represent the PM, 5 concentration,
temperature, wind speed and atmospheric pressure, respectively, at location
ofhourt,i=1,--- ,n, W = (w;;) is an n x n normalized spatial weight matrix
which element w;; # 0 if location ¢ is adjacent to j, w;; = 0 otherwise, w;; = 0,
and Y; = (Yi1,...,Y:,). The adjacent relationship is generated by clustering
areas into several groups. The measurement errors €, ;s, ¢ = 1,--- ,n are i.i.d.
forany givent, €, = (&1, . ... €n)". We apply COME, MLE, 2SLS and GMM to
estimate p; and B; = (514, B2t, Bat» Bar)’s where p, represents the degree of spatial
correlation of PMs, 5 at hour ¢. The standard errors of the estimates are calculated
using the resampling method described in Section 3 with 500 bootstrap samples,
where 500 is determined by monitoring the stability of the estimated standard

€Irors.

FIGURE 2: Locations of the 36 air-quality monitoring sites in Beijing, marked with red or purple dots.
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The estimates (est), along with the bootstrap-based standard errors (SD) and
p-values (PV), of p; and 3; are displayed in Tables 3 and 4. The total CPU time
consumed for each method is recorded as 7};,,.. COME and MLE provide sim-
ilar estimates for 3; in all of cases. The results, however, differ from those of
GMM and 2SLS, especially when the covariates are not significant. This might
be supported by our simulation studies, which found that GMM and 2SLS pro-
duce biased results when the covariates are not significant. Though COME and
MLE provide similar estimates of p;, COME provide more significant estimates
than MLE, which could be attributed to the relatively small number of locations
in our data, leading to unstable MLE estimates. Figure 4 shows that the trends of
pr over time on a weekday and a weekend day manifested different patterns. On
a Thursday, p; was fairly stable and significantly above O until 8pm, and a slight
peak occurred at 10am. In contrast, on a Saturday, p; for the most time points is
around O but an obvious peak, which was significantly above 0, happened at 7pm.
Coincidentally, as Yao et al. (2015) noted when studying the PM2.5 concentra-
tions in Beijing, the traffic has been constantly heavy in Beijing on a business
day while the roads are the most jammed around 10am, whereas the traffic is
relatively heavier on Saturdays only after 3pm because of the increased human
activities, due to, for example, dinner appointments. Our modeling results, cou-
pled with the observations on Beijing’s human activities, suggested that PM2.5

be dispersed by vehicles, whose exhaustion might be a source of PM2.5 in Bei-
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jing. Finally, in terms of computing time, COME is comparable with GMM and

2SLS and is much faster than MLE.
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TABLE 6: Estimates of p; and 3, for the PM3 5 model on a workday
COME MLE GMM 2SLS
est(SD, PV) est(SD, PV) est(SD, PV) est(SD, PV)
t="7:00am Thursday
p 0.419(.272, 0.062) 0.115(.236,0.313 ) 1.066(.260, 0** ) 4.264(.718, 0%* )
Intercept 0.096(.077, 0.105) 0.113(.038, 0.001*%*) 0.138(.521, 0.396) 0.837(.189, 0** )
Temp -0.298(.205, 0.074) -0.355(.193, 0.033*) -0.185(.260, 0.238) -0.097(.158, 0.270)
Speed 0.243(.244, 0.159) 0.255(.305, 0.202 ) 0.226(.419, 0.295) -0.089(.156, 0.288)
Press 0.124(.193, 0.261) 0.134(.213,0.264 ) 0.147(.213, 0.245) 0.060(.158, 0.352)
Trimes 6.2 81.7 4.1 1.7
t =8:00am Thursday
p 0.646(.239, 0.003*%*) 0.206(.265, 0.219) 1.271(.282, 0** ) 3.455(.415, 0%* )
Intercept  0.137(.112,0.110 ) 0.161(.069, 0.010%) 0.184(.176, 0.147) 0.595(.107, 0** )
Temp -0.218(.251,0.192 ) -0.246(.206, 0.116 ) -0.083(.175,0.317) -0.011(.129, 0.466)
Speed 0.147(.293, 0.308 ) 0.129(.332, 0.348 ) 0.053(.121, 0.331) -0.126(.120, 0.146)
Press 0.052(.195, 0.395 ) 0.056(.241, 0.407 ) 0.079(.384, 0.418) 0.021(.130, 0.437)
Tiime 4.7 814 3.7 1.6
t=9:00am Thursday
p 0.752(.228, 0%* ) 0.298(.252,0.119) 0.964(.183, 0** ) 2.049(.148, 0** )
Intercept 0.121(.110, 0.136) 0.150(.075, 0.023*) 0.188(.720, 0.397) 0.235(.048, 0** )
Temp -0.151(.272, 0.289) -0.176(.214, 0.205 ) 0.046(.376, 0.451) -0.016(.161, 0.459)
Speed 0.099(.285, 0.364) 0.086(.336, 0.399 ) -0.126(.792, 0.437) -0.064(.133,0.313)
Press -0.067(.187, 0.360) -0.097(.228, 0.336 ) -0.145(.237, 0.269) 0.044(.154, 0.388)
Ttime 5.5 79 53 14
t=>5:00pm Thursday
p 0.611(.172, 0** ) 0.266(.143, 0.032%) 0.287(.213, 0.089) 0.597(.187, 0.001%*%*)
Intercept -0.030(.021, 0.07 ) -0.021(.010, 0.014%*) -0.016(.010, 0.056) -0.031(.015, 0.018%* )
Temp -0.442(.123, 0** ) -0.680(.147, 0%* ) -0.722(.199, 0** ) -0.458(.166, 0.003*%*)
Speed 0.453(.134, 0** ) 0.754(.168, 0** ) 0.792(.225, 0** ) 0.472(.184, 0.005%*)
Press -0.001(.088, 0.493) -0.035(.094, 0.354 ) -0.029(.094, 0.379) -0.003(.092, 0.487 )
Time 13.1 63.1 2.5 1.7
t =6:00pm Thursday
p 0.482(.157,0.001%%)  0.371(.152, 0.007**) 0.476(.206, 0.01%* ) 0.511(.208, 0.007*%*)
Intercept  -0.011(.013,0.197 ) -0.011(.013,0.183 ) -0.013(.013,0.163 ) -0.012(.012,0.162 )
Temp -0.429(.093, 0*%* ) -0.491(.120, 0** )  -0.429(.138, 0.001**)  -0.417(.139, 0.001**)
Speed 0.455(.094, 0** ) 0.535(.140, 0** ) 0.468(.166, 0.002**)  0.443(.158, 0.002**)
Press 0.205(.084, 0.007**)  0.215(.089, 0.008%*) 0.201(.087, 0.01%*) 0.203(.085, 0.008*%*)
Ttime 13.1 62.6 2.5 1.7
t="17:00pm Thursday
p 0.709(.23, 0.001%%*) 0.325(.175, 0.031%) 0.443(.228, 0.026* ) 0.707(.205, 0** )
Intercept  -0.008(.037, 0.417 )  -0.020(.018,0.123 )  -0.019(.022,0.192 ) -0.010(.025, 0.339)
Temp -0.286(.151, 0.029% )  -0.478(.164, 0.002**)  -0.437(.179, 0.007**)  -0.293(.163, 0.036*)
Speed 0.251(.224,0.131 ) 0.480(.255, 0.030% ) 0.464(.274, 0.045 ) 0.263(.238, 0.135)
Press 0.085(.208, 0.341 ) 0.098(.246, 0.345 ) 0.158(.246,0.261 ) 0.089(.211, 0.337)
Ttime 14.2 62.3 2.7 1.5
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TABLE 7: Estimates of p; and 3; for the PM> 5 model on a weekend day
COME MLE GMM 2SLS
est(SD, PV) est(SD, PV) est(SD, PV) est(SD, PV)
t="7:00am Saturday

p -0.481(.217, 0.013%) -0.253(.196, 0.099) -0.579(.576, 0.158) -0.972(.290, 0** )
Intercept ~ -0.012(.020, 0.270 ) -0.016(.015, 0.141) -0.027(.043, 0.267) -0.115(.030, 0** )
Temp 0.234(.271, 0.194) 0.250(.299, 0.201) 0.338(.392,0.194) 0.407(.297, 0.085 )
Speed -0.340(.290, 0.121 ) -0.393(.383, 0.153) -0.466(.447, 0.148) -0.622(.313, 0.023%)
Press -0.107(.170, 0.256 ) -0.114(.185, 0.269) -0.189(.216, 0.191) -0.093(.182, 0.305 )
Tiime 6.0 86.6 6.6 1.7
t =8:00am Saturday
p -0.388(.224, 0.041%) -0.218(.194, 0.131) -0.509(.598, 0.197) 1.010(.033, 0** )
Intercept  -0.006(.017, 0.358 ) -0.007(.015, 0.313) 0.004(.035, 0.460) 0.093(.291, 0.374)
Temp 0.130(.281, 0.321) 0.154(.319, 0.314) 0.312(.472, 0.254) -0.080(.336, 0.406)
Speed -0.313(.290,0.14 ) -0.390(.395, 0.162) -0.569(.529, 0.141) 0.117(.375, 0.377)
Press -0.206(.163, 0.104 ) -0.226(.189, 0.115) -0.347(.274, 0.103) -0.143(.189, 0.224)
Ttime 53 84.6 55 1.3
t=9:00am Saturday
p -0.468(.184, 0.006**) -0.214(.201, 0.142) -0.672(.864, 0.218) 2.320(.395, 0** )
Intercept ~ -0.005(.013, 0.362 ) -0.005(.013, 0.349) -0.008(.048, 0.433) 0.158(.094, 0.046%)
Temp -0.282(.374, 0.226 ) -0.282(.380, 0.229) -0.136(.579, 0.407) -0.572(.561, 0.154 )
Speed -0.152(.337,0.326 ) -0.211(.404, 0.301) -0.469(.580, 0.209) 0.942(.536, 0.040%)
Press 0.106(.194, 0.292 ) 0.111(.203, 0.292) 0.100(.270, 0.355) 0.030(.275, 0.456 )
Ttime 5.8 91.0 4.1 1.6
t=>5:00pm Saturday
p 0.515(.334, 0.062) 0.191(.180, 0.145 ) 0.192(.248,0.219 ) 0.493(.334, 0.007*%*)
Intercept 0.034(.036, 0.174 ) 0.041(.023, 0.034* ) 0.028(.020, 0.085 ) 0.036(.032,0.127 )
Temp -0.442(.239, 0.033%)  -0.624(.249, 0.006*%*)  -0.754 (.272, 0.003**)  -0.456(.255, 0.037* )
Speed 0.273(.223,0.111) 0.369(.277,0.092 ) 0.473(.277, 0.044* ) 0.280(.239,0.121 )
Press -0.143(.154, 0.176 ) -0.205(.189, 0.140 ) -0.157(.182,0.194 )  -0.150(.161,0.176 )
Time 14.0 62.8 2.6 1.8
t=6:00pm Saturday
p 0.578(.459, 0.104) 0.016(.195, 0.468 ) -0.048(.368, 0.448 ) 0.565(.466, 0.112)
Intercept 0.032(.052, 0.266) 0.013(.018, 0.237 ) 0.010(.033,0.375 ) 0.033(.050, 0.255)
Temp -0.371(.278, 0.092) -0.681(.278, 0.007**)  -1.041(.386, 0.003**) -0.382(.298, 0.100)
Speed 0.294(.258, 0.127) 0.534(.279, 0.028* ) 0.826(.353, 0.010%%*) 0.301(.275, 0.137)
Press -0.008(.151, 0.48) -0.065(.155,0.338 ) -0.035(.157,0.412 ) -0.008(.153, 0.480)
Ttime 14.0 62.6 2.4 1.7
t="7:00pm Saturday
p 0.972(.185, 0** ) 0.107(.200, 0.297 ) 0.038(.266, 0.444 ) 0.926(.170, 0** )
Intercept 0.019(.084, 0.411) 0.006(.019, 0.368 ) -0.003(.024, 0.456 ) 0.025(.068, 0.358)
Temp -0.116(.189, 0.269) -0.635(.212, 0.001**)  -0.819(.266, 0.001**) -0.159(.194, 0.206)
Speed 0.057(.229, 0.401) 0.447(.242, 0.032% ) 0.584(.274, 0.016* ) 0.094(.235, 0.344)
Press 0.049(.152, 0.374) 0.068(.172,0.346 ) 0.025(.178, 0.444 ) 0.043(.159, 0.394)
Time 13.1 62.6 2.7 1.7
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FIGURE 3: The COME estimates of p; (solid) and the point-wise confidence intervals (dotted) for Thursday

(left) and Saturday (right) as ¢ varies from 7am to 9pm.

6. CONCLUSION

We propose a new method, namely, COME, that combines the covariance and the
first moment conditions to draw inference based on SAR models. Under the reg-
ular conditions, we show that the estimator for the regression coefficients 3 and
p are \/n—consistent, and establish the asymptotically distribution. The simula-
tion studies indicated a good performance of the proposal, and found that COME
was more efficient than GMM and 2SLS in the cases considered. It was compa-
rable to GMM and 2SLS in of computational efficiency, was more computational
efficient than MLE.

SAR models require the specification of the spatial weights matrix
(Bhattacharjee and Jensen-Butler, 2013). However, the estimation results may
be highly sensitive to the specification of the spatial weights (Ahrens and Bhat-
tacharjee, 2015). A data-driven estimator for the spatial weights used in SAR
models has attracted attention. Moreover, how to extend SAR models to accom-

modate temporally correlated data warrant more investigation. One need to care-
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fully design inference procedures spatio-temporal data.

This paper has focused on low dimensional covariates. With more predictors
collected in air pollution studies, it will be of interest to extend the current the-
oretical results to spatial data with high-dimensional covariates. We will pursue

this elsewhere.
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Appendix A: notation
Let v = (p,8'), o = (po, B}) the true value of ~, S, (p) = I, — pW for any
value of p, S, = S, (po) = I, — poW.

The following notation is used in Theorem 1. Denote k, () = W'C,.b,(7),
Pa(p) = (In — pW)S; . Ku(p) = WCoP(p),  Julp) = Pulp)' CnPu(p) and
hn() = P.(p)' Cnbn(7y). Additionally, the following notation is used in Theo-

rem 2. Let ¢, = (S5,'X3,)W'C,, and

Var(1! €), Cov(1, €, g,€), Cov(1,€,X'Ce€), Cov(1l €, X'e)

1 Cov(1! €, g,€), Var(g,€), Cov(q,€,X'Cpe), Cov(g,€, X'e)

n | Cov(1. e, X'Cpe), Cov(gne, X'Cpe), Var(X'Cpre), Cov(X'Cre, X'€)
Cov(1/,e,X'e), Cov(g,€,X'€), Cov(X'e, X'Cy€), Var(X'e).

Appendix B: Lemmas

Appendix B: Proofs of Theorems 1 and 2

We rewrite (4) as U(y) = <U1 (7)>, where

Ua(y)
i) =~ WYy e, Y - WY - X9)
€))
Ua(v) = #MX’@ (Y — pWY — X3) — %X’(Y — WY — X3).

To prove Theorems 1 and 2, we introduce two needed Lemmas.

Lemma C.1 (van der Vaart, 1998, p.61) Let U(~) be a random vector-value

functions and EU(~) be a deterministic vector valued function of ~y. Suppose
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that there is a ~yy € 1" such that

inf |[[EU)|| > 0= EU (%), (A1)
d(v,v0)>e
and for every ¢ > 0
sup [[U () = BU ()| 0. (A.2)
~yel’

Then any sequence of estimators 4 = 7, such that U(%) = 0,(1) converge in

probability to .

Proof of Theorem 1. With Lemma C.1, we only need to verify the conditions
(A.1) and (A.2), which lead to ||5,, — Yol = 0,(1).

Proof of (A.1). We first verify (A.1). Applying Lemma C.1, there exists a
convergence sequence -y, such that vy, — «* in probability, and it follows that

~* € I" where I is a compact set. As
EU(Y") = EU(Y") - EU(®Y) + EU(Y) - U(¥),

it follows from (A.2) that EU(v*) = 0. Since EU () = 0 has a unique solution
at o, we conclude that vy = ~* which ensures the uniform consistency of .
This completes the proof of Theorem 1.

Proof of (A.2). For convenience, we only give the proof of sup,cr [Ui(y) —
EU ()] 2 0. Similar arguments lead to the conclusion about sup.,cr [Ua(7y) —
EUs(v)| 5 0. After replacing Y = S X8y + S:'e, Y — pWY — X8 =
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b (v) + P.(p)e€ in (9), we consider the following decomposition

suglUl(v) —EBU, (V)| <L+ 1+ I3+ I, + I,
~YeE

where
4
I = = sup |bin(V)gnbn(¥) = E{b1.0(7) @b ()},
T ~er
4 1 Qo— /
‘[2 - E Sull? bl,n(p}/)kn(ﬁy) Sn 16 + bl,n(’)/)qnpn(p)e + 2hn(7) Eqnbn(p)l)
~e
- E{bl,n('Y)kn('Y)/S;le + b1 (W)ann(p)e + 2hn(7)le‘hbn(7)} )
4 ! — li ! — /
I3 =— P bin(Y)E (ST K (p)e + 2€ h, (7)(S;, ' XB30) Kn(p)e
N ye

+ € Jn(p)€Gnbn (7) + 2€' he (V) (7)' S, € — E{b1 (7)€ (S, 1) Kn(p)e

+2€'hn(7)(S, ' XBo) Ku(p)e + € Ju(p)€qnbn(Y) + 2€ hu () kn(7)'S,, €},

I, = %sgg 2hn(7) €€ (S, ) Kn(p)e + € T (p)e { @ Pu(p)e + kn(v)'S; €}
+ € Ju(p)e{€(S ) Kulp)e) — 2Eh,(v) €€ (S,) Kulp)e
— E[J.(p)e{€(S, ") Kn(p)e} | — E€ Ju(p)e{q.Pa(p)e + kn(v)'S, '€} ‘

For I, we can directly get that /; = 0. Applying Assumptions 2-5 we can
derive I, = O,( =), and I3 = 0,(1).
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Note that

4
I, < —sup
N ~er

2ha ()€€ (S ") Kulp)e — 2Ehn<v>'ee'<S;l>'Kn<p>e\

+£supeJ {an e+ k() e} E€' J,( {qnn V€ + ky(

’yel“

4
+—sup
N ~er

€J.(p)e{€(S (p)e} — E[eJ e {€(S )E}H

=: I41 + ]42 + 143.

To show the linear-quadratic form in Kelejian and Prucha (2001) asymptotically

follows a normal distribution, we can show

2

(ha(Y)€ + €(S7 ) Kn(p)e} — E{hn(v) e+ € (S K, (p)e} o

and obtain

2

{ha(7) e+ €(S, "V Knlp)e} = E {ha(7)'e +€(S,"V Knlp)e}

= 0,(1) + 2h, () €€ (S; 1) K,(p)e — 2Eh,,(v) €€ (S, ') K,(p)e. (11)

Combining (10) with (11), we have I;; = 0,(1). Similarly, we can obtain I, =
143 = 0,(1). Consequently we complete the proof of (A.2).

Proof of Theorem 2. Using the Taylor expansion, we have

> +0p(1), (12)

U(p,B) = Ulpo, Bo) + <U1 (Poﬁo)) <p — o

Uy (po. Bo) ) \B = Bo
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U (70) '
where : Whipofo)) - — | TP , Us(po, Bo) =
(po 50) o ’7 ~Yo Um(’yo) 2(ﬂ0 ,30)
U.
Walpo )| = 2% (%) . Using Lemmas 1-3 and Theorem 1 in Kelejian
! Uas(70)

and Prucha (2001) can show that

> =T + 0,(1), (13)

<U1/(P0, ,30)
Us (po, Bo)

where U are defined in Assumption 4.

On the other hand, the estimating equations of U (-y,) can be

I

—4€'Cre{2q,e + 2€G Cre}
Uw) = —4€'Ce5X'Che — 2X'e

(Ul (’Yo)>

UQ(’)’O) 7

where G,, = WS, 1. Since 1€'e L 5% and LG Cre KA LGl - /U ()
can be rewritten as

—(=1,€)?* {%q e+ Hall} — 452{Lg,e + Haaly
o .

U —
VrU(o) ( LX/Cpe— 40° LXC e — 22X

_(\/%;

Then, multivariate CLT can yield
J=le
1
L\/_)ﬁ((/]ge € ~ N(0,%),
saxln
\/lﬁX' €
where X is defined in Appendix A. Then we use Z to represent a multivariate nor-

mal variable with mean 0 and covariance X. Let g : RP™2 — RP*! be a contin-
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—4u?s — 4o?s — 2 w

respond with u,v € R and w, s € RP. Furthermore, by Assumption 4 and the

_ A2 w(GLO) Y 42 (G, Cr)
uous map and g(u, v, s, w) = ( dut{v + ==} —dot{u + T }> cor-

Law of Large Numbers, we note that W~ exists. Therefore, by the Continuous

Mapping Theorem, we have

P = po
~ ~ U g(Z), 14
ﬁ<ﬂ_ﬂo) 9(2) (14)

after combining (12) with (13).
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