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SUMMARY

Linear discriminant analysis has been widely used to clarize or separate multiple classess
via linear combinations of features. However, the high disienality of features from modern
biological experiments defies traditional discriminanalgris techniques. Possible inter-feature
correlations present additional challenges and are oftelertused in modeling. In this paper,
by incorporating possible inter-feature correlations pr@ose a covariance-enhanced discrimi-
nant analysis method that simultaneously and consistsatécts informative features and iden-o
tifies the corresponding discriminable classes. Under ragdlarity conditions, we show that the
method can achieve consistent parameter estimation anel seldction, and attain an asymptot-
ically optimal misclassification rate. Extensive simwas have verified the utility of the method,
which apply to a renal transplantation trial.

Some key word<Correlation; Graphical lasso; Linear discriminant asalyPairwise fusion; Variable selection. 25

1. INTRODUCTION

Rapid technological advances have yielded vast amountgjlofthroughput data, e.g., those
arising from microarray or proteomics, which has broughigh ldemand for statistical methods
that can effectively use such data to make decisions. Fongbeain a kidney transplantation and
injury study (Flencher et al., 2004) that motivated thisqra?2 tissue samples were obtained
from subjects with four different renal functional typeteakidney transplantation. Distinguish-
ing these four types of subjects based on 12,625 gene eiprgssfiles is crucial to balance, at
the molecular level, the need for immunosuppression togmtetvansplant rejection while min-
imizing drug-induced toxicities. Linear discriminant &rsks, a popular method in the classical
setting where the number of variables is much smaller tharséimple size, has been found tas
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perform poorly in the high-dimensional setting becauséh@)sample covariance matrix, which
is needed in linear discriminant analysis, is singular; @dthe classification rule involves a
linear combination of all the variables, causing difficultyinterpretation and degrading classi-
fication performance with many non-informative variables.

To address (a), linear discriminant methods with a variéfyemalized versions of covariance
matrices have been constructed, including the nearestlggmucentroids assuming the covari-
ance matrix to be diagonal (Tibshirani et al., 2002), naiagds using the diagonal of the sample
covariance matrix (Bickel & Levina, 2004), an extension efrest shrunken centroids with a
general covariance matrix (Guo et al., 2007), thresholdingean effects and covariance matrix
in binary classification (Shao et al., 2011) and a lasso-tyassifier (Tibshirani, 1996) based on
the estimated product of mean effects and the precisiorx{@ai & Liu, 2011). Other relevant
work includes Qiao et al. (2008), Witten & Tibshirani (200@Jemmensen et al. (2011), Witten
& Tibshirani (2011), Fan et al. (2012), and some of the refees therein.

To address (b), Tibshirani et al. (2002) proposed to shritgkdlass centroids towards the
global centroid, Wang & Zhu (2007) represented the problgmlasso regression and introduced
two new penalties to improve the effectiveness of variabledion, and Guo (2010) used linear
discriminant with pairwise fusion penalties to select mfiative variables. Theoretical properties
are in general elusive for these methods, though some astimptsults are available for the
annealed independence rule proposed by Fan & Fan (2008) larehadiscriminant rule using
penalized sparse least squares proposed by Mai et al. (28@Rj)ever, both methods focus on
binary classification, and it is not clear how to extend thertheé multiple class case.

In this paper, we propose a covariance-enhanced discminizaalysis method for high-
dimensional classification. Our method utilizes the gdnssgariance structure, going beyond
the diagonality restriction, when selecting informativegigbles for linear discriminant analy-
sis. Our method achieves more flexibility than existing rodthby allowing a variable to be
informative for only a subset of, rather than all, classesl @njoys consistency of parameter
estimation and model selection. For binary classificatiwa,show that it achieves the lowest
possible asymptotic misclassification rate.

Some authors, including Clemmensen et al. (2011) and WA&tt€ibshirani (2011), have also
discussed variable selection in the presence of corralatowever, to our knowledge, none of
these approaches can identify variables that are spebifiofbrmative to discriminate certain
classes.

To further illustrate the impact of a non-diagonal covacematrix for variable selection,
Figure 1 shows a simple binary classification example, whehe two classes have the same
mean inXy and different means ifX;. The best classifier would involve boffy; and X5 even
though the latter does not by itself have any power to sepdnattwo classes. The contribution
of X, to classification is through its correlation wity;, which demonstrates the role of using
a non-diagonal covariance matrix. As Figure 1 implies, fug purpose of classification and
variable selection, we should consider the differencebémieans between each pair of classes
as well as possible inter-variable correlations.

2. METHODOLOGY
2:1. Model and notations
Consider a generdk -class problem, wher¥ is the class label taking values {1, ..., K}
and X is the corresponding-dimensional vector of predictors. We assume that the poipu-
average probability of clagsiswy = Pr(Y = k) >0fork=1,... . K satisfyinng:1 Wi =
1. The conditional density ok given class: is modeled by a multivariate Gaussian distribution,
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Fig. 1. Anillustrative example with two classes. Even tHobgth classes have the
same mean iX», X is informative for classification and variable selectiom an
should not be removed by a variable selection method.

i.e. X |Y =k~ Ny(ug, %), wherepy = (u1, - - ., rp)” is the class-specific mean vector and
Y is ap x p positive definite covariance matrix with, j')th elementsr;;» (j, 5/ =1,...,p). As
assumed in linear discriminant analysis, the covarianceixna is a constant across different
classes, which may be plausible as, for example, gene expnssacross disease classes oftean
differ in the means rather than in the covariance struciGreo(et al., 2010).

Let w = (wy,...,wx)? and Q be the inverse of with (j,j')th elementsQ;; (4, =
1,...,p). Further, letu = (u?, ..., u%)T be the vector containing all class means anet
(z1,...,2,)T be an observation.

Givenwy, ui (k=1,..., K) and(2, linear discriminant analysis classifies an observaiion «
to a class, say*, that maximizes

Pr(Y =k | X =x) = ¢(x)wy exp {—%(x — )T — ,uk)} , 1)

wherec(z) is a normalizing constant that does not depend dfor variable selection, we com-
pare classeg and/, wherek # [ with k,l = 1,..., K. Specifically, we consider the pairwise
difference fork # I:

logPr(Y =k | X =2) —logPr(Y =1| X =x) =logwy, — logw;
PP
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Hence, the necessary and sufficient condition for varigtbleing non-informative to distinguish
classes: and/ is

p

> Qi (uwgr — myr) = 0. )

j'=1
Further we note that a sufficient condition leading to (2jas,;;’ = 1,...,p,

Qjjr =0or pgjr — pjr =0, j'#j
prg — iy =0, § = j. (3)

Since(;;» = 0 indicates conditional independence betwé&grand.X ;. given all other variables,
(3) implies that if a variable is conditionally independeftll the variables helpful for discrimi-
nating classes andl, and is itself indistinguishable for classeandl, it is then non-informative
for discriminating classek and!. Compared with the necessary and sufficient condition I(2), t
informativeness of features as defined by (3) is more indéapie in practice, as it elucidates
why a given variable, sayin (3), is non-informative for discriminating classe&nd! in terms
of mean and in the presence of correlation. This motivate® asnstruct a variable selection
procedure for selecting informative variables and idgirid the distinguishable classes simul-
taneously.

2:2. Covariance-enhanced discriminant analysis
Let (y;, z;) be theith observationi(=1,...,n) from a K-class problem with known class
label y; and predictor vector;. Let S(u) = n~' S0 SOK | T(ys = k) (@i — ) (w5 — )T
A natural approach to inference is to maximize the log-lik@bd function

K

1 ¢ 1 1
In(w, Q) = =~ > 0 I(ys = k) logwy + 5 log [0 — Str{S(w)Q2},
i=1 k=1

but with high-dimensional parametersand(?, a direct maximization is not stable. Regulariza-
tion terms oy and(? are needed to enhance stability.

Motivated by condition (3), we propose to regularize thewie differences in class centroids
for each variable and the off-diagonal elements of the autnaton matrix. Specifically, let
p = p, be afunction of the sample size We maximize

Pn
Qn(w, 11, ) = ln(w, 11,0 = Ain > Y kg — bl — Aam Y Q5] 4
71=1 1<k<I<K J#j
subject to
K
dwp =120 (5)
k=1

where- 0 indicates positive definiteness. The first penalty term Jrsftinks the pairwise dif-
ferences in class centroids for each variable, whereaetwnd penalty term resembles that of
the graphical lasso for estimating the concentration métian & Lin, 2007; Friedman et al.,
2008). When the tuning parametels,, and \z,,, are large enough, some of thg; — 1;; and
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;5 will be estimated as zero. Further, if for some? [,

Pn

Z Qo (g — fujr) =0, (6)

-/

Jj'=1

then variablej can be considered non-informative for distinguishing s#as# andi, though it
could still be informative for discriminating other pairsdasses. Moreover, if (6) holds for all
pairs(k,l)withk,l = 1,..., K andk < [, then variablej is considered to make no contribution
to the classification and can be removed from the fitted model. 125

Remarkl. While the proposed method with (4)--(5) does not directljoese the structure
described by (3), and the double penalization might sometilaa the results, we opt for (4)-
-(5) for two reasons. First, directly using (3) would leadatcomplicated nonconvex problem.
Second, the second penalty on (4) effectively enforcesgpam €2, which seems a reasonable
assumption for large precision matrices, see, for exaniptkel & Levina (2008), Friedman iz
etal. (2008), Lam & Fan (2009), Cai et al. (2011) and Witteale2011), and can often simplify
computation and interpretation.

One natural variant of the proposed method is the doljbpenalized linear discriminant,

pn K
mag ln(wa s Q) — An Z Z |lu’k?]| — Ao, Z |ij’|> (7)

e j=1k=1 i’

under the constrainfs;_, wy, = 1 andQ ~ 0. The first penalty term shrinks all class centroids
towards zero, the global centroid of the centered datal thaj.;; (k = 1,. .., K) are estimated 1
to be zero, variablg is considered non-informative, in the spirit of the neaséstinken centroid
method (Tibshirani et al., 2003). Criterion (7) can be cdesd to be an improved version of the
shrunken centroid method which assumes that the covariaatex is diagonal. Further, unlike
(4), both (7) and the shrunken centroid method claim a vhriab non-informative only when
allthepy; (k =1,..., K) are estimated as zeros and do not identify class-specsiicintinable 1o
variables.

3. ASYMPTOTIC PROPERTIES
Letw = (wa),wK)T, wherew) = (w1, ..., wr—1)T andwg =1 — f:_ll wi. Let w* =
(waT), wi )T, p*, * and* be the true values af, x, 2 andY, respectively. We further define

A:{(]vl)Q;kl#Oij: 1,...,pn,j7él},
B={(k,K,j) :,u}zj—,uzlj:(),k:<k‘/,k:,k:/zl,...,K,j:1,...,pn}:

A contains the indices of off-diagonal elementg¥hwhich are truly nonzero, anfl contains s
the indices of class pairs and variables that have zero niffaredce.

For a symmetric matrix4, write tr(A) for the trace ofA, and Apin (A) and Amax(A) for the
minimum and maximum eigenvalues df Define the operator norm and the Frobenius norm,
respectively, ag Al = Mi2(ATA) and ||A||p = tr'/2(AT A). Write | F]| for the cardinality of
the setF andF* for the complement of the sét. Leta,, = |A| andb,, = K(K — 1)p,/2 — |B|; o
a, is the number of nonzero elements in the off-diagonal entsfé2*, andb,, is the number of
class pair and variables that have nonzero mean differefdeslly, let ,;, = I(Y; = k) and
ng=y.c mpfori=1,....,nandk =1,... K.
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We assume the following conditions to establish consistamel sparsistency:

1ss (A) there exist positive constantg andrs such thate; < Apin (X)) < Apnax(X*) < ko for all n;
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(B) there exist positive constants andc; such thaic; < minj<p<g ng/n < maxj<g<x ng/n

< ¢y for all n;

(C) for somen > 0,

M- Mny/P,/VOwax = 000 Atn/B,, {buas L0g (K (K = 1)pa/2 = by)} /2 > 144 and
™ = op(A1n+/p,,); @nd
(il). i/ /bl — 00, A/ /Ui Jog by > 14 anddrodi,/p, (K — 1) < api,
where b, = maxi<j<p, 05, an™ = maxg ‘Z?zl(nkrn;,l - Tiknlzl) Z{il ik | and

mi

n__ .
Oén — IMINngec

S (marnip! = ) S |

Condition (A) bounds the eigenvalues of the covariance imait uniformly, and condition
(B) implies that thel samples are of comparable sizes. Both are the commonly oselitions
in the high dimensional setting (Cai & Liu, 2011), which f#eites the proof for consistency.
Condition (C) is analogous to the conditions in Theorem 2.Rinaldo (2009), which is used
for the proof of sparsistency.

THEOREM 1. Under conditions (A) and (B), ibg p,/n = O(A\},), logp,/n = O(A\3,), and
(Pn + an)(log pn)™/n = O(1) for somem > 1, there exist a local maximizeb ), i1, and

Q2 for the maximization problem (4)--(5) satisfyingo.) — wiplls = Op(n™h), 1 —p*l3 =
Op(pnlog pr /1), andHQ — Q*H%7 = Op{(pn + an)logp,/n}.

THEOREM 2. Under the conditions given in Theoreip for the local maximizer of(4)--
(5) satisfying||w ) — w3 = Op(n™"), [l — (13 = Op(pnlog p/n), maxi<j<p, lliig) —
1 ()3 = Op(par) for asequence,y — 0, | = Q3 = Op{(pn + an) log pu/n}, and |2 -
Q*||> = Op(pn2) for a sequence,2 — 0, we have

(i) if log pn/n + pn1 + pn2 = O()3,), then with probability tending to £2;; = 0 forall (j,1) €
A J #1,

(ii) if condition (C) holds, theriim,, ., Pr(B = B) = 1, whereB = {(k, k', 5) : fuxj — furr; =

0,fori<k<k <Kandj=1,...,p,}.

Theorem 1 reveals that with proper tuning paramelgfsand \o,,, the covariance-enhanced
discriminant analysis estimators are consistent withagentates of convergence. Theorem 2
shows the sparsistency 8fand of the fusion estimatgr, ensuring the selection consistency for
the true signals among the predictors and the identificati@ecordance with their correspond-
ing discriminable classes.

Theorem 1 indicates that is consistent whemp,,/n = O{(log p,)~™} with somem > 1,
which seems restrictive. There are at legshonzero elements, each of which can be estimated at
best with rate»~1/2, so the total square error is at least of rat¢n, and for high-dimensionality,
we pay the pricéog p,,. The rate decays to zero slowly, which implies thatan be comparable
to n without violating the results in practice. And what we cabma is the mean difference
0 = {kp; — o kK =1, K.k <k,j=1,... pa}. If 6 is sparse enough, we expect
consistency and sparsistency hold fgr> n.
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Further, we consider the binary classification problem. fbliewing theorem establishes the
asymptotic optimality of the proposed method in terms ofataissification error under certain
conditions on the divergence ratesbf p,, a, andAgn, whereAgn = 5;TQ*5;. 108

THEOREM 3. In the binary caseX = 2, under the conditions given in Theoré&gnand as-
suming that

1/2 b111/2 pL/2 1/2

12 Gn n Pnl
n2 Apnn1/27 Apnnl/zy Ap: } — 0, n — OO, (8)

¢, = max{p

we have

() the conditional misclassification rate of the proposeavariance-enhanced discriminant
analysis is 200

Ry, = @[—{1+ Op(cn)}Ap, /2],

where® is the standard normal cumulative distribution function;
(i) if A, is bounded, then the proposed method is asymptoticallynapand

R,
Ropt

—1=0(cpn),

where Ropt = ®(—A,,, /2) denotes the misclassification rate of the optimal clasditioa
rule (Anderson, 2003);
(i) if A, — oo, for the proposed method we haklg — Ropt i 0; 205
(iv) if A,, — occand anI%n — 0, then the proposed method is asymptotically optimal.

Remark2. Condition (8) is related to the convergence rate of estinsgtoand (2 and the
number of nonzero elements & and2*. Essentially it holds with the sparsity assumptions
on 2* andd;, and with the existence of consistent estimatorgotind(2* when the values of
nonzero mean differences are bounded. Theorem 3 is imp@tandiscusses the asymptoticako
optimality in terms of misclassification error, wh@tﬁ; 2, the magnitude of mean differences,
diverges to infinity at different rates.

4. IMPLEMENTATION AND TUNING PARAMETER SELECTION

Note thatw, = > ;" | I(y; = k)/n (k =1,..., K) whereas the estimators pfand(2 can be
obtained through an iterative algorithm: we fixand estimat€), then we fix the estimated and 25
estimateu; we iterate between these two steps until the algorithm exges. Since the value of
the objective function (4) decreases over iterations, emance is guaranteed.

Wheny is fixed, to maximize)),, with respect td?, it suffices to maximize

1
Q1(&) = log [ — r{S(1)2} — FA2n > 191 (9)
i#5
over all non-negative definite matricé€sfor a known covariance matri$(x), similar to the

problem of estimating sparse graphs. Hence, we can applyréphical lasso algorithm (Fried-xo
man et al., 2008) to efficiently solve fér.
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When( is fixed, to maximize?),, with respect tqu, it suffices to minimize

n K
nIY S Iy = k) (@ — )T — ) + Amz >l — il (10)

i=1 k=1 J=11<k<k’'<K

It is challenging to directly minimize (10) with respect i due to the fusion penalty. We ap-
ply local quadratic approximation (Fan & Li, 2001) to cornvére minimization in (10) into a
generalized ridge problem. Specifically, we write
(t+1) (t+1)\2
(t+1) (t+1) by " = g )? (t)
g = by | = ) 5’/“%' ~ il
20y} — )]
wheret is the iteration index used to denote iterations of the lagadratic approximation.
Consequently, we only need to consider the objective fancti

Pn

_IZZ% — )T — ) + )‘MZ > (Mkj Mk]) - (1)

i=1 k=1 j=11<k<k/'<K 2‘#1@' - M rj ’

wherer;;, = I(y; = k), and thusp ) = argmin,, Q2 (1).
Overall, the algorithm proceeds as follows:

1. initialize 1(©) with some plausible values, and set 1;

2. for iterations, apply the graphical lasso algorithm to maximize (9) witreplaced by:(s—1
and obtain(®):

3. with Q replaced byQ( >, iteratively minimize the generalized ridge criterion Yuintil

(D YA 1’# (t+1) —Mk]\/ DI 1\# )| is small enough to obtaip(®);

4, if |Qn (@, u ),Q( ) —Qn (w,u(s D Q6= )] is small enough, stop the algorithm. Other-
wise, sets «+— s + 1 and go to Step 2.

In terms of selecting the tuning parametais and A»,,, we follow the suggestion in Wang
et al. (2007) and use a BIC-type criterion:

BIC(Ain, A2n) = —2nln (&, f1, Q) + (K — 1+ d; + dgy) log(n), (12)

whered,, is the number of distinct nonzero elementsjirand dg, is the number of nonzero
elements irf.

5. SMULATION STUDIES

In this section, we assess the finite sample performancegirttposed method. For compar-
ison, we consider several related methods, including fuségularized linear discriminant anal-
ysis (Guo, 2010), doubl¥; -penalized linear discriminant analysis (7), sparse ofisoant anal-
ysis (Clemmensen et al., 201%1);penalized linear discriminant analysis and fused-peedli
linear discriminant analysis (Witten & Tibshirani, 201Eusion-regularized linear discriminant
analysis is a special case of our method when the covariaatéxris assumed diagonal.

Examplel. Consider a three-class scenario with a totapef 210 variables, generated ac-
cording to the following mechanism: the first 10 variables imdependentV (1.4, 1) for class
k, whereas the remaining 200 variables are independent antdélly distributed fromV (0, 1)
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Table 1.Means of the informative variables in
simulated examples 1-3

Example Variables Class1l Class2 Class3

1&2 1--5 0 0 —2.5
6--10 1.5 —1.5 —-1.5

3 1--4 0 0 —2.5
5 —-0.5 2 —-2.5

6--10 1.5 —-1.5 —1.5

for all three classes. Table 1 gives the means for the firsiati@lles. For example, in class 1,
variables 1--5 all have mean 0, and variables 6--10 all hazami.5.

Example2. The true model is the same as that in Example 1 except thabttagiance matrix
is the AR(1) correlation structure with autocorrelatioreffiwient0.6 for variables 1--5 and vari-
ables 6--10. Variables 1--5 are independent of variabled6and both groups are independent
of the remaining 200 variables.

Example3. The true model is the same as that in Example 1 except thablats has different
means from variables 1--4 and the correlation structurengmariables 1--10 differs from those
in Examples 1 and 2. Specifically, the means of variable 5esperctively—0.5, 2, and—2.5 in
the three classes. Variables 1--5 have an exchangeabbdatimn structure with parameters. 2o
Variables 6--10 are correlated with the same structurerulgpgendent of variables 1--5. Table 1
gives the means for the first ten variables.

Only the first ten variables are informative in each simolagéxample. Moreover, in Exam-
ples 1 and 2, a variable is informative for separating a pgaifasses if it has unequal means for
the corresponding classes. For example, variables 1--Banmenative for separating classes 1s
and 3 or classes 2 and 3, but not for separating classes 1 and &imilarly for variables 6--10.
For Example 3, it is less straightforward to identify theoimhative variables for discriminating
classes 1 and 2. For example, variable 1 has equal means$sesl1 and 2, but it contributes
to the classification through its correlation with the imh@tive variable 5, just as Figure 1 illus-
trated. Therefore, unlike in Examples 1 and 2, variable§ &re all informative for separating:»
classes 1 and 2.

For each example, we generate 200 data sets, each consisting= no, = ng = 50 training
and test samples. We then apply each method to the traintagadd record the misclassifica-
tion error rate evaluated on the testing data, the propodiancorrectly removed informative
variables, i.e., the false negative rate, the proportianagrrectly selected non-informative vari-
ables, i.e., the false positive rate, and the model size.

Table 2 summarizes the misclassification error rates aridblarselection results for the six
methods over 200 replications. Overall, the proposed ngetlutperforms other competitors in
terms of classification accuracy and has prediction acgurampetitive with smaller models.
In terms of variable selection, all methods, except for spaiscriminant analysis (Clemmenses,
et al., 2011), are effective at identifying the informatixagiables, while the proposed method is
more effective at removing non-informative variables. ISpadiscriminant analysis has decent
classification accuracy overall, but tends to miss imponariables.

If a variable is non-informative for discriminating a paif dasses, and the corresponding
estimated parameters satisfy equation (6), we considerdbaect fusion. Table 3 summarizess
the fusion results for all the examples. Each row in the tgbésents the average proportion
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Table 2.Misclassification error rates and variable selection rasdbr Exam-
ples 1--3. Means and standard errors (in parentheses) dbuarperformance
measures based on 200 replications

Example Method ER(%) FN(%) FP (%) MS
1 Proposed Method  0.23(0.36) 0(0) 0.29(0.59) 10.58(1.18)
Guo 0.29(0.45) 0(0) 7.66(6.71) 25.32(13.41)
Doubly L 2.62(4.41) 0(0) 46.86(9.34) 103.72(18.69)
Clemmensen 0.38(0.52) 0(0) 0.47(0.56) 10.95(1.12)
Witten-L 0.29(0.48) 0(0) 15.29(15.79)  40.59(31.58)
Witten-Fused 0.29(0.69) 0(0) 3.04(15.81) 16.07(31.61)
2 Proposed Method  3.91(1.55) 0(0) 0.53(0.48) 10.71(0.87)
Guo 11.38(4.93) 0(0) 9.22(8.49) 28.45(16.97)
Doubly L 7.11(4.58) 0(0) 77.64(13.32) 165.29(26.64)
Clemmensen 4.34(1.68)  3.40(5.71) 1.71(4.08) 13.42(8.16)
Witten-L, 4.39(1.63) 0(0) 33.25(36.75)  76.50(73.49)
Witten-Fused 4.24(1.66) 0(0) 14.14(31.93) 38.28(63.86)
3 Proposed Method  1.87(1.05) 0(0) 0.47(0.53) 10.93(1.06)
Guo 8.11(2.22) 0(0) 8.72(7.03) 27.44(14.05)
Doubly L, 2.43(1.27) 0(0) 63.87(10.99) 137.73(21.97)
Clemmensen 2.00(1.12) 6.85(8.12) 1.70(1.03) 12.72(1.55)
Witten-L, 2.61(1.31) 0(0) 21.80(32.70)  53.60(65.40)
Witten-Fused 3.75(1.46) 0(0) 10.92(29.24)  31.84(58.48)

ER is the misclassification error rate on the test data seisFhe false negative rate, FP is the
false positive rate, and MS is the model size.

of fused variables out of the five for separating the corredpg pair of classes. For example,
the first row indicates that for the proposed method, on aecg®.5% of the first five variables
are fused for classes 1 and 2. Note that 100% is the optimaévekcept for variables 1--5
in Example 3 of the table, as variables 1--5 are informateskparating classes 1 and 2 in
Example 3, and thus 0% should be the optimal value for theesponding row. The methods
of Clemmensen et al. (2011) and Witten & Tibshirani (2011)ndb provide fusion results for
any specific pair of classes, which are not listed in TableH proposed method outperforms
the method of Guo (2010) in correctly separating the spegdics of classes, while doubly-
penalized linear discriminant analysis can hardly fuse ainthe first ten variables using the
criterion (6), especially when some of variables are cateel. The doubly;-penalized method
only penalizes the individualy;'s, not the pairwise differences; thus a variable can onlfubed
ifall ui; (K =1,...,K) are estimated as zero, but clearly it is not a favorablenzsé for the
first ten variables as the true class means are different.

6. KIDNEY TRANSPLANT REJECTION AND TISSUE INJURY

The kidney transplant rejection and tissue injury datar(éter et al., 2004) consists of 62
tissue samples from kidney transplant patients, includidighormal donor kidneys, 19 well-
functioning transplants without rejection, 13 kidneys ergwbing acute rejection, and 13 trans-
plants with renal dysfunction without rejection. Each séamgp described by 12,625 genes from
kidney biopsies and peripheral blood lymphocytes. Distisiging these four types of patients
is crucial to balancing the need for immunosuppression ¢éwgut rejection, while minimizing
drug-induced toxicities.
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Table 3.Pairwise class fusion results(%) for Examples 1--3. Al
results are averaged over 200 repetitions, with standandale
tions in parentheses

Example Variables Pair Proposed Method Guo Doubly

1 1-5 172 99.50 88.10 52.10
(3.13) (16.30)  (35.92)

6--10  2/3 99.40 86.20 0.00
(3.42) (16.09)  (0.00)

2 1-5 172 97.90 86.30 1.05
(11.41) (18.87)  (0.89)

6--10  2/3 98.10 87.80 0.00
(10.91) (18.68)  (0.00)

3 1-5 172 0.90 34.40 0.10
(3.20) (9.06) (1.00)

6--10  2/3 99.80 87.40 0.00
(2.00) (19.37)  (0.00)

Pair corresponds to a pair of indiscriminable classes fentriables in the
corresponding row (except for variables 1--5 in ExampleF8). example, the
first row indicates that variables 1--5 are non-informatareseparating classes
1 and 2. The numbers in the following columns give the propost of vari-
ables in the set that are identified as non-informative fpasgting a given pair
of classes by each method. The optimal value is 100% in easheaept for
variables 1--5 in Example 3, where the optimal value shoel@%.

Before applying our method, we pre-select a subset of garvesding to their variances, since
with large variabilities are generally considered to beeptially most relevant to biological
function (Mar et al., 2011). Similar to Guo et al. (2010), vetest the 100 genes with largesto
variances and the 100 genes with smallest variances from2{625 genes. The selection does
not use any class label information. Then we center thesg@08s before classification.

To assess performance, we randomly split the data set iattaiming and test data sets with
ratio 2:1. We estimate and select the genes on the trainiiagséédand evaluate the classification
accuracy on the test data set. This procedure is repeatedrid) In terms of classification accu-:s
racy, the proposed method performs best while dolilyenalized linear discriminant analysis
performs worst, see Figure 1 in the Supplementary Material.

To assess variable selection, for each gene, we count theaerwhtimes that it was selected
based on 100 random splits. We choose 25 most informativesgaccording to this frequency.
There are 19 most informative genes selected by all five ndstlamd besides these 19 comko
mon genes, the proposed method selected the following gen#se most informative genes:
HCFC1, PLIN2, LOC646347, IDS, SPAGS5, and TIGR(HG4518-HTH#0 some of which are
significantly relevant to renal functions. For example, #@FC1 gene, as a member of the host
cell factor family, was reported in Wilson et al. (1995) to lighly expressed in fetal tissues
and the adult kidney; the expression of PLIN2 has been shevenpredictor of cancer-specifics»s
survival in clear cell renal carcinoma Yao et al. (2007); &BAs highly expressed in human
normal kidneys (Chang et al., 2001) while the level of exgi@sis much lower in hypogonadal
kidneys than in normal kidneys (Suzuki et al., 2006).

The proposed method reveals that the selected 19 most iafivargenes are not all infor-
mative for discriminating every pair of classes. For exampigure 2 shows that gene AGGF 1s
reported to have strong protein expression in blood vessalsedded in kidney tissues (Fan
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Fig. 2. Pairwise class fusion results for the proposed nuethith the 19 most in-

formative genes selected in the kidney transplant rejedtiod tissue injury data

set. Each row corresponds to a gene. Each column correspomdslass pair. A

dark spot indicates that the corresponding gene is nomrrEtive for separating
the corresponding pair of classes.

et al., 2009), does not discriminate the acute rejectiossdieom the renal dysfunction without
rejection class, while it is informative for other pairs dfgses; gene GRINA, which plays a
major role in gentamicin ototoxicity (Leung et al., 2004dan 1,25(0OH} D3 synthesis (Parisi
et al., 2010), does not separate the normal, acute rejeatidirenal dysfunction without rejec-
tion classes; and gene RFNG, which is strongly expressdukikitiney (Challen et al., 2006),
does not discriminate the normal class from the acute rejeclass. Further, though some of
the genes have the same means across different classearghieformative in classification via
correlations with other informative genes. For exampleieg@GGF1 discriminates the normal
class from the acute rejection and renal dysfunction withejection classes, though it has the
same mean within these three classes based on Figure 2 inppée8ientary Material.

In summary, the proposed method identifies new genes theglakant to renal functions, and
by using the underlying covariance structure between genehicidates the impact of genes
on discriminating particular renal functional classesywal step in the development of gene
therapy.
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SUPPLEMENTARY MATERIAL

Supplementary material available Biometrikaonline includes technical proofs and figures
for the kidney transplant rejection and tissue injury data.
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