
Analysis of multivariate non-gaussian functional data: a semiparametric latent
process approach

Jiakun Jianga,b, Huazhen Linb,∗, Qingzhi Zhongb , and Yi Lic
a Center for Statistics and Data Science, Beijing Normal University at Zhuhai, China.

bCenter of Statistical Research and School of Statistics, Southwestern University of Finance and Economics,
Chengdu, Sichuan, China.

cDepartment of Biostatistics, University of Michigan, Ann Arbor, USA.

Abstract

Commonly assumed for multivariate functional regression models are normality and structural dependence, which,
however, may not hold in practice. To relax these restrictions, we propose a new semiparametric transformation
latent process functional regression model for multivariate functional data. Our model does not require normality
assumptions or any specific dependence structures among multivariate response curves or intra-individual variability
across time. We propose a combined likelihood- and estimating equation-based method to estimate parameters, trans-
formation functions and covariance structures. We establish theoretical properties, including

√
n−consistency and

asymptotic normality, for the proposed estimators. The utility of the method is illustrated via extensive simulations
and analyses of an elderly cognitive evolution dataset, which yield a better fit than the other competing methods and
some interesting findings.

Keywords: Functional regression analysis, Latent process, Normal transformation model, Semi-parametric
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1. Introduction

Multivariate functional data are commonly collected in psychological studies to measure unobservable outcomes,
e.g. cognitive functions, with a series of measurements in response to a battery of tests administered over time. In
this case, the latent cognitive process, viewed as a common cognitive factor across all of the psychometric tests,
may better predict dementia and cognitive decline ([14, 43, 47]). It would be of substantial interest to focus on this
latent process by describing its evolution as well as the impactful factors. However, analyses of this type of data
are hampered by (a) unobservable latent cognitive evolution process; (b) unknown dependency among multivariate
longitudinal or functional data; (c) unknown links between the latent process and the multivariate functional data;
and (d) non-Gaussian multivariate response curves as reflected by the psychometric test results; see Figures 2-4 in
the Supplementary Material. The goal of the paper is to propose a functional regression model which allowing non-
Gaussian response curves and without the specifications of link functions and covariance structures.

Limited work has been done for modeling multivariate functional responses. Dunson ([11]) proposed a dynamic
latent variable model (DLVM) in which each response is related to a latent variable through a generalized linear model,
and the serial dependency is accounted by a linear transition structure model which stipulates that the latent traits
linearly depend on their chistorical values and covariates. The articles [4, 9, 22] extended the DLVM to accommodate
categorical data, survival data and mixed-type data. However, as [13] alluded to, with a discrete-time formulation,
DLVM can only fit regularly balanced time series and may have limited usage for analyzing data collected at irregular
and possibly subject-specific time points. An extension to these settings is difficult because the number of parameters
increases with the number of subject-specific time points. Moreover, DLVM requires a Gaussian assumption on
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the functional responses as well as a specified link between the responses and the latent process. In addition, [8]
proposed a multivariate functional linear regression model in which both the response and predictor variables contain
multivariate random trajectories; see [2, 16] for a comprehensive review.

To address some of these limitations, [35, 65] proposed functional linear mixed models; [20] related functional
binary or count data to a latent Gaussian process; [50, 52, 56] applied a generalized Gaussian process regression
model for non-Gaussian functional data; [25]developed a Gaussian latent process threshold model for longitudinal
ordinal data; [43, 44] proposed a transformation latent process model for multivariate non-Gaussian longitudinal data.
However, all of the methods require specifications of the covariance structures of the latent process and the links
between the latent process and the functional responses, which may not be desirable as results are sensitive to these
misspecifications.

We propose a semiparametric transformation latent process functional regression model for multivariate non-
Gaussian functional data. By not specifying link functions and covariance structures, our model does not require nor-
mality assumptions or any specific dependence structures among multivariate response curves or intra-individual vari-
ability across time, and provides a convenient means to model the dependency among the multivariate non-Gaussian
functional responses, and to explore the biologic processes governing the cognitive impairment. Furthermore, our
model allows measurements to be taken at irregular and possibly subject-specific time points. With the added flexibil-
ity, our model has smaller out-of-sample prediction errors than the existing methods as shown in our analysis of the
Cognitive Decline data, which motivated the proposed method; see Section 5 and Table 4.

The remainder is organized as follows. The proposed method and a two-stage estimation procedure are introduced
in Section 2. The uniformly consistent and asymptotically normal properties are derived in Section 3. Section 4
contains simulation results and Section 5 presents an application to an elderly cognitive evolution study. Section 6
concludes the paper with concluding remarks. Technical proofs and related results are relegated to the Appendix and
Supplementary Materials.

2. Model and Estimation

2.1. Model

Suppose that there are n independent subjects with observations (Yi(ti j),Xi j,Zi j), i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , ni},
where Yi(ti j) =

(
Yi1(ti j), . . . ,Yip(ti j)

)> are continuous outcomes of a p-dimensional vector measured at individual-
specific time points ti j, Xi j and Zi j are respectively p1 and p2 dimensional covariates, representing two different sets
of features. For example, Xi j are confounders and Zi j are covariates of interest covariate, such as treatment assignment
or dosage of regimen. Without loss of generality, we assume that the time points ti j’s are a random sample from a
certain population with a bounded support, say, [0, 1]. Also to facilitate large sample property derivations, we assume
a random covariate design, that is, (Xi j,Zi j) are random variables, jointly following an unspecified distribution. De-
note by ηi = (ηi(t))t≥0 the latent process (e.g. cognitive ability) for individual i with i ∈ {1, . . . , n}, and our goal is to
describe its evolution over time and evaluate how the covariates, Zi j, may impact it. As opposed to the existing models
and by relaxing the normality assumptions on Yi(t), we consider a nonparametric transformation that will transform
Yi(t) into a normal variable before linking it to ηi. To illustrate the idea, we note that, for a continuous variable Y with
a distribution function F, it is possible to find a transformation to “normalize” it. Specifically, let Φ be the standard
normal distribution function and take H(·) = Φ−1(F(·)). Then, H(Y) has a standard normal distribution. This motivates
us to find a monotonic transformation Hm(·) for Yim(t) such that the observed outcomes Yim(t),m = 1, . . . , p depend on
the unobserved latent variables ηi(t) through a normal transformation linear model,

Hm(Yim(ti j)) = X>i jβm + λmηi(ti j) + εim j, m = 1, . . . , p, (1)

where β = (β1, . . . ,βp)> is a matrix of regression coefficients, λ = (λ1, . . . , λp)> is a vector of factor loadings and
ε i j = (εi1 j, . . . , εip j)> is distributed as N(0,Σe) with Σe = diag(σ2

1, . . . , σ
2
p). For identifiability, we let λ1 = 1 and

Hm(Enm) = c > 0, with Enm = 1
N

∑n
i=1

∑ni
j=1 Yim(ti j), where N =

∑n
i=1 ni. It is noteworthy that our transformation

function is to apply to the entire random process Yim(t), rather than only to its realizations on individual and discrete
time points, an idea stemmed from [21] which considered a common Box-Cox transformation for longitudinal data;
also see [17, 33].
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In addition, the dependence among the multiple functional responses is reflected through the shared latent process
ηi(·), e.g. a common cognitive factor across multiple response curves. We posit the following model for ηi(t):

ηi(ti j) = Z>i jα + δi(ti j), j ∈ {1, . . . , ni}, (2)

where Zi j is the of interest covariate vector with p2-dimension, such as treatment assignment or dosage of regimen, α
is used to evaluate the impact of the covariates on the latent process, δi(t) is a Gaussian process with unknown mean
µ(t) and unknown covariance structure C(s, t) = Cov(δi(s), δi(t)), and is independent of the error process ε i(t) with
ε i(ti j) = ε i j, Our models can accommodate multivariate functional data consisting of mixtures of count, ordinal and
continuous variables by linking discrete outcomes to continuous latent variables as in [12, 37].

However, for irregular time points, the dimension of parameters may diverge as n → ∞, making it difficult to
apply the DLVM model described in [11] for discrete times. [43, 44]and [25] tackled the problem by specifying both
the mean and covariance structures of the latent process, which were restricted in practice.

To deal with these challenges, we propose to draw inference based on (1) and (2). Applying the Karhunen-Loeve
expansion ([3]) yields

δi(t) = µ(t) +

∞∑
k=1

ξikφk(t), (3)

where µ(t) = E{δi(t)} is the overall mean function; φk(t) is the k-th orthonomal eigenfunction of the covariance
function C(s, t) = Cov(δi(s), δi(t)), satisfying

∫
φk(t)φ j(t)dt = 1 if j = k, and 0 otherwise; the ξik are the functional

principal component scores for the stochastic process δi(t) with E(ξik) = 0, var(ξik) = ρk and cov(ξi j, ξik) = 0 if j , k.
Here, ρk is the eigenvalue corresponding to the eigenfunction φk(·). For identifiability, we require φk(0) > 0, because
ξikφk(t) = {−ξik}{−φk(t)}. Since supt∈[0,1] E[

∑∞
k=1 ξikφk(t) −

∑Kn
k=1 ξikφk(t)]2 → 0 as Kn → ∞ ([59]), then we suppose

δi(t) = µ(t) +

Kn∑
k=1

ξikφk(t), with Kn → ∞. (4)

When Kn does not depend on n, model (4) has been extensively considered in the literature of functional principle
component analysis (FPCA) ([20, 26, 40, 41, 59]). For more flexibility, we allow Kn → ∞ as n→ ∞ ([19, 27, 32]).

2.2. Estimation
Let ξi = (ξi1, . . . , ξiKn )>, H

(
Yi(t)

)
=

(
H1(Yi1(t)), . . . ,Hp(Yip(t))

)> and H
(
Yi

)
=

(
H(Yi(ti1)), . . . ,H(Yi(ti,ni ))

)
. Sub-

stituting (2) and (4) into (1) gives that H(Yi(ti j)) = βXi j +λZ>i jα+λµ(ti j)+λξ>i Φ(ti j)+ε i j subject to
∫

tΦ(t)Φ(t)>dt = I,
where Φ(t) =

(
φ1(t), . . . , φKn (t)

)>, I is an identity matrix throughout the paper and may have different dimensions in
different places. Then given (Xi,Zi, ti),

Vec (H (Yi)) ∼ N
(
Vec

(
βX>i + λα>Z>i + λµ(ti)>

)
,Γi

)
, (5)

where Vec (A) = (a>1 , . . . , a
>
p )> coerces A = (a1, . . . , ap) into a vector, Xi = (Xi1, . . . ,Xi,ni )

>, Zi = (Zi1, . . . ,Zi,ni )
>,

µ(ti) = (µ(ti1), . . . , µ(ti,ni ))
>,

Γi =

{(
Φ(ti1), . . . ,Φ(ti,ni )

)>
Λ
(
Φ(ti1), . . . ,Φ(ti,ni )

)}
⊗ (λλ>) + I ⊗ Σe,

Λ = diag(ρ1, . . . , ρKn ). Suppose ς = (σ2
1, . . . , σ

2
p)> and τ = (ρ1, . . . , ρK)>, then all of the finite parameters can be

denoted as θ = (Vec(β)>, λ>,α>, ς>)> ∈ A, where A are bounded closed sets in Rd0 and d0 = (p1 +2)p+ p2−1. Hence
Θ = (θ>, τ>, µ,Φ>)> are all of parameters and functions to be estimated. By (5), the observed likelihood is

Ln(Θ; H) =

n∏
i=1

1
(2π)pni/2|Γi|

1/2 exp
[
−

1
2

{
Vec (H (Yi)) − Vec

(
βX>i + λα>Z>i + λµ(ti)>

)}>
×Γ−1

i

{
Vec (H(Yi)) − Vec

(
βX>i + λα>Z>i + λµ(ti)>

)} ]
, (6)
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where H = (H1,H2, . . . ,Hp).
To estimate µ(t), φ1(t), . . . , φKn (t), we propose to use B-spline smoothing ([6, 24, 48]). Let

G = {g(·) : |g(l)(v1) − g(l)(v2)| ≤ c0|v1 − v2|
s, 0 ≤ v1, v2 ≤ 1}, (7)

where l and s are nonnegative integers, r = l + s ≥ 2, and c0 > 0 is a constant. Assuming that µ ∈ G and φk ∈ G

for k ∈ {1, . . . ,Kn}, we approximate µ(t) and φk(t) by µn(t) = ϑ>µ Bn(t) and φnk(t) = ϑ>k Bn(t) for k ∈ {1, . . . ,Kn},
respectively, where Bn(·) = {b1(·), . . . , bqn (·)}> is a set of B-spline basis functions of order l + 1 with knots 0 = t0 <
t1 < . . . < tMn = 1, satisfying max(t j − t j−1 : j = 1, . . . ,Mn) = O(n−v) for a constant v ∈ (0, 0.5) and qn = Mn + l,
ϑµ and ϑk are the B-spline coefficients of qn-dimension corresponding to µ(t) and φk(t), respectively. Denote by

Gn =

{
ζ>Bn(t) : ζ = (ζ1, . . . , ζqn )> ∈ Rqn ,max1≤i≤qn |ζi| ≤ c0, t ∈ [0, 1]

}
. By Corollary 6.21 in [48], for any g ∈ G, there

exists a gn ∈ Gn such that ‖gn − g‖∞ = O(n−rv). We hence estimate Θn = (θ>, τ>,ϑ>µ ,ϑ
>
k , k = 1, . . . ,Kn)> and H by

(Θ̂n, Ĥn) = argmax
Θn,H log Ln(Θn; H), (8)

where Ln(Θn; H) is Ln(Θ; H) with µ(t) and φk(t) replaced by µn(t) = ϑ>µ Bn(t) and φnk(t) = ϑ>k Bn(t), respectively, for
k = 1, . . . ,Kn.

As the likelihood function Ln(Θn; H) involves the infinite dimensional functions (H) and infinite parameters (Θn),
a direct maximization is not feasible. We resort to an iterative two-stage approach. First, we use a series of estimating
equations to estimate H given Θn. Then we estimate Θn by maximizing Ln(Θn; H) with H replaced by its estimate.
We repeat the procedure until convergence.

2.2.1. Estimating Θn given H
Given H, maximizing log Ln(Θn; H) with respect to Θn is computationally expensive, as we have to compute Γ−1

i ,
i = 1, . . . , n, at each iterative step. On the other hand, if ξi were observed, the joint log-likelihood would be

Ln(Θn; H) =

n∑
i=1

−1
2

log |Λ| −
1
2
ξ>i Λ

−1ξi −
ni

2

p∑
m=1

log(σ2
m)

−
1
2

ni∑
j=1

p∑
m=1

{
Hm(Yim j) − β>mXi j − λmZ>i jα − λmϑ

>
µ Bn(ti j) − λmξ

>
i ϑBn(ti j)

}2

σ2
m

 ,
where Yim j = Yim(ti j) and ϑ = (ϑ1, . . . ,ϑKn )>. This is a much easier objective function to work with, which motivates
us to treat the ξi as missing data and invoke the EM algorithm ([10]). Specifically, with Oi = {H

(
Yi

)
,Xi,Zi, ti},

differentiating E {Ln(Θn; H)|Oi, i = 1, . . . , n}, with respect to Θn and setting the derivatives to zero lead to the following
estimation equations for m = 1, . . . , p and k = 1, . . . ,Kn:

σ2
m =

1
N

n∑
i=1

ni∑
j=1

E
([

Ỹim j − β
>
mXi j − λmWi j(Θn)

]2
|Oi

)
, ρk =

1
n

n∑
i=1

E
[
ξ2

ik |Oi

]
,

βm =

 n∑
i=1

ni∑
j=1

Xi jX>i j

−1 n∑
i=1

ni∑
j=1

Xi jE
({

Ỹim j − λmWi j(Θn)
}
|Oi

)
, λm =

∑n
i=1

∑ni
j=1

(
Ỹim j − β

>
mXi j

)
E

{
Wi j(Θn)|Oi

}
∑n

i=1
∑ni

j=1 E
{
Wi j(Θn)2|Oi

} ,

α =

 n∑
i=1

ni∑
j=1

p∑
m=1

λ2
m

σ2
m

Zi jZ>i j

−1

×

n∑
i=1

ni∑
j=1

p∑
m=1

λmZi jE
[{

Ỹim j − β
>
mXi j − λmϑ

>
µ Bn(ti j) − λmξ

>
i ϑBn(ti j)

}
|Oi

]
σ2

m
,

ϑµ =


n∑

i=1

ni∑
j=1

p∑
m=1

λ2
m

σ2
m

Bn(ti j)Bn(ti j)>

−1

×

n∑
i=1

ni∑
j=1

p∑
m=1

λm

σ2
m

Bn(ti j)E
[{

Ỹim j − β
>
mXi j − λmZ>i jα − λmξ

>
i ϑBn(ti j)

}
|Oi

]
,
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ϑk =

 n∑
i=1

ni∑
j=1

p∑
m=1

λ2
mBn(ti j)Bn(ti j)>E

{
ξ2

ik |Oi

}
σ2

m


−1

×

n∑
i=1

ni∑
j=1

p∑
m=1

λmBn(ti j)E
[{

Ỹim j − β
>
mXi j − λmZ>i jα − λmϑ

>
µ Bn(ti j) − λm

∑
r,k ξirϑ

>
r Bn(ti j)

}
ξik |Oi

]
σ2

m
,

where Ỹim j = Hm(Yim j) and Wi j(Θn) = Z>i jα+ϑ>µ Bn(ti j)+ξ>i ϑBn(ti j). The right side of those equations involve E(ξi|Oi)
and E(ξ⊗2

i |Oi) which are given in the following paragraph. At each iteration, each Θn on the right side of the equations
is replaced by its updated values, and the procedure is with closed-form expressions.

To estimate Θn using the above equations, we need to compute the conditional mean and conditional vari-
ance matrices of ξi given Oi, that is, E

(
ξ⊗r

i |Oi
)

with r = 1, 2, where a⊗2 = aa> and a⊗1 = a. Denote ε i =

(ε>i1, ε
>
i2, . . . , ε

>
i,ni

)>, Ψ1(ti)> =
(
ϑBn(ti)

)
⊗ λ>, Bn(ti) = (Bn(ti1), . . . , Bn(ti,ni )), and Ψ(ti) =

(
Ψ1(ti) I
I 0

)
. Then(

Vec
(
H(Yi) − βX>i − λα

>Z>i − λϑ
>
µ Bi

)
ξi

)
= Ψ(ti)

(
ξi
ε i

)
∼ N(0,Ψ(ti)DΨ(ti)>), where D = diag (Λ,D2) and D2 =

I ⊗ Σe. Hence, given Oi = {H
(
Yi

)
,Xi,Zi, ti}, ξi is a multivariate normal vector with a mean vector

E
(
ξi|Oi

)
=ΛΨ1(ti)>

{
Ψ1(ti)ΛΨ1(ti)> + D2

}−1
Vec

(
H(Yi) − βX>i − λα

>Z>i − λϑ
>
µ Bi

)
,

and a covariance matrix Var
(
ξi|Oi

)
= Λ−ΛΨ1(ti)>

{
Ψ1(ti)ΛΨ1(ti)> + D2

}−1
Ψ1(ti)Λ, and then E

(
ξ⊗2

i |Oi
)

= Var
(
ξi|Oi

)
+

E2(ξi|Oi
)
.

2.2.2. Estimating H given Θn

Denote Vi j(Θn) = X>i jβm + λmZ>i jα + λmϑ
>
µ Bn(ti j) and σ2

i j(Θn) = λ2
mBn(ti j)>ϑ

>
ΛϑBn(ti j) + σ2

m. For any given y,

we have Pr{Yim j ≤ y|Xi j,Zi j, ti j} = Pr{Hm(Yim j) ≤ Hm(y)|Xi j,Zi j, ti j} = Φ

(
Hm(y)−Vi j(Θn)

σi j(Θn)

)
, where Φ(·) is the cumulative

distribution function of the standard normal random variable. We estimate Hm(y) using the following estimating
equations,

n∑
i=1

ni∑
j=1

[
I
(
Yim j ≤ y

)
− Φ

(Hm(y) − Vi j(Θn)
σi j(Θn)

)]
= 0, (9)

for any given y in the support of Yim j,m = 1, . . . , p. Specifically, let vm1, . . . , vmS m denote the distinct points of Yim j,
i = 1, 2, . . . , n, j = 1, 2, . . . , ni. Given y = vms, we estimate θ = Hm(y) by solving the equations defined by (9),

n∑
i=1

ni∑
j=1

[
I
(
Yim j ≤ y

)
− Φ

(θ − Vi j(Θn)
σi j(Θn)

)]
= 0, (10)

with respect to θ. Equation (9) entails Ĥm(y) to be a nondecreasing step function with jumps only at Yim j. Varying y
among {vm1, . . . , vmS m } and repeating the estimation procedure for each y, we obtain the curve estimator of Hm(·) for
each m = 1, . . . , p.

Remark 1. Computation for Hm(·) is feasible. With the closed-form estimator for Θn at each step, the proposed
method can be straightforwardly implementable. Unlike a traditional nonparametric approach ([23]), our approach
does not involve nonparametric smoothing and thus does not need to choose smoothing parameters.

Remark 2. Denote the resulting estimators by θ̂, Θ̂n and Ĥn for θ, Θn and H, respectively. Then we estimate the
mean function µ(t) and covariance function C(s, t) by µ̂(t) = ϑ̂

>

µ Bn(t) and Ĉ(s, t) = Φ̂(t)>Λ̂Φ̂(s) = Bn(t)>ϑ̂
>
Λ̂ϑ̂Bn(s),

respectively. We estimate C(s, t) = Φ(t)>ΛΦ(s) through the estimation of the univariate function φk(t). This differs
from the existing FPCA methods, which estimate the univariate function φk(·) via the bivariate function C(s, t), and
may incur efficiency loss.

In practice, we select the rank Kn of FPCAs and the number of knots Mn by minimizing the BIC criterion defined
in (11) in the data example section. Our simulation studies show that the proposed BIC method performs well.
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3. Large sample properties

We establish the asymptotic properties for θ̂, µ̂(t), Ĉ(s, t) and Ĥn. Let ‖v‖ denote the Euclidean norm for a vector v
and the L2 norm ‖ f ‖22 =

∫ 1
0 f 2(t)dt for any function f (·). LetΘ = (θ>, µ,C)> and its estimator Θ̂ = (θ̂

>
, µ̂, Ĉ)>. Define

the distance betweenΘ1 = (θ>1 , µ1,C1)> andΘ2 = (θ>2 , µ2,C2)> as d(Θ1,Θ2) =

(
‖θ1−θ2‖

2+‖µ1−µ2‖
2
2+‖C1−C2‖

2
2

)1/2
.

We use the subscript “0” for true value. That is, θ0 is the true value of θ. We list the following regularity conditions.
(A1) Xi and Zi are bounded with a compact support.
(A2) θ0 is an interior point of the bounded set A and µ0 ∈ G, φk0 ∈ G, k ∈ {1, . . . ,Kn}.
(A3) There exists [y

m
, ym] such that 1

N
∑n

i=1
∑ni

j=1 I(Yim j < [y
m
, ym]) = op(n−1/2), m ∈ {1, 2, . . . , p}.

(A4) The Yi j(t) is continuous response. The transformation function Hm(y) is strictly increasing, and its first derivative
is continuous over y ∈ [y

m
, ym].

(A5) ∆/δ ≤ c0 uniformly in n, where δ = min
1≤ j≤Mn

|t j − t j−1|, ∆ = max
1≤ j≤Mn

|t j − t j−1| = O(n−υ), and t j, j ∈ {1, . . . ,Mn} are

knots of B-spline.
(A6)

∫ 1
0 Var(δi(t))dt < ∞.

(A7) Kn = O(ne) with 0 ≤ e < min(1 − υ, 2rυ).
(A8) maxi ni < ∞.

Conditions (A1) and (A2) are commonly assumed in the semiparametric literature, for example [5] for generalized
partially linear single-index model, [63] for local linear simultaneous confidence corridor of sparse functional data,
[30] for variance function partially linear single-index model, and [6] for varying coefficient transformation model.
Condition (A1) is a technical issue which can be relaxed to their high-order moments being bounded. Condition (A3)
is used to avoid the tail problem, which is also required by [31] for transformation model. Condition (A4) is commonly
used for the transformation function ([23, 64]). Condition (A5) is used for spline analysis ([34], and Condition (A6)
is used to avoid unbounded covariances ([18]). In practice, Kn is small and hence Condition (A7) is easily satisfied.
The following theorems stipulate the consistency and asymptotic normality of the proposed estimators, and the proofs
are deferred to the Supplementary materials.

Theorem 1. Under Conditions (A1)-(A7), we have

P

 sup
y∈[y

m
,ym]
|Ĥmn(y) − Hm0(y)| → 0

→ 1, d(Θ̂,Θ0) = Op

(
n−min( 1−υ−e

2 ,rυ− e
2 )
)
, m ∈ {1, 2, . . . , p, }

where r is a smooth parameter defined in (7) and 0 < υ < 0.5 is given for determining the density of the knots in the
spline basis Bn(·).

Remark 3. The convergence rate of Θ̂ is determined by the number of eigenfunctions Kn, smoothness of unknown
function and number of spline knots. When the number of spline knots qn increases, the approximation error (bias)
decreases, but the stochastic error (variance) increases. The larger Kn is and consequently the larger the number of
estimated functions is, the slower convergence rate is. Particularly, when Kn is constant and e = 0, then d(Θ̂,Θ0) =

Op

(
n−min( 1−υ

2 ,rυ)
)

and the choice of υ = 1
2r+1 yields the optimal rate of convergence n

r
1+2r for the non-parametric

function ([51]).

Theorem 2. Assume that Conditions (A1)-(A7) hold with r ≥ 2 and 1
4r < v < 1

2 . Then, we have
√

n(θ̂ − θ0)
d
→

N(0, I−1(θ0)), where I(θ0) is defined at the end of the proof of Theorem 2 in the Appendix.

4. Simulation

We assess the finite-sample performance of the proposed method via Monte Carlo simulations. We investigate the
robustness of the method and whether the robustness is gained at the expense of efficiency. We also investigate the
sensitivity of our method to the normality assumption on the transformed response. For robustness, we consider the
latent class mixed models (lcmm) method ([43, 45]), where both the transformation function and covariance structure
are specified, and the method without transformation (WOT), which is performed by our proposed method by setting
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Hm(y) = y. To assess the efficiency, we modify the proposed method by allowing the transformation to be correctly
specified and the covariance structure to be estimated by the proposed method. We term this approach the correct
transformation (CT) approach.

We assess the performance of the estimator in bias, standard deviation (sd), and root mean squared error (RMSE),
which are defined by

bias =

 1
ngrid

ngrid∑
i=1

{Eĝ(xi) − g(xi)}2
1/2

, sd =

 1
ngrid

ngrid∑
i=1

E{ĝ(xi) − Eĝ(xi)}2
1/2

,

and RMSE =
[
bias2 + sd2

]1/2
, where xi (i = 1, . . . , ngrid) are the grid points in which the function g(·) is estimated

and Eĝ(xi) is approximated by its sample mean based on N simulated data sets. In the following examples, we use the
cubic B-spline approximation with the number of knots Mn and the rank Kn selected by maximizing

BIC(Mn,Kn) = log
{
Ln(Θn; H)

}
−

1
2

log(N p)df(Θn), (11)

where df(Θn) is the number of parameters in Θn. The knots placed at the quantiles of the observation times. We set
ngrid = 100.

We simulate N = 200 datasets, each with (n, p) = (200, 3). The observation number of each subject is sampled
from a discrete uniform distribution on {1, . . . , 10}, and the locations of the measurements are randomly chosen from
U(0, 1). The covariates Xi1 and Xi2 are generated from an independent standard normal distribution N(0, 1). The
covariates Zi are generated from the Bernoulli distribution with a success probability 1/2. Finally, we set µ(t) =

t2 − t, λ1 = λ2 = λ3 = 1,β1 = (β11, β12)> = (0.25, 0.25)>,β2 = (β21, β22)> = (0.25, 0.25)>,β3 = (β31, β32)> =

(−0.5,−0.5)>, α = 1, and σ2
1 = σ2

2 = σ2
3 = 1/2. We consider the following six examples.

Example 1. In models (1) and (2), we set H1(t) = H2(t) = H3(t) = 5 log(t) and η(t) = ZTα + µ(t) +
∑2

k=1 ξkφk(t),
with φ1(t) =

√
2sin(πt), φ2(t) =

√
2sin(2πt), ξ1 ∼ N(0, ρ1), ξ2 ∼ N(0, ρ2), ρ1 = 1 and ρ2 = 1/4.

Example 2. The example is the same as Example 1, except that H1(t) = H2(t)= H3(t) = 10(
√

t − 1). Neither the
transformation function nor the covariance structure satisfies the requirements of [43] in Examples 1 and 2.

Example 3. The example is the same as Example 1, except that H1(t) = H2(t) = H3(t) = 5t. Here, the transfor-
mation function satisfies the requirement of [43], but the covariance structure does not follow that of [43].

Example 4. The data are generated in the same way as in Example 1, except that H1(t) = H2(t) = H3(t) = ( 1
5 t)3

and that the covariance structure follows [43]. That is, ηi(t) = ZTα + µ(t) + f(t)T ui + ωi(t), where f(t) = (1, t, t2), ui is
a multivariate normal random variable with mean zero and identity covariance matrix and ωi(t) is a Brownian motion
with mean zero and covariance cov(ωi(t), ωi(s)) = min(t, s). Therefore, the covariance structure does not satisfy the
requirement of our method, but follows the requirement of [43]. This setup is to examine the robustness of our method
to the covariance structure.

Example 5. The setting is the same as in Example 1, except that Kn = 4, eigen-functions φ1(t) =
√

2sin(πt), φ2(t) =√
2sin(2πt), φ3(t) =

√
2sin(3πt), φ4(t) =

√
2sin(4πt) and ρ1 = 1, ρ2 = 0.75, ρ3 = 0.5, ρ4 = 0.25. The setting is used to

examine the performance of the proposed method for relatively large Kn.
Example 6. Data are generated in the same way as in Example 2, except that the random error εik j is gen-

erated from a mixed distribution with each component being the centralized and scaled gamma distribution σ ×
(Gamma(τ, 1) − τ)/

√
τ, σ =

√
2/2. We take τ =1, 3, 10 and 50. As our method assumes a Gaussian distribution on

the transformed response, this example examines the sensitivity of our method to this normality assumption.
Simulation studies with the same setting except of bounded covariates Xi1, Xi2 ∼ U[−2, 2] are also implemented.

We apply the proposed method, CT, WOT and lcmm to analyze each simulated dataset. Table 1 and Table 1 in the
Supplementary Material present the bias, empirical sd, and RMSE of the estimates for the parameters, mean function
µ(·) and covariance function C(·, ·) for Examples 1 and 2. The lcmm method specifies the transformation function by
a β-cumulative distribution function and the covariance function by the sum of a quadratic polynomial and Brownian
motions. Because the covariance and transformation functions in Examples 1 and 2 do not satisfy the requirement
of [43], the lcmm method is numerically unstable, as it fails in 88 and 62 out of the 200 runs in Examples 1 and 2,
respectively. WOT fails in 53 out of the 200 runs in each of Examples 1 and 2. The summaries are based on the
convergent cases. Using a useful rule of thumb that unbiasedness means a standardized bias (bias as a percentage
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of the SD) not exceeding 40% ([38]), we may infer that the proposed estimator and the CT method are unbiased.
In addition, these two methods have relatively smaller and comparable SDs. In contrast, the lcmm method and the
WOT method with identity transformation are biased and the lcmm method is seriously inefficient. This indicates that
misspecifications of the transformation function and covariance structures may lead to large biases and variations. As
the proposed method is comparable to the CT estimator in mean squared errors, it is robust with little loss of efficiency.
Similar patterns are observed in Table 2 in the Supplementary Materials for the results of Examples 3 and 4, which
further confirms that misspecification of either the transformation function or covariance structure may lead to large
biases and variations. When increasing Kn to 4, Table 3 in the Supplementary Materials indicates that the proposed
method still performs well.
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Fig. 1: The average estimates of transformation functions over 200 replications using the proposed method (solid-true curves; red dotted-proposed
estimator; dashed-95% empirical point-wise confidence limit of proposed estimator) for Examples 1 and 4 in first and second rows, respectively.

Table 2 presents the results for Example 6. When τ ≥ 10, both skewness (SK) and excess kurtosis (EK) are less
than one and the proposed estimator is nearly unbiased. When both skewness and excess kurtosis are around 1 to
2, the proposed estimator incurs slight biases. Only in the extreme cases, where the skewness and excess kurtosis
are both larger than 2 and the error distribution is severely non-normal, is the proposed estimator moderately biased.
Table 2 hints at our method’s robustness to the normality assumption on the error.

Fig.1 displays the averaged estimates of the transformation functions based on 200 replicates, along with the 95%
pointwise confidence intervals, for Examples 1 and 4. The averaged estimates coincide with the truth. Similar results
are obtained from the other examples and omitted here.

In Examples 1 to 5, we generate Xi = (Xi1, Xi2)> from unbounded normal distribution. We also perform simulation
studies with the same setting except of bounded covariates Xi1, Xi2 ∼ U[−2, 2], similar results with those in Table 1 and
Fig.1 can be obtained, suggesting that the proposed method works well for both bounded and unbounded covariates.

We select the number of the interior knots Mn and the rank Kn of FPCA by maximizing the BIC in (11). To check
the performance of (11), we vary Mn and Kn over the grids and calculate the corresponding BIC for Example 1. Fig.1
in the Supplementary Materials, which depicts BIC values over (Mn,Kn), shows that the largest BIC is achieved when
Mn = 3 and Kn = 2, which is the truth. Fig.1 in the Supplementary Materials also shows that the optimal Kn and Mn

are nearly independent, meaning Kn and Mn can be separately selected. Furthermore, the proposed method does not
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Table 2: The bias, empirical sd, and RMSE of the estimates for the parameters, mean function µ(·) and covariance function C(·, ·) for Example 6
to examines the sensitivity of our method to normality assumption. The random error εik j of the transformed response is generated from a mixed
distribution with each component being the centralized and scaled gamma distribution σ × (Gamma(τ, 1) − τ)/

√
τ, σ =

√
2/2 with τ =1, 3, 10 and

50. SK and EK denote skewness and excess kurtosis respectively.

τ 1 3 10 50

SK 2 1.15 0.63 0.28

EK 6 2 0.6 0.12

bias sd RMSE bias sd RMSE bias sd RMSE bias sd RMSE

β11 0.007 0.036 0.035 0.005 0.033 0.034 0.001 0.035 0.035 0.001 0.035 0.035

β12 0.004 0.034 0.035 0.004 0.034 0.034 0.002 0.036 0.036 0.005 0.036 0.037

β21 0.005 0.034 0.034 0.001 0.034 0.035 0.000 0.033 0.033 0.003 0.033 0.033

β22 0.004 0.034 0.035 0.002 0.036 0.036 0.004 0.035 0.035 0.007 0.036 0.037

β31 0.003 0.036 0.036 0.003 0.034 0.035 0.000 0.035 0.035 0.009 0.037 0.038

β32 0.002 0.037 0.037 0.001 0.035 0.035 0.003 0.037 0.037 0.000 0.039 0.039

σ2
1 0.005 0.043 0.044 0.005 0.038 0.038 0.006 0.032 0.033 0.001 0.032 0.032

σ2
2 0.007 0.039 0.039 0.008 0.037 0.038 0.001 0.029 0.030 0.003 0.031 0.031

σ2
3 0.006 0.046 0.046 0.008 0.033 0.034 0.006 0.033 0.034 0.000 0.031 0.031

α 0.039 0.064 0.075 0.017 0.065 0.067 0.000 0.062 0.062 0.006 0.066 0.066

λ2 0.005 0.026 0.027 0.003 0.027 0.027 0.001 0.027 0.027 0.003 0.030 0.030

λ3 0.009 0.030 0.032 0.006 0.028 0.028 0.001 0.026 0.026 0.003 0.030 0.030

µ(·) 0.079 0.096 0.125 0.041 0.089 0.098 0.017 0.088 0.089 0.008 0.088 0.088

C(·, ·) 0.032 0.130 0.134 0.030 0.127 0.131 0.036 0.129 0.134 0.038 0.127 0.133

seem sensitive to the choice of Mn.

5. Analysis of Cognitive Decline among the Elderly

As cognitive decline develops subtly among the elderly, the progress, though slow, may severely impede the quality
of life of affected individuals ([36, 60]). The education level, as a well-established risk factor for some neurological
disorders, such as Alzheimer’s disease, plays an uncertain role in cognitive decline among the elderly ([58]), which
has sparked much research interest; see [1, 39, 61, 62], among many others. However, as most studies did not fully
utilize the multifaceted measurements for the cognitive capacity, the results were often conflicting.

By accounting for the multivariate functional measurements of cognitive curves, we examined the effect of educa-
tion on cognitive decline using the French prospective cohort study (PAQUID), a prospective cohort study (Dordogne
& Gironde) that aimed to explore functional and cerebral aging ([29]). Included in the study were subjects over
65 years of age at initial visit, and were tested at years 1, 3, 5, 8, 10 and 13 after the initial visit. At each visit, a
battery of psychometric tests, including the Mini-Mental State Examination (MMSE), Benton Visual Retention Test
(BVRT) and Isaacs Set Test (IST), were administered, followed by a screening procedure for dementia. MMSE (Y1)
is a global cognitive test evaluating various dimensions of cognition (memory, calculation, orientation in space and
time, language and word recognition), ranging from 0 to 30. BVRT (Y2) evaluates the immediate visual memory,
and ranges from 0 to 15. IST (Y3) evaluates the semantic verbal fluency, processing speed and memory, and ranges
from 0 to 40. For each test, lower values indicate more severe impairment. The covariates of interest include gender
(X) and educational level (Z, 1=with primary schooling and 0=otherwise). The analyzable samples consist of 490
subjects after removing the missing data. To illustrate the distributions of MMSE, IST and BVRT given X, Z and t,
we discretized the continuous t (age) into four intervals (65-75, 75-80, 80-85, 85-100) to ensure roughly equal sizes
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within each interval, and obtained 16 groups with various combinations of age, gender (X = 0, 1) and educational
level (Z = 0, 1). We plotted the histograms of response data (MMSE, BVRT, IST) for each group in Fig.2-4 in the
Supplementary Materials, none of which seemed to be normally distributed.

We applied the proposed method to investigate how the cognitive capacity declines over time, and whether and
how education affects the declining process. We used models (1) and (2), where the multivariate response curves
included three functional outcomes, namely, Y1,Y2 and Y3, measured at various times, ti j (e.g. the jth observation
time for subject i), and the covariates included X and Z. For improved stability, we rescaled ti j into [0, 1] at the data
pre-processing stage.

We adopted the cubic B-spline approximation. The number of the interior knots Mn = 4 and the rank Kn = 1 of
FPCA were selected by maximizing BIC(Mn,Kn). Kn is chosen to be 1 because the first eigen-component explains
more than 95% of the variance of the multivariate response processes. The SD was calculated based 200 bootstrap
samples, in which each subject was treated as a resampling unit to preserve the dependence structure of the data. The
choice of 200 was determined by monitoring the stability of the SD.

The estimated mean function, eigenfunction and transformation functions based on the proposed method are
given in Fig.2, along with the corresponding 95% point-wise confidence limits (the dashed lines) over 200 bootstrap
replications. The estimates of βk, σ

2
k for k ∈ {1, 2, 3}, α and ρ1 along with the estimated standard errors are presented in

Table 3. Fig.2 shows a decreasing mean function, implying that cognitive capacity declined with age in general. The
eigenfunction clearly decreased until 93 with a large standard error after 93, suggesting that the cognition capacity
declines at least until 93 but with an unclear pattern after 93, likely because of very few patients surviving past 93.

Fig. 2: Estimates (solid) and 95% confident limit (dashed) of mean function m(t), first eigen-function φ1(t), and transformation functions H1,H2
and H3 for three responses MMSE(Y1), BVRT(Y2) and IST(Y3) respectively in the Cognitive Decline data. The 95% point-wise confidence limits
(the dashed lines) are obtained based on 200 bootstrap replications.

The coefficient estimates for βk for k ∈ {1, 2, 3} in Table 3 show that men and women did not have a significant
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Table 3: The estimator (Est.), sd, and p−valus of parameters for cognitive decline data. β1, β2 and β3 are the coefficients of gender (X), and
σ1, σ2 and σ3 are standard deviations of random errors for three responses MMSE(Y1), BVRT(Y2) and IST(Y3) respectively. α is the coefficient of
educational level (Z). ρ1 is the first eigenvalue for the latent process δi(t).

β1 β2 β3 α σ2
1 σ2

2 σ2
3 ρ1

Est. 0.002 0.052 -0.054 0.182 0.046 0.148 0.100 2.600
Proposed sd 0.014 0.028 0.024 0.016 0.006 0.018 0.009 0.195

p value 0.886 0.063 0.024 0.000 0.000 0.000 0.000 0.000
Est. -0.009 0.014 -0.005 0.111 * * * *

lcmm sd 0.005 0.005 0.006 0.008 * * * *
p value 0.071 0.005 0.404 0.000 * * * *

difference in MMSE (Y1) and BVRT (Y2), while women tended to perform better than men in the verbal fluency test
(IST, Y3). In contrast, the lcmm method does not detect the effect of gender on the verbal fluency test. The result of
the proposed method is in agreement with the previous results that women tended to perform better in verbal skills
([46, 57]). The estimate of α in Table 3 suggests that subjects with primary schooling had significantly better cognitive
capacity than those without, which agrees with the previous results that highly educated subjects tended to perform
better in cognitive tests ([28, 53]). Fig.2 reveals that the estimated transformation functions for Y1 and Y2 were more
non-linear than that for Y3. This is not surprising as the distribution of Y1 or Y2 is more non-normal like compared to
that of Y3.

Finally, to evaluate the usefulness of our proposed transformation model, we compared the out-of-sample predic-
tion error of the methods with data-driven transformation and without transformation (WOT), and the lcmm method.
Specially, we randomly divided the data into the training and testing subsets, with ratios of 1:2, 1:1 and 2:1, respec-
tively. We used the three methods to fit the training data sets. For each subject in the testing data sets, we predicted
the Y1,Y2 and Y3 by the fitted model obtained from the training data sets, and computed the mean square prediction
error (MSPE) of Y1,Y2,Y3, respectively, and their sum (MS PEsum) in each of the testing data sets. The root-prediction
error is displayed in Table 4, which suggests that the proposed method has much smaller prediction errors than the
lcmm and the method without transformation.

Table 4: The out-of-sample mean square prediction error (MSPE) and their summation (MS PEsum) of the methods with data-driven transformation
(Proposed) and without transformation (WOT), and the lcmm for the Cognitive Decline data. We consider three randomly dividing with the ratios
of training and testing subsets being 1:2, 1:1 and 2:1, respectively.

Training set rate Proposed lcmm WOT

Y1 Y2 Y3 MS PEsum Y1 Y2 Y3 MS PEsum Y1 Y2 Y3 MS PEsum

1/3 0.084 0.009 0.006 0.085 0.636 0.038 0.000 0.637 0.220 0.245 0.275 0.429
1/2 0.095 0.014 0.006 0.096 0.449 0.054 0.000 0.452 0.219 0.242 0.271 0.424
2/3 0.111 0.036 0.007 0.117 0.194 0.104 0.000 0.220 0.215 0.244 0.271 0.424

6. Concluding remarks

We have proposed a new semiparametric transformation latent process regression model, in which we allow the
distribution of the responses, the dependent structure of multiple response curves, and the pattern of intraindividual
variability to be unspecified. Our model renders more flexibility and can be applicable to non-normal data as we
have demonstrated. To overcome the difficulty of inferring (H,Θn) simultaneously, we propose a convenient iterative
algorithm that combines a simple one-dimension Newton-Raphson for H and a closed form expression of Θn at each
step. Therefore, our inferential procedure is feasible and implementable. Finally, we have established the large sample
properties of the resulting estimators, based on which confidence intervals can be constructed.

It will be of interest to extend the methods to accommodate discrete response variables. We envision that the
related theory and implementation may be nontrivial. In practice, the dimension of covariates may be large. To handle
the high dimensionality of covariates, we may need to resort to penalization approaches. Suitable penalty functions
and regularity conditions need to be rigorously constructed, which merit further studies.
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Appendix

Denote P f =
∫

f (x)dP(x), Pn f = 1
n
∑n

i=1 f (xi),

Gn =

{
ζ>Bn(t) : ζ = (ζ1, . . . , ζqn )> ∈ Rqn , max

1≤i≤qn

|ζi| ≤ c0, t ∈ [0, 1]
}
,

Ωn = {(
−→
β>, λ>,α>, ς>)> ∈ A, τ ∈ B ∈ RK , µ ∈ Gn,Φ ∈

K∏
k=1

Gn} = A × B × Gn ×

K∏
k=1

Gn,

`i(Θn; H) = −
1
2

log(|Γi|) −
1
2

{−−−−→
H

(
Yi

)
−
−−−−−−−−−−−−−−−−−−−−−−→
βX>i + λα>Z>i + λµ(ti)>

}>
Γ−1

i

{−−−−→
H

(
Yi

)
−
−−−−−−−−−−−−−−−−−−−−−−→
βX>i + λα>Z>i + λµ(ti)>

}
,

Qn(Θn; H) =

n∑
i=1

`i(Θn; H), Vi j,m(Θn) = X>i jβm + λmZ>i jα + λmµ(ti j), Wi j,m(Θn) = λ2
mΦ

>(ti j)ΛΦ(ti j) + σ2
m,

ψim j(w; y,Θn) = I
(
Yim j ≤ y

)
− Φ

(w − Vi j,m(Θn)√
Wi j,m(Θn)

)
, Ψmn(w; y,Θn) =

1
N

n∑
i=1

ni∑
j=1

ψim j(w; y,Θn),

Ψm(w; y,Θn) = E

Φ

(Hm0(y) − Vi j,m(Θ0)√
Wi j,m(Θ0)

)
− Φ

(w − Vi j,m(Θn)√
Wi j,m(Θn)

) .
Ĥmn(y; Θn) is the estimator of Hm(y) given Θn and is the solution of (10) with respect to Hm(y). Define Ĥn(y; Θn) =(
Ĥ1n(y; Θn), Ĥ2n(y; Θn), . . . , Ĥpn(y; Θn)

)>.
We first give several lemmas. We define the covering number of class Ln = {`

(
Θn; Ĥn(·; Θn)

)
: Θn ∈ Ωn}. In

particular, for any ε > 0, define the covering number N(ε,Ln, L1(Pn)) as the smallest value of κ for which there exist
{Θn, j ∈ Ωn, j = 1, . . . , κ} such that

min
j∈{1,...,κ}

1
n

n∑
i=1

|`i
(
Θn; Ĥn(·; Θn)

)
− `i(Θn, j; Ĥn(·; Θn, j))| < ε,

for all Θn ∈ Ωn. If no such κ exists, define N(ε,Ln, L1(Pn)) = ∞. We remark that this theory relies on the com-
plicated modern empirical process theory ([55]). To establish the asymptotic normality, we also employ the Riesz
representation theorem. First, we give some lemmas and their proofs.

Lemma 1. The covering number of the class Ωn satisfies

N(ε,Ωn, L2) ≤ c0MKqn
n ε−{d0+(K+1)qn},

where Mn = O(nv).

Proof: The result follows by applying Lemma 2.5 and Corollary 2.6 in [15].

Lemma 2. Under conditions (A1)-(A5), Ĥmn(y; Θn),m = 1, . . . , p defined by (10) satisfies

sup
Θn∈Ωn,y∈[ym

,ym]
|Ĥmn(y; Θn) − Hm(y; Θn)| → 0, for given y ∈ [y

m
, ym] and Θn ∈ Ωn

where Hm(y; Θn) satisfies
Ψm(Hm(y; Θn); y,Θn) = 0. (12)
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Proof: It follows from the law of large numbers and the monotonicity of Hm0(y) that for given % ≥ 0, y ∈ [y
m
, ym],

Θn ∈ Ωn,

1
N

n∑
i=1

ni∑
j=1

I (
Yim j ≤ y

)
− Φ

(Hm0(y) − Vi j,m(Θn)√
Wi j,m(Θn)

− %
)→ E

{
Φ

(Hm0(y) − Vi j,m(Θ0)√
Wi j,m(Θ0)

)
− Φ

(Hm0(y) − Vi j,m(Θn)√
Wi j,m(Θn)

− %
)}
, (13)

almost surely as n → ∞, where N =
∑n

i=1 ni. Furthermore, by Lemma 1 and Theorem 19.4 of [54], Ωn is a P-

Glivenko-Cantelli class. This, coupled with the fact that Φ

(
Hm0(y)−Vi j,m(Θn)
√

Wi j,m(Θn)
− %

)
is a continuous and bounded function

of Θn ∈ Ωn, and the indicator function class {I
(
Yim j ≤ y

)
} is of VC class, implies that (13) also holds uniformly over

y ∈ [y
m
, ym] and Θn ∈ Ωn by [15].

On the other hand, it follows from (13) that for large %,

1
N

n∑
i=1

ni∑
j=1

I (
Yim j ≤ y

)
− Φ

(Hm0(y) − Vi j,m(Θn)√
Wi j,m(Θn)

− %
) > 0, (14)

1
N

n∑
i=1

ni∑
j=1

I (
Yim j ≤ y

)
− Φ

(Hm0(y) − Vi j,m(Θn)√
Wi j,m(Θn)

+ %
) < 0. (15)

This, together with the monotonicity and continuity of Φ, implies that there exists a unique Ĥmn(y; Θn) such that

1
N

n∑
i=1

ni∑
j=1

I (
Yim j ≤ y

)
− Φ

( Ĥmn(y; Θn) − Vi j,m(Θn)√
Wi j,m(Θn)

) = 0, (16)

for given y and Θn ∈ Ωn. Similarly, there is a unique Hm(y; Θn) satisfying (12) for given y and Θn. In addition, note
that

Ψmn
(
Ĥmn(y; Θn); y,Θn

)
=

{
Ψmn

(
Ĥmn(y; Θn); y,Θn

)
− Ψm

(
Ĥmn(y; Θn); y,Θn

)}
+
{
Ψm

(
Hm(y; Θn); y,Θn

)
− Ψmn

(
Hm(y; Θn); y,Θn

)}
+

{
Ψm

(
Ĥmn(y; Θn); y,Θn

)
− Ψm

(
Hm(y; Θn); y,Θn

)}
+Ψmn

(
Hm(y; Θn); y,Θn

)
. (17)

By Lemma 1 and the uniform strong law of large numbers, we have

Ψmn
(
Hm(y; Θn); y,Θn

)
→ Ψm(Hm(y; Θn); y,Θn) = 0,

almost surely uniformly in y ∈ [y
m
, ym] and Θn ∈ Ωn. Then (17) and conditions (A1)-(A4) imply that

0 = ‖Ψmn
(
Ĥmn(y; Θn); y,Θn

)
‖ ≥ Cm‖Ĥmn(y; Θn) − Hm(y; Θn)‖ − ξn, (18)

where Cm > 0 which does not depend on y, and

ξn = sup
Θn∈Ωn,y∈[ym

,ym]
‖Ψmn

(
Hm(y; Θn); y,Θn

)
‖ → 0.

Hence, (18) implies that Ĥmn(y; Θn) converges to Hm(y; Θn) uniformly in y ∈ [y
m
, ym] and Θn ∈ Ωn.

Lemma 3. Under Conditions (A1)-(A5), the covering number of the class Ln satisfies

N(ε,Ln, L1(Pn)) ≤ c0MKqn
n ε−[d0+(K+1)qn].

Proof: For any Θ(1) = (
−→
β>1 , λ

>
1 ,α

>
1 , ς

>
1 , τ

>
1 , µ1,Φ

>
1 )> ∈ Ωn, Θ(2) = (

−→
β>2 , λ

>
2 ,α

>
2 , ς

>
2 , τ

>
2 , µ2,Φ

>
2 )> ∈ Ωn and

Φ j = (φ j,1, . . . , φ j,K), j ∈ {1, 2} , we have

Pn`
(
Θ(1); Ĥn( . . . ; Θ(1))

)
− Pn`

(
Θ(2); Ĥn( · ; Θ(2))

)
= Pn

{
`
(
Θ(1); H( · ; Θ(1))

)
− `

(
Θ(2); H( · ; Θ(2))

)}
+Pn

{
`
(
Θ(1); Ĥn( · ; Θ(1))

)
− `

(
Θ(1); H( · ; Θ(1))

)}
− Pn

{
`
(
Θ(2); Ĥn( · ; Θ(2))

)
− `

(
Θ(2); H( · ; Θ(2))

)}
. (19)
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By the uniform convergence of Ĥmn(y; Θn) to Hm(y; Θn),m ∈ {1, 2, . . . , p} described in Lemma 2, we have

Pn
{
`
(
Θ(1); Ĥn( · ; Θ(1))

)
− `

(
Θ(1); H( · ; Θ(1))

)}
= op(1),

Pn
{
`
(
Θ(2); Ĥn( · ; Θ(2))

)
− `

(
Θ(2); H( · ; Θ(2))

)}
= op(1). (20)

Using the Taylor expansion, we obtain

|`(Θ(1); H( · ; Θ(1))) − `(Θ(2); H( · ; Θ(2)))| ≤ c0

(
‖
−→
β 1 −

−→
β 2‖ + ‖λ1 − λ2‖ + ‖α1 − α2‖ + ‖ς1 − ς2‖

+‖τ1 − τ2‖ +

K∑
k=0

‖φ1,k − φ2,k‖∞

)
. (21)

where φ1,0 = µ1, φ2,0 = µ2. Denote ζ j,k = (ζ jk1, . . . , ζ jkqn ) to be the spline coefficients of φ j,k where j ∈ {1, 2} and
k ∈ {0, 1, . . . ,K}, respectively. We have

‖φ1,k − φ2,k‖∞ ≤ max
1≤i≤qn

|ζ1ki − ζ2ki| := ‖ζ1,k − ζ2,k‖∞. (22)

Combining (21) and (22), we obtain

|`(Θ(1); H( · ; Θ(1))) − `(Θ(2); H( · ; Θ(2)))|

≤ c0

‖−→β 1 −
−→
β 2‖ + ‖λ1 − λ2‖ + ‖α1 − α2‖ + ‖ς1 − ς2‖ + ‖τ1 − τ2‖ +

K∑
k=0

‖α1,k − α2,k‖∞

 . (23)

Combining (19), (20), (23) and Lemma 1 and mimicking the calculation on page 94 of [55], we have N(ε,Ln, L1(Pn)) ≤
c0MKqn

n ε−[d0+(K+1)qn].

Lemma 4. Under Conditions (A1)-(A5), we have

sup
Θn∈Ωn

|Pn`
(
Θn; Ĥn( · ; Θn)

)
− P`

(
Θn; H( · ; Θn)

)
| → 0 almost surely,

Proof: By lemma 2, we have supΘn∈Ωn
|Pn{`

(
Θn; Ĥn( · ; Θn)

)
− `

(
Θn; H( · ; Θn)

)
}| → 0. Then we need to prove

supΘn∈Ωn
|Pn`(Θn; H( · ; Θn)) − P`(Θn; H( · ; Θn))| → 0. Note that |`(Θn; H( · ; Θn))| is bounded under Conditions

(A1)-(A4). So, without loss of generality, we assume supΘn∈Ωn
|`(Θn; H( · ; Θn))| ≤ 1. Then P`2(Θn; H( · ; Θn)) ≤

P(supΘn∈Ωn
|`(Θn; H( · ; Θn))|)2 ≤ 1. Let αn = n−1/2+φ1 (log n)1/2 with (υ + e)/2 < φ1 < 1/2. Obviously {αn} is a

non-increasing sequence of positive numbers. Also for a given ε > 0, let εn = εαn. Then for sufficiently large n and
any Θn ∈ Ωn, we have

var(Pn`(Θn; H( · ; Θn)))
(4εn)2 ≤

(1/n)P`2(Θn; H( · ; Θn))
16ε2α2

n
≤

1
16nε2α2

n
≤

1
16ε2n2φ1 log n

≤
1
2
.

Let O = {O1, . . . ,On} represent the observed data. Let Po
n denote the signed measure that places mass ± 1

n at each of
{O1, . . . ,On}, with the random ± signs independent of the Oi. Then, by [42] and var(Pn`(Θn; H( · ; Θn)))/(4εn)2 ≤ 1/2,
the following symmetrization inequality holds

P( sup
Θn∈Ωn

|Pn`(Θn; H( · ; Θn)) − P`(Θn; H( · ; Θn))| > 8εn) ≤ 4P( sup
Θ∈Ωn

|Po
n`(Θn; H( · ; Θn))| > 2εn). (24)

Given O, select (Θ(1)
n , . . . ,Θ(κ)

n ), where κ = N(εn/2,Ln, L1(Pn)), such that

min
j∈{1,...,κ}

Pn|`(Θn; H( · ; Θn)) − `(Θ( j)
n ; H(y; Θ

( j)
n ))| ≤

εn

2
,

for all Θn ∈ Ωn. For each Θn ∈ Ωn, denote

Θ∗n = arg min
Θ

( j)
n

Pn|`(Θn; H( · ; Θn)) − `(Θ( j)
n ; H(y; Θ

( j)
n ))|.
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Note that

|Po
n
(
`(Θn; H( · ; Θn)) − `(Θ∗n; H(y; Θ∗n))

)
| =

∣∣∣1
n

n∑
i=1

±(`i(Θn; H( · ; Θn)) − `i(Θ∗n; H(y; Θ∗n)))
∣∣∣

≤
1
n

n∑
i=1

∣∣∣(`i(Θn; H( · ; Θn)) − `i(Θ∗n; H(y; Θ∗n)))
∣∣∣ = Pn

∣∣∣`(Θn; H( · ; Θn)) − `(Θ∗n; H(y; Θ∗n))
∣∣∣. (25)

Then, by the definition of Θ∗n and (25), we have

P( sup
Θn∈Ωn

|Po
n`(Θn; H( · ; Θn))| > 2εn|O)

≤ P( sup
Θn∈Ωn

[
|Po

n`(Θ
∗
n; H(y; Θ∗n))| + Po

n|`(Θn; H( · ; Θn)) − `(Θ∗n; H(y; Θ∗n))|
]
> 2εn|O)

≤ P(max
j
|Po

n`(Θ
( j)
n ; H(y; Θ

( j)
n ))| >

3εn

2
|O) ≤ N(εn/2,Ln, L1(Pn)) max

j
P(|Po

n`(Θ
( j)
n ; H(y; Θ

( j)
n ))| >

3εn

2
|O). (26)

According to the definition of N(εn/2,Ln, L1(Pn)), for each Θ
( j)
n , there exists Θ̌

( j)
n such that Pn|`(Θ̌

( j)
n ; H(y; Θ̌

( j)
n )) −

`(Θ( j)
n ; H(y; Θ

( j)
n ))| ≤ εn

2 . Therefore, we obtain

P(|Po
n`(Θ

( j)
n ; H(y; Θ

( j)
n ))| >

3εn

2
|O)

≤ P([|Po
n`(Θ̌n

( j)
; H(y; Θ̌

( j)
n ))| + Pn|`(Θ̌n

( j)
; H(y; Θ̌

( j)
n )) − `(Θ( j)

n ; H(y; Θ
( j)
n ))|] >

3εn

2
|O)

≤ P(|Po
n`(Θ̌

( j)
n ; H(y; Θ̌

( j)
n ))| > εn|O). (27)

By Hoeffding’s inequality, we have

P(|Po
n`(Θ̌

( j)
n ; H(y; Θ̌

( j)
n ))| > εn|O) = P(|

n∑
i=1

±`i(Θ̌
( j)
n ; H(y; Θ̌

( j)
n ))| > nεn|O)

≤ 2 exp
[
− 2(nεn)2/

n∑
i=1

(2`i(Θ̌
( j)
n ; H(y; Θ̌

( j)
n )))2

]
≤ 2 exp(−nε2

n/2). (28)

The last inequality of (28) holds because |`i(Θ̌
( j)
n ; H(y; Θ̌

( j)
n ))| ≤ 1. Combining (26), (27), (28) and Lemma 3, we obtain

P( sup
Θn∈Ωn

|Po
n`(Θn; H( · ; Θn))| > 2εn|O) ≤ 2N(εn/2,Ln, L1(Pn)) exp(−nε2

n/2) ≤ c0MKqn
n (εn/2)−[d0+(K+1)qn] exp(−nε2

n/2).

Note that the right-hand side does not depend on O. Then by taking expectations over O, we have

P( sup
Θn∈Ωn

|Po
n`(Θn; H( · ; Θn))| > 2εn) ≤ c0MKqn

n (εn/2)−[d0+(K+1)qn] exp(−nε2
n/2). (29)

By (24) and (29), we obtain

P( sup
Θn∈Ωn

|Pn`(Θn; H( · ; Θn)) − P`(Θn; H( · ; Θn))| > 8εn) ≤ 4P( sup
Θn∈Ωn

|Po
n`(Θn; H( · ; Θn))| > 2εn)

≤ c0MKqn
n (εn/2)−[d0+(K+1)qn] exp(−nε2

n/2) ≤ c0 exp(−c0ε
2n2φ1 log n).

The last inequality follows as (υ + e)/2 < φ1 < 1/2. Hence
∞∑

n=1

P( sup
Θn∈Ωn

|Pn`(Θn; H( · ; Θn)) − P`(Θn; H( · ; Θn))| > 8εn) < ∞.

By the Borel-Cantelli lemma, we have

sup
Θn∈Ωn

|Pn`(Θn; H( · ; Θn)) − P`(Θn; H( · ; Θn))| → 0,

almost surely, which completes the proof of Lemma 4.
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Now we are ready to prove Theorems 1-2.
Proof of Theorem 1. The proof has two steps. The first step proves the consistency of Θ̂n and Ĥn(y; Θ̂n). The second
step deals with the convergent rate of Θ̂n.
Step 1 (consistency). Under Condition (A2) and by Corollary 6.21 of [48], there exist µn0 = a>n0Bn(t) and φnk0 =

b>nk0Bn(t) such that

sup
t∈[0,1]

|µn0(t) − µ0(t)| = O(q−r
n ) and sup

t∈[0,1]
|φnk0(t) − φk0(t)| = O(q−r

n ),

where µ0(t) and φk0(t) denote the true functions of µ(t)and φk(t) where k ∈ {1, . . . ,K}. Denote C0(s, t) =
∑K

k=1 ρk0φk0(t)φk0(s),
Cn0(s, t) =

∑K
k=1 ρk0φkn0(t)φkn0(s), and Ĉ(s, t) =

∑K
k=1 ρ̂kφ̂k(t)φ̂k(s). Then

sup
(t,s)∈[0,1]2

|C0(s, t) −Cn0(s, t)| ≤
K∑

k=1

ρk0sup|φk0(t)φk0(s) − φkn0(t)φkn0(s)|

≤

K∑
k=1

ρk0
{
sup|φk0(s)||φk0(t) − φkn0(t)| + sup|φkn0(t)||φk0(s) − φkn0(s)|

}
= O(K1/2q−r

n ).

Let Θn0 = (θ0, µn0,Cn0)> and Θ0 = (θ0, µ0,C0)>. Then,

d(Θn0,Θ0) = O(n−rυ). (30)

Let M(Θn; Ĥn(y; Θn)) = −`(Θn; Ĥn( · ; Θn)) and Kε = {Θn : d(Θn,Θn0) ≥ ε,Θn ∈ Ωn} for ε > 0 and

ζ1n = sup
Θn∈Ωn

|PnM(Θn; Ĥn( · ; Θn)) − PM(Θn; Ĥn( · ; Θn))|,

ζ2n = PnM(Θn0; Ĥn( · ; Θn0)) − PM(Θn0; Ĥn( · ; Θn0)).

Then one can show that

inf
Kε

PM(Θn; Ĥn( · ; Θn)) = inf
Kε

{PM(Θn; Ĥn( · ; Θn)) − PnM(Θn; Ĥn( · ; Θn)) + PnM(Θn; Ĥn( · ; Θn))}

≤ ζ1n + inf
Kε

PnM(Θn; Ĥn( · ; Θn)). (31)

If Θ̂n ∈ Kε , then we have

inf
Kε

PnM(Θn; Ĥn( · ; Θn)) = PnM(Θ̂n; Ĥn( · ; Θn)) ≤ PnM(Θn0; Ĥn( · ; Θn0)) = ζ2n + PM(Θn0; Ĥn( · ; Θn0)). (32)

Let δε = infKε
PM(Θn; Ĥn( · ; Θn)) − PM(Θn0; Ĥn( · ; Θn0)). One can verify δε > 0 under the conditions in Theorem

1 when n is large enough. By (31) and (32), we have infKε
PM(Θn; Ĥn( · ; Θn)) ≤ ζ1n + ζ2n + PM(Θn0; Ĥn( · ; Θn0)) =

ζn + PM(Θn0; Ĥn( · ; Θn0)), with ζn = ζ1n + ζ2n, and hence ζn ≥ δε by the definition of δε . Since {Θ̂n ∈ Kε} ⊆ {ζn ≥ δε},
then

⋃∞
i=1

⋂∞
n=i{Θ̂n ∈ Kε} ⊆

⋃∞
i=1

⋂∞
n=i{ζn ≥ δε}. By Lemma 2 and the strong law of large numbers, we have both

ζ1n → 0 and ζ2n → 0 almost surely. Therefore,
⋃∞

i=1
⋂∞

n=i{ζn ≥ δε} is null set when n is large enough, which proves
that d(Θ̂n,Θn0)→ 0 almost surely as n→ ∞. Since

Ĉ(s, t) −Cn0(s, t) =

K∑
k=1

ρ̂kφ̂k(t)φ̂k(s) − ρ̂kφkn0(t)φkn0(s) + ρ̂kφkn0(t)φkn0(s) − ρk0φkn0(t)φkn0(s)

=

K∑
k=1

ρ̂k

[
φ̂k(t)

{
φ̂k(s) − φkn0(s)

}
+ φkn0(s)

{
φ̂k(t) − φkn0(t)

}]
+ {ρ̂k − ρk0}φkn0(t)φkn0(s). (33)

Then Ĉ(s, t) → Cn0(s, t) almost surely. Combining with (30), we have d(Θ̂n,Θ0) → 0 almost surely. Further, with
Lemma 2, we have Ĥmn(y) ≡ Ĥmn(y; Θ̂n)→ Hm(y; Θ0) ≡ Hm0(y) uniformly in y ∈ [y

m
, ym] for m = 1, 2, . . . , p.
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Step 2 (convergence rate). We establish the convergence rate of Θ̂n by using Theorem 3.4.1 of [55]. For any η > 0,
define

Fη = {`(Θn; Ĥn( · ; Θn)) − `(Θn0; Ĥn( · ; Θn0)) : Θn ∈ Ωn, η/2 ≤ d(Θn,Θn0) ≤ η}.

For Θ in the neighborhood of Θ0, the compactness of the parameter space implies that P{`(Θ0; H0)−`(Θ; Ĥn( · ; Θ))} �
d2(Θ,Θ0). Hence

P(`(Θn0; Ĥn( · ; Θn0)) − `(Θ0; H0)) � d2(Θn0,Θ0) ≤ c0n−2rυ. (34)

For large n, by (34) we have

P(`(Θn; Ĥn( · ; Θn)) − `(Θn0; Ĥn( · ; Θn0))) ≤ c0η
2 + c0n−2rυ = Op(η2),

for any `(Θn; Ĥn( · ; Θn)) − `(Θn0; Ĥn( · ; Θn0)) ∈ Fη. Following [49], we can establish that for 0 < ε < η,
log N[](ε,Fη, L2(P)) ≤ c0Kqn log(η/ε). Under Conditions (A1)-(A5), Fη is uniformly bounded. Therefore, by Lemma
3.4.2 of [55], we obtain

EP‖n1/2(Pn − P)‖Fη ≤ c0J[](η,Fη, L2(P))
{
1 +

J[](η,Fη, L2(P))

η2
√

n

}
,

where J[](η,Fη, L2(P)) =
∫ η

0 {1 + log N[](ε,Fη, L2(P))}
1
2 dε ≤ c0

√
Kqnη. Denote φn(η) =

√
Kqnη+ Kqn/

√
n. It follows

that φn(η)/η is decreasing in η, and r2
nφn(1/rn) = rn

√
Kqn + r2

nKqn/n1/2 ≤ c0n1/2, where rn = (Kqn)−1/2n1/2 =

n(1−υ−e)/2. Noting that Pn(`(Θn; Ĥn( · ; Θn)) − `(Θn0; Ĥn( · ; Θn0))) ≥ 0 and d(Θ̂n,Θn0) ≤ d(Θ̂n,Θ0) + d(Θ0,Θn0) → 0
in probability, by applying Theorem 3.4.1 of [55], we have n(1−υ−e)/2d(Θ̂n,Θn0) = OP(1). According to (33), we have
n(1−v−e)/2d(Θ̂n,Θn0) = OP(1). This together with d(Θ0,Θn0) = O(n−rυ+e/2) yields that d(Θ̂n,Θ0) = OP(n−(1−υ−e)/2 +

n−rυ+e/2) = O(n−min( 1−υ−e
2 ,rυ−e/2)).

Proof of Theorem 2. Let Ω − Θ0 be Ω excluding Θ0. Let Ω̃ denote the linear span of Ω − Θ0 and define the Fisher
inner product on the space Ω̃ as < v, v̌ >= P{ ˙̀(Θ0; H( · ; Θ0))[v] ˙̀(Θ0; H( · ; Θ0))[v̌]} for v, v̌ ∈ Ω̃, the Fisher norm as

‖v‖ =< v, v >, where ˙̀(Θ0; H( · ; Θ0))[v] =
d`(Θ0+sv;H( · ;Θ0))

ds

∣∣∣∣∣
s=0

is the first order directional derivative of `(Θ0; H( · ; Θ0))

at the direction v ∈ Ω̃ (evaluated at Θ0). Also let ¯̃Ω be the closed linear span of Ω̃ under the Fisher norm. Then ( ¯̃Ω, ‖ ·‖)
is a Hilbert space. For a vector of d0-dimension b = (b>1 , b

>
2 , b

>
3 , b

>
4 )> with ‖b‖ ≤ 1 and for any v ∈ Ω̃, define a smooth

functional of Θ as h(Θ) = b>θ = b>1
−→
β + b>2 λ + b>3 α + b>4 ς and ḣ(Θ0)[v] =

dh(Θ0+sv)
ds

∣∣∣∣∣
s=0
, where θ = (

−→
β>, λ>,α>, ς>)>,

whenever the right hand-side limit is well defined. According to the Riesz representation theorem, there exists a
v∗ ∈ ¯̃Ω such that ḣ(Θ0)[v] =< v, v∗ > for all v ∈ ¯̃Ω and ‖v∗‖ = ‖ḣ(Θ0)‖. Note h(Θ) − h(Θ0) = ḣ(Θ0)(Θ − Θ0). Thus,
according to the Cramér-Wold device, to prove Theorem 2, it suffices to show that

√
n < Θ̂n − Θ0, v∗ >

d
−→ N(0, b>I−1(θ0)b), (35)

due to b>{(
−̂→
β
>

n , λ̂
>

n , α̂
>
n , ς̂

>
n , τ̂

>
n )> − (

−→
β>0 , λ

>
0 ,α

>
0 , ς

>
0 , τ

>
0 )>} = h(Θ̂n) − h(Θ0) = ḣ(Θ0)(Θ̂n − Θ0) =< Θ̂n − Θ0, v∗ >. In

fact, (35) holds when
√

n < Θ̂n − Θ0, v∗ >
d
−→ N(0, ‖v∗‖2) and ‖v∗‖2 = b>I−1(θ0)b.

We will take two steps to prove (35). First, we prove
√

n < Θ̂n − Θ0, v∗ >→d N(0, ‖v∗‖2). According to the result
of Corollary 6.21 in [48], there exists a Πnv∗ ∈ Ωn − Θ0 such that ‖Πnv∗ − v∗‖ = O(n−rυ). In addition, under the
assumptions r ≥ 2 and 1/2 > v > 1/4r, we have δn‖Πnv∗ − v∗‖ = o(n−1/2) where δn = n−min{(1−υ−e)/2,rv}. For any
Θ ∈ {Θ ∈ Ω : d(Θ,Θ0) = O(δn)}, define the first and second order directional derivative at the directions v, v̌ as

˙̀(Θ; H( · ; Θ))[v] =
d`(Θ + sv,O)

ds
|s=0,

῭(Θ; H( · ; Θ))[v, v̌] =
d2`(Θ + sv + šv̌,O)

dšds

∣∣∣∣∣
s=0,š=0

=
d ˙̀(Θ + šv̌,O)[v̌]

dš

∣∣∣∣∣
š=0
.
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Define r(Θ − Θ0; H( · ; Θ)) = `(Θ; H( · ; Θ)) − `(Θ0; H( · ; Θ0)) − ˙̀(Θ0; H( · ; Θ0))(Θ − Θ0) and let εn = o(n−1/2). Then,
by the definition of Θ̂n and P ˙̀(Θ0; H( · ; Θ0))[

∏
n v∗] = 0, we have

0 ≤ Pn{`(Θ̂n; H( · ; Θ̂n)) − `(Θ̂n ± εnΠnv∗; H( · ; Θ̂n))} = Pn
{
r(Θ̂n − Θ0; H( · ; Θ̂n)) + ˙̀(Θ0; H( · ; Θ0))(Θ̂n − Θ0)

−r(Θ̂n + εnΠnv∗ − Θ0; H( · ; Θ̂n)) − ˙̀(Θ0; H( · ; Θ0))(Θ̂n + εnΠnv∗ − Θ0)
}

= ∓εnPn ˙̀(Θ0; H( · ; Θ0))[v∗] ∓ εnPn ˙̀(Θ0; H( · ; Θ0))[Πnv∗ − v∗] + (Pn − P){r(Θ̂n − Θ0; H( · ; Θ̂n))
−r(Θ̂n ± εnΠnv∗ − Θ0; H( · ; Θ̂n))} + P{r(Θ̂n − Θ0; H( · ; Θ̂n)) − r(Θ̂n ± εnΠnv∗ − Θ0; H( · ; Θ̂n))}

= ∓εnPn ˙̀(Θ0; H( · ; Θ0))[v∗] ∓ I1 + I2 + I3. (36)

We will investigate the asymptotic behavior of I1, I2 and I3. For I1, it follows from Conditions (A1)-(A5), the Cheby-
shev inequality, and ‖Πnv∗ − v∗‖ = o(1) that

I1 = εn × op(n−1/2). (37)

For I2, due to the mean value theorem, we obtain that

I2 = (Pn − P){`(Θ̂n; H( · ; Θ̂n)) − `(Θ̂n ± εnΠnv∗; H( · ; Θ̂n)) ± εn`(Θ0; H( · ; Θ0))[εnΠnv∗]}
= ∓εn(Pn − P)

[
{ ˙̀(Θ̃; H( · ; Θ̃)) − ˙̀(Θ0; H( · ; Θ0))}[Πnv∗]

]
, (38)

where Θ̃ lies between Θ̂n and Θ̂n±εnΠnv∗. By Theorem 2.8.3 of [55], we know that { ˙̀(Θ; H( · ; Θ))[Πnv∗] : ‖Θ−Θ0‖ =

Op(δn)} is a Donsker class. Hence by Theorem 2.11.23 of [55], we get I2 = εn × op(n−1/2). Since

P(r[Θ − Θ0; H( · ; Θ)]) = P{`(Θ; H( · ; Θ)) − `(Θ0; H( · ; Θ0)) − ˙̀(Θ0; H( · ; Θ0))[Θ − Θ0]}

=
1
2

P{ ῭(Θ̃; H( · ; Θ̃))[Θ − Θ0,Θ − Θ0] − ῭(Θ0; H( · ; Θ0))[Θ − Θ0,Θ − Θ0]} +
1
2

P ῭(Θ0; H( · ; Θ0))[Θ − Θ0,Θ − Θ0]

=
1
2

P ῭(Θ0; H( · ; Θ0))[Θ − Θ0,Θ − Θ0] + εn × op(n−1/2),

where Θ̃ is between Θ and Θ0 and the last equation follows from the Taylor expansion, conditions A(1)-A(5) and
r ≥ 2, 1/2 > υ > 1/4r. Therefore

I3 = −
1
2
{‖Θ̂n − Θ0‖

2 − ‖Θ̂n ± εnΠnv∗ − Θ0‖
2} + εn × op(n−1/2) = ±εn < Θ̂n − Θ0,Πnv∗ > +

1
2
‖εnΠnv∗‖2 + εn × op(n−1/2)

= ±εn < Θ̂n − Θ0,Πnv∗ − v∗ + v∗ > +
1
2
‖εnΠnv∗‖2 + εn × op(n−1/2)

= ±εn < Θ̂n − Θ0, v∗ > +
1
2
‖εnΠnv∗‖2 + εn × op(n−1/2) = ±εn < Θ̂n − Θ0, v∗ > +εn × op(n−1/2), (39)

where the last equality holds because δn‖Πnv∗ − v∗‖ = o(n−1/2), Cauchy-Schwarz inequality, and ‖Πnv∗‖2 → ‖v∗‖. By
(36) - (39), combined with P ῭(Θ0; H)[v∗] = 0, we can establish that

0 ≤ Pn{`(Θ̂n; H( · ; Θ̂n)) − `(Θ̂n ± εnΠnv∗; H( · ; Θ̂n))}
= ∓εnPn ˙̀(Θ0; H( · ; Θ0))[v∗] ± εn < Θ̂n − Θ0, v∗ > +εn × op(n−1/2)
= ∓εn(Pn − P) ˙̀(Θ0; H( · ; Θ0))[v∗] ± εn < Θ̂n − Θ0, v∗ > +εn × op(n−1/2).

Therefore, we obtain ∓
√

n(Pn − P) ˙̀(Θ0; H)[v∗] ±
√

n < Θ̂n − Θ0, v∗ > +op(1) ≥ 0. Further, with the central limit
theorem, we have

√
n < Θ̂n − Θ0, v∗ >=

√
n(Pn − P) ˙̀(Θ0; H)[v∗] + op(1)→ N(0, ‖v∗‖2) and ‖v∗‖2 = ‖ ˙̀(Θ0; H)[v∗]‖2.

Now we calculate ‖v∗‖. Rewrite θ = (θ1, . . . , θd0 ). For each component θq where q = 1, 2, . . . , d0, let ψ∗q =

(b∗1q, b
∗
2q, . . . , b

∗
(K+1)q+K) be the minimizer of E{`θ · eq − `b1 [b1q] − ˜̀b2 [b2q] − . . . − `b(K+1)q+K [b(K+1)q+K]}2 with respect

to ψq = (b1q, b2q, . . . , b(K+1)q+K), where `θ = (`>−→
β
, `>λ , `

>
α , `

>
ς )>, `−→

β
= (`>β1

, . . . , `>βpp1
)>, `λ = (`λ2 , . . . , `λp )>, `α =

(`>α1
, . . . , `>αp2

)>, `ς = (`>ς1
, . . . , `>ςp

)>, `βk = ∂`
∂βk
, `λk = ∂`

∂λk
, `αk = ∂`

∂αk
, `ςk = ∂`

∂ςk
, and eq is a d0 dimensional vector of

zeros except with the q−th element equal to 1.
Define a vector S θ of dimension d0, with the q-th element as `θ · eq − `b1 [b∗1q]− `b2 [b∗2q]− . . .− `bs0

[b∗(K+1)q+K], and
then I(θ) = E(S θS >θ ), I(θ0) = E(S θ0 S >θ0

). Further, following [7], we obtain

‖v∗‖ = ‖ḣ(Θ0)‖ = sup
v∈V̄:‖v‖>0

|ḣ(Θ0)|2

v2 = b>[E(S θ0 S >θ0
)]−1b = b>I−1(θ0)b.
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Supplementary material

It contain Fig.1-3 for the histograms of MMSE, BVRT and IST in each group of the Cognitive Decline data, Tables
1-2 for the simulation results of Examples 3-5, and the R code of our simulation.
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