
Survival Analysis: Introduction

Survival Analysis typically focuses on time to event data.
In the most general sense, it consists of techniques for positive-
valued random variables, such as

• time to death

• time to onset (or relapse) of a disease

• length of stay in a hospital

• duration of a strike

• money paid by health insurance

• viral load measurements

• time to finishing a doctoral dissertation!

Kinds of survival studies include:

• clinical trials

• prospective cohort studies

• retrospective cohort studies

• retrospective correlative studies

Typically, survival data are not fully observed, but rather
are censored.
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In this course, we will:

• describe survival data

• compare survival of several groups

• explain survival with covariates

• design studies with survival endpoints

Some knowledge of discrete data methods will be useful,
since analysis of the “time to event” uses information from
the discrete (i.e., binary) outcome of whether the event oc-
curred or not.

Some useful references:

• Collett: Modelling Survival Data in Medical Research

• Cox and Oakes: Analysis of Survival Data

• Kalbfleisch and Prentice: The Statistical Analysis of
Failure Time Data

• Lee: Statistical Methods for Survival Data Analysis

• Fleming & Harrington: Counting Processes and Sur-
vival Analysis

• Hosmer & Lemeshow: Applied Survival Analysis

• Kleinbaum: Survival Analysis: A self-learning text
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• Klein & Moeschberger: Survival Analysis: Techniques
for censored and truncated data

• Cantor: Extending SAS Survival Analysis Techniques
for Medical Research

• Allison: Survival Analysis Using the SAS System

• Jennison & Turnbull: Group Sequential Methods with
Applications to Clinical Trials
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Some Definitions and notation

Failure time random variables are always non-negative.
That is, if we denote the failure time by T , then T ≥ 0.

T can either be discrete (taking a finite set of values, e.g.
a1, a2, . . . , an) or continuous (defined on (0,∞)).

A random variable X is called a censored failure time
random variable if X = min(T, U), where U is a non-
negative censoring variable.

In order to define a failure time random variable,
we need:

(1) an unambiguous time origin
(e.g. randomization to clinical trial, purchase of car)

(2) a time scale
(e.g. real time (days, years), mileage of a car)

(3) definition of the event
(e.g. death, need a new car transmission)
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Illustration of survival data
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The illustration of survival data on the previous page shows
several features which are typically encountered in analysis
of survival data:

• individuals do not all enter the study at the same time

• when the study ends, some individuals still haven’t had
the event yet

• other individuals drop out or get lost in the middle of
the study, and all we know about them is the last time
they were still “free” of the event

The first feature is referred to as “staggered entry”

The last two features relate to “censoring” of the failure
time events.
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Types of censoring:

• Right-censoring :

only the r.v. Xi = min(Ti, Ui) is observed due to

– loss to follow-up
– drop-out
– study termination

We call this right-censoring because the true unobserved
event is to the right of our censoring time; i.e., all we
know is that the event has not happened at the end of
follow-up.

In addition to observing Xi, we also get to see the fail-
ure indicator:

δi =



1 if Ti ≤ Ui

0 if Ti > Ui

Some software packages instead assume we have a
censoring indicator:

ci =



0 if Ti ≤ Ui

1 if Ti > Ui

Right-censoring is the most common type of censoring
assumption we will deal with in survival analysis.
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• Left-censoring

Can only observe Yi = max(Ti, Ui) and the failure indi-
cators:

δi =



1 if Ui ≤ Ti

0 if Ui > Ti

e.g. (Miller) study of age at which African children learn
a task. Some already knew (left-censored), some learned
during study (exact), some had not yet learned by end
of study (right-censored).

• Interval-censoring

Observe (Li, Ri) where Ti ∈ (Li, Ri)

Ex. 1: Time to prostate cancer, observe longitudinal
PSA measurements

Ex. 2: Time to undetectable viral load in AIDS studies,
based on measurements of viral load taken at each clinic
visit

Ex. 3: Detect recurrence of colon cancer after surgery.
Follow patients every 3 months after resection of primary
tumor.
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Independent vs informative censoring

• We say censoring is independent (non-informative) if
Ui is independent of Ti.

– Ex. 1 If Ui is the planned end of the study (say, 2
years after the study opens), then it is usually inde-
pendent of the event times.

– Ex. 2 If Ui is the time that a patient drops out
of the study because he/she got much sicker and/or
had to discontinue taking the study treatment, then
Ui and Ti are probably not independent.

An individual censored at U should be repre-
sentative of all subjects who survive to U .

This means that censoring at U could depend on prog-
nostic characteristics measured at baseline, but that among
all those with the same baseline characteristics, the prob-
ability of censoring prior to or at time U should be the
same.

• Censoring is considered informative if the distribu-
tion of Ui contains any information about the parameters
characterizing the distribution of Ti.
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Suppose we have a sample of observations on n people:

(T1, U1), (T2, U2), ..., (Tn, Un)

There are three main types of (right) censoring times:

• Type I: All the Ui’s are the same
e.g. animal studies, all animals sacrificed after 2 years

• Type II: Ui = T(r), the time of the rth failure.
e.g. animal studies, stop when 4/6 have tumors

• Type III: the Ui’s are random variables, δi’s are failure
indicators:

δi =



1 if Ti ≤ Ui

0 if Ti > Ui

Type I and Type II are called singly censored data,
Type III is called randomly censored (or sometimes pro-
gressively censored).
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Some example datasets:

Example A. Duration of nursing home stay
(Morris et al., Case Studies in Biometry, Ch 12)

The National Center for Health Services Research studied
36 for-profit nursing homes to assess the effects of different
financial incentives on length of stay. “Treated” nursing
homes received higher per diems for Medicaid patients, and
bonuses for improving a patient’s health and sending them
home.

Study included 1601 patients admitted between May 1, 1981
and April 30, 1982.

Variables include:
LOS - Length of stay of a resident (in days)
AGE - Age of a resident
RX - Nursing home assignment (1:bonuses, 0:no bonuses)
GENDER - Gender (1:male, 0:female)
MARRIED - (1: married, 0:not married)
HEALTH - health status (2:second best, 5:worst)
CENSOR - Censoring indicator (1:censored, 0:discharged)

First few lines of data:
37 86 1 0 0 2 0
61 77 1 0 0 4 0
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Example B. Fecundability

Women who had recently given birth were asked to recall
how long it took them to become pregnant, and whether or
not they smoked during that time. The outcome of inter-
est (summarized below) is time to pregnancy (measured in
menstrual cycles).

19 subjects were not able to get pregnant after 12 months.

Cycle Smokers Non-smokers
1 29 198
2 16 107
3 17 55
4 4 38
5 3 18
6 9 22
7 4 7
8 5 9
9 1 5
10 1 3
11 1 6
12 3 6

12+ 7 12
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Example C: MAC Prevention Clinical Trial

ACTG 196 was a randomized clinical trial to study the effects
of combination regimens on prevention of MAC (mycobac-
terium avium complex), one of the most common oppor-
tunistic infections in AIDS patients.

The treatment regimens were:

• clarithromycin (new)

• rifabutin (standard)

• clarithromycin plus rifabutin

Other characteristics of trial:

• Patients enrolled between April 1993 and February 1994

• Follow-up ended August 1995

• In February 1994, rifabutin dosage was reduced from 3
pills/day (450mg) to 2 pills/day (300mg) due to concern
over uveitis1

The main intent-to-treat analysis compared the 3 treatment
arms without adjusting for this change in dosage.

1Uveitis is an adverse experience resulting in inflammation of the
uveal tract in the eyes (about 3-4% of patients reported uveitis).
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Example D: HMO Study of HIV-related Survival

This is hypothetical data used by Hosmer & Lemeshow (de-
scribed on pages 2-17) containing 100 observations on HIV+
subjects belonging to an Health Maintenance Organization
(HMO). The HMO wants to evaluate the survival time of
these subjects. In this hypothetical dataset, subjects were
enrolled from January 1, 1989 until December 31, 1991.
Study follow up then ended on December 31, 1995.

Variables:

ID Subject ID (1-100)
TIME Survival time in months
ENTDATE Entry date
ENDDATE Date follow-up ended due to death or censoring
CENSOR Death Indicator (1=death, 0=censor)
AGE Age of subject in years
DRUG History of IV Drug Use (0=no,1=yes)

This dataset is used by Hosmer & Lemeshow to motivate
some concepts in survival analysis in Chap. 1 of their book.
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Example E: UMARU Impact Study (UIS)

This dataset comes from the University of Massachusetts
AIDS Research Unit (UMARU) IMPACT Study, a 5-year
collaborative research project comprised of two concurrent
randomized trials of residential treatment for drug abuse.

(1) Program A: Randomized 444 subjects to a 3- or 6-
month program of health education and relapse preven-
tion. Clients were taught to recognize “high-risk” situ-
ations that are triggers to relapse, and taught skills to
cope with these situations without using drugs.

(2) Program B: Randomized 184 participants to a 6- or
12-month program with highly structured life-style in a
communal living setting.

Variables:
ID Subject ID (1-628)
AGE Age in years
BECKTOTA Beck Depression Score
HERCOC Heroin or Cocaine Use prior to entry
IVHX IV Drug use at Admission
NDRUGTX Number previous drug treatments
RACE Subject’s Race (0=White, 1=Other)
TREAT Treatment Assignment (0=short, 1=long)
SITE Treatment Program (0=A,1=B)
LOT Length of Treatment (days)
TIME Time to Return to Drug Use (days)
CENSOR Indicator of Drug Use Relapse (1=yes,0=censored)
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Example F: Atlantic Halibut Survival Times

One conservation measure suggested for trawl fishing is a
minimum size limit for halibut (32 inches). However, this size
limit would only be effective if captured fish below the limit
survived until the time of their release. An experiment was
conducted to evaluate the survival rates of halibut caught by
trawls or longlines, and to assess other factors which might
contribute to survival (duration of trawling, maximum depth
fished, size of fish, and handling time).

An article by Smith, Waiwood and Neilson, Survival Analy-
sis for Size Regulation of Atlantic Halibut in Case Studies
in Biometry compares parametric survival models to semi-
parametric survival models in evaluating this data.

Survival Tow Diff Length Handling Total
Obs Time Censoring Duration in of Fish Time log(catch)
# (min) Indicator (min.) Depth (cm) (min.) ln(weight)
100 353.0 1 30 15 39 5 5.685
109 111.0 1 100 5 44 29 8.690
113 64.0 0 100 10 53 4 5.323
116 500.0 1 100 10 44 4 5.323
....
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More Definitions and Notation

There are several equivalent ways to characterize the prob-
ability distribution of a survival random variable. Some of
these are familiar; others are special to survival analysis. We
will focus on the following terms:

• The density function f (t)

• The survivor function S(t)

• The hazard function λ(t)

• The cumulative hazard function Λ(t)

• Density function (or Probability Mass Func-
tion) for discrete r.v.’s
Suppose that T takes values in a1, a2, . . . , an.

f (t) = Pr(T = t)

=



fj if t = aj, j = 1, 2, . . . , n

0 if t �= aj, j = 1, 2, . . . , n

• Density Function for continuous r.v.’s

f (t) = lim
∆t→0

1
∆t

Pr(t ≤ T ≤ t + ∆t)
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• Survivorship Function: S(t) = P (T ≥ t).

In other settings, the cumulative distribution function,
F (t) = P (T ≤ t), is of interest. In survival analysis, our
interest tends to focus on the survival function, S(t).

For a continuous random variable:

S(t) =
∫ ∞
t

f (u)du

For a discrete random variable:

S(t) =
∑
u≥t

f (u)

=
∑
aj≥t

f (aj)

=
∑
aj≥t

fj

Notes:

• From the definition of S(t) for a continuous variable,
S(t) = 1 −F (t) as long as f (t) is absolutely continuous

• For a discrete variable, we have to decide what to do if
an event occurs exactly at time t; i.e., does that become
part of F (t) or S(t)?

• To get around this problem, several books define
S(t) = Pr(T > t), or else define F (t) = Pr(T < t)
(eg. Collett)
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• Hazard Function λ(t)

Sometimes called an instantaneous failure rate, the
force of mortality, or the age-specific failure rate.

– Continuous random variables:

λ(t) = lim
∆t→0

1
∆t

Pr(t ≤ T < t + ∆t|T ≥ t)

= lim
∆t→0

1
∆t

Pr([t ≤ T < t + ∆t] ⋂ [T ≥ t])
Pr(T ≥ t)

= lim
∆t→0

1
∆t

Pr(t ≤ T < t + ∆t)
Pr(T ≥ t)

=
f (t)
S(t)

– Discrete random variables:

λ(aj) ≡ λj = Pr(T = aj|T ≥ aj)

=
P (T = aj)
P (T ≥ aj)

=
f (aj)
S(aj)

=
f (t)

∑
k:ak≥aj

f (ak)
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• Cumulative Hazard Function Λ(t)

– Continuous random variables:

Λ(t) =
∫ t

0
λ(u)du

– Discrete random variables:

Λ(t) =
∑

k:ak<t
λk
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Relationship between S(t) and λ(t)

We’ve already shown that, for a continuous r.v.

λ(t) =
f (t)
S(t)

For a left-continuous survivor function S(t), we can show:

f (t) = −S ′(t) or S ′(t) = − f (t)

We can use this relationship to show that:

− d

dt
[logS(t)] = −


 1
S(t)


 S ′(t)

= − −f (t)
S(t)

=
f (t)
S(t)

So another way to write λ(t) is as follows:

λ(t) = − d

dt
[logS(t)]
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Relationship between S(t) and Λ(t):

• Continuous case:

Λ(t) =
∫ t

0
λ(u)du

=
∫ t

0

f (u)
S(u)

du

=
∫ t

0
− d

du
logS(u)du

= − logS(t) + logS(0)

⇒ S(t) = e−Λ(t)

• Discrete case:
Suppose that aj < t ≤ aj+1. Then

S(t) = P (T ≥ a1, T ≥ a2, . . . , T ≥ aj+1)

= P (T ≥ a1)P (T ≥ a2|T ≥ a1) · · ·P (T ≥ aj+1|T ≥ aj)

= (1 − λ1) × · · · × (1 − λj)

=
∏

k:ak<t

(1 − λk)

Cox defines Λ(t) = ∑
k:ak<t log(1 − λk) so that S(t) =

e−Λ(t) in the discrete case, as well.
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Measuring Central Tendency in Survival

• Mean survival - call this µ

µ =
∫ ∞
0

uf (u)du for continuous T

=
n∑

j=1
ajfj for discrete T

• Median survival - call this τ , is defined by

S(τ ) = 0.5

Similarly, any other percentile could be defined.

In practice, we don’t usually hit the median survival
at exactly one of the failure times. In this case, the
estimated median survival is the smallest time τ such
that

Ŝ(τ ) ≤ 0.5
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Some hazard shapes seen in applications:

• increasing

e.g. aging after 65

• decreasing

e.g. survival after surgery

• bathtub

e.g. age-specific mortality

• constant

e.g. survival of patients with advanced chronic disease
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Estimating the survival or hazard function

We can estimate the survival (or hazard) function in two
ways:

• by specifying a parametric model for λ(t) based on a
particular density function f (t)

• by developing an empirical estimate of the survival func-
tion (i.e., non-parametric estimation)

If no censoring:
The empirical estimate of the survival function, S̃(t), is the
proportion of individuals with event times greater than t.

With censoring:
If there are censored observations, then S̃(t) is not a good
estimate of the true S(t), so other non-parametric methods
must be used to account for censoring (life-table methods,
Kaplan-Meier estimator)
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Some Parametric Survival Distributions

• The Exponential distribution (1 parameter)

f (t) = λe−λt for t ≥ 0

S(t) =
∫ ∞
t

f (u)du

= e−λt

λ(t) =
f (t)
S(t)

= λ constant hazard!

Λ(t) =
∫ t

0
λ(u) du

=
∫ t

0
λ du

= λt

Check: Does S(t) = e−Λ(t) ?

median: solve 0.5 = S(τ ) = e−λτ :

⇒ τ =
− log(0.5)

λ
mean: ∫ ∞

0
uλe−λudu =

1
λ
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• The Weibull distribution (2 parameters)
Generalizes exponential:

S(t) = e−λtκ

f (t) =
−d

dt
S(t) = κλtκ−1e−λtκ

λ(t) = κλtκ−1

Λ(t) =
∫ t

0
λ(u)du = λtκ

λ - the scale parameter
κ - the shape parameter

The Weibull distribution is convenient because of its sim-
ple form. It includes several hazard shapes:

κ = 1 → constant hazard

0 < κ < 1 → decreasing hazard

κ > 1 → increasing hazard
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• Rayleigh distribution
Another 2-parameter generalization of exponential:

λ(t) = λ0 + λ1t

• compound exponential

T ∼ exp(λ), λ ∼ g

f (t) =
∫ ∞
0

λe−λtg(λ)dλ

• log-normal, log-logistic:
Possible distributions for T obtained by specifying for
log T any convenient family of distributions, e.g.

log T ∼ normal (non-monotone hazard)

log T ∼ logistic
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Why use one versus another?

• technical convenience for estimation and inference

• explicit simple forms for f (t), S(t), and λ(t).

• qualitative shape of hazard function

One can usually distinguish between a one-parameter model
(like the exponential) and two-parameter (like Weibull or
log-normal) in terms of the adequacy of fit to a dataset.

Without a lot of data, it may be hard to distinguish between
the fits of various 2-parameter models (i.e., Weibull vs log-
normal)
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Plots of estimates of S(t)
Based on KM, exponential, Weibull, and log-normal

for study of protease inhibitors in AIDS patients
(ACTG 320)
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Plots of estimates of S(t)
Based on KM, exponential, Weibull, and log-normal

for study of protease inhibitors in AIDS patients
(ACTG 320)
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Plots of estimates of S(t)
Based on KM, exponential, Weibull, and log-normal

for study of protease inhibitors in AIDS patients
(ACTG 320)
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Preview of Coming Attractions

Next we will discuss the most famous non-parametric ap-
proach for estimating the survival distribution, called the
Kaplan-Meier estimator.

To motivate the derivation of this estimator, we will first
consider a set of survival times where there is no censoring.

The following are times to relapse (weeks) for 21 leukemia
patients receiving control treatment (Table 1.1 of Cox &
Oakes):

1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23

How would we estimate S(10), the probability that an indi-
vidual survives to time 10 or later?

What about S̃(8)? Is it 12
21 or 8

21?
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Let’s construct a table of S̃(t):

Values of t Ŝ(t)
t ≤ 1 21/21=1.000

1 < t ≤ 2 19/21=0.905
2 < t ≤ 3 17/21=0.809
3 < t ≤ 4
4 < t ≤ 5
5 < t ≤ 8
8 < t ≤ 11
11 < t ≤ 12
12 < t ≤ 15
15 < t ≤ 17
17 < t ≤ 22
22 < t ≤ 23

Empirical Survival Function:
When there is no censoring, the general formula is:

S̃(t) =
# individuals with T ≥ t

total sample size

34



In most software packages, the survival function is evaluated
just after time t, i.e., at t+. In this case, we only count the
individuals with T > t.

Example for leukemia data (control arm):
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Stata Commands for Survival Estimation

.use leukem

.stset remiss status if trt==0 (to keep only untreated patients)
(21 observations deleted)

. sts list
failure _d: status

analysis time _t: remiss

Beg. Net Survivor Std.
Time Total Fail Lost Function Error [95% Conf. Int.]

----------------------------------------------------------------------
1 21 2 0 0.9048 0.0641 0.6700 0.9753
2 19 2 0 0.8095 0.0857 0.5689 0.9239
3 17 1 0 0.7619 0.0929 0.5194 0.8933
4 16 2 0 0.6667 0.1029 0.4254 0.8250
5 14 2 0 0.5714 0.1080 0.3380 0.7492
8 12 4 0 0.3810 0.1060 0.1831 0.5778
11 8 2 0 0.2857 0.0986 0.1166 0.4818
12 6 2 0 0.1905 0.0857 0.0595 0.3774
15 4 1 0 0.1429 0.0764 0.0357 0.3212
17 3 1 0 0.0952 0.0641 0.0163 0.2612
22 2 1 0 0.0476 0.0465 0.0033 0.1970
23 1 1 0 0.0000 . . .

----------------------------------------------------------------------

.sts graph
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SAS Commands for Survival Estimation

data leuk;
input t;
cards;
1
1
2
2
3
4
4
5
5
8
8
8
8
11
11
12
12
15
17
22
23
;

proc lifetest data=leuk;
time t;
run;
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SAS Output for Survival Estimation

The LIFETEST Procedure

Product-Limit Survival Estimates

Survival
Standard Number Number

t Survival Failure Error Failed Left

0.0000 1.0000 0 0 0 21
1.0000 . . . 1 20
1.0000 0.9048 0.0952 0.0641 2 19
2.0000 . . . 3 18
2.0000 0.8095 0.1905 0.0857 4 17
3.0000 0.7619 0.2381 0.0929 5 16
4.0000 . . . 6 15
4.0000 0.6667 0.3333 0.1029 7 14
5.0000 . . . 8 13
5.0000 0.5714 0.4286 0.1080 9 12
8.0000 . . . 10 11
8.0000 . . . 11 10
8.0000 . . . 12 9
8.0000 0.3810 0.6190 0.1060 13 8
11.0000 . . . 14 7
11.0000 0.2857 0.7143 0.0986 15 6
12.0000 . . . 16 5
12.0000 0.1905 0.8095 0.0857 17 4
15.0000 0.1429 0.8571 0.0764 18 3
17.0000 0.0952 0.9048 0.0641 19 2
22.0000 0.0476 0.9524 0.0465 20 1
23.0000 0 1.0000 0 21 0
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SAS Output for Survival Estimation (cont’d)

Summary Statistics for Time Variable t

Quartile Estimates

Point 95% Confidence Interval
Percent Estimate [Lower Upper)

75 12.0000 8.0000 17.0000
50 8.0000 4.0000 11.0000
25 4.0000 2.0000 8.0000

Mean Standard Error

8.6667 1.4114

Summary of the Number of Censored and Uncensored Values

Percent
Total Failed Censored Censored

21 21 0 0.00
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Does anyone have a guess regarding how to calcu-
late the standard error of the estimated survival?

Ŝ(8+) = P (T > 8) =
8
21

= 0.381

(at t = 8+, we count the 4 events at time=8 as already
having failed)

se[Ŝ(8+)] = 0.106
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