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SUMMARY

Linear discriminant analysis has been widely used to characterize or separate multiple classes15

via linear combinations of features. However, the high dimensionality of features from modern
biological experiments defies traditional discriminant analysis techniques. Possible inter-feature
correlations present additional challenges and are often under-used in modeling. In this paper,
by incorporating possible inter-feature correlations, wepropose a covariance-enhanced discrimi-
nant analysis method that simultaneously and consistentlyselects informative features and iden-20

tifies the corresponding discriminable classes. Under mildregularity conditions, we show that the
method can achieve consistent parameter estimation and model selection, and attain an asymptot-
ically optimal misclassification rate. Extensive simulations have verified the utility of the method,
which apply to a renal transplantation trial.

Some key words: Correlation; Graphical lasso; Linear discriminant analysis; Pairwise fusion; Variable selection. 25

1. INTRODUCTION

Rapid technological advances have yielded vast amounts of high-throughput data, e.g., those
arising from microarray or proteomics, which has brought a high demand for statistical methods
that can effectively use such data to make decisions. For example, in a kidney transplantation and
injury study (Flencher et al., 2004) that motivated this paper, 62 tissue samples were obtained30

from subjects with four different renal functional types after kidney transplantation. Distinguish-
ing these four types of subjects based on 12,625 gene expression profiles is crucial to balance, at
the molecular level, the need for immunosuppression to prevent transplant rejection while min-
imizing drug-induced toxicities. Linear discriminant analysis, a popular method in the classical
setting where the number of variables is much smaller than the sample size, has been found to35
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perform poorly in the high-dimensional setting because (a)the sample covariance matrix, which
is needed in linear discriminant analysis, is singular; and(b) the classification rule involves a
linear combination of all the variables, causing difficultyin interpretation and degrading classi-
fication performance with many non-informative variables.

To address (a), linear discriminant methods with a variety of penalized versions of covariance40

matrices have been constructed, including the nearest shrunken centroids assuming the covari-
ance matrix to be diagonal (Tibshirani et al., 2002), naive Bayes using the diagonal of the sample
covariance matrix (Bickel & Levina, 2004), an extension of nearest shrunken centroids with a
general covariance matrix (Guo et al., 2007), thresholdingof mean effects and covariance matrix
in binary classification (Shao et al., 2011) and a lasso-typeclassifier (Tibshirani, 1996) based on45

the estimated product of mean effects and the precision matrix (Cai & Liu, 2011). Other relevant
work includes Qiao et al. (2008), Witten & Tibshirani (2009), Clemmensen et al. (2011), Witten
& Tibshirani (2011), Fan et al. (2012), and some of the references therein.

To address (b), Tibshirani et al. (2002) proposed to shrink the class centroids towards the
global centroid, Wang & Zhu (2007) represented the problem as a lasso regression and introduced50

two new penalties to improve the effectiveness of variable selection, and Guo (2010) used linear
discriminant with pairwise fusion penalties to select informative variables. Theoretical properties
are in general elusive for these methods, though some asymptotic results are available for the
annealed independence rule proposed by Fan & Fan (2008) and alinear discriminant rule using
penalized sparse least squares proposed by Mai et al. (2012). However, both methods focus on55

binary classification, and it is not clear how to extend them to the multiple class case.
In this paper, we propose a covariance-enhanced discriminant analysis method for high-

dimensional classification. Our method utilizes the general covariance structure, going beyond
the diagonality restriction, when selecting informative variables for linear discriminant analy-
sis. Our method achieves more flexibility than existing methods by allowing a variable to be60

informative for only a subset of, rather than all, classes, and enjoys consistency of parameter
estimation and model selection. For binary classification,we show that it achieves the lowest
possible asymptotic misclassification rate.

Some authors, including Clemmensen et al. (2011) and Witten& Tibshirani (2011), have also
discussed variable selection in the presence of correlation. However, to our knowledge, none of65

these approaches can identify variables that are specifically informative to discriminate certain
classes.

To further illustrate the impact of a non-diagonal covariance matrix for variable selection,
Figure 1 shows a simple binary classification example, wherein the two classes have the same
mean inX2 and different means inX1. The best classifier would involve bothX1 andX2 even70

though the latter does not by itself have any power to separate the two classes. The contribution
of X2 to classification is through its correlation withX1, which demonstrates the role of using
a non-diagonal covariance matrix. As Figure 1 implies, for the purpose of classification and
variable selection, we should consider the differences in the means between each pair of classes
as well as possible inter-variable correlations.75

2. METHODOLOGY

2·1. Model and notations
Consider a generalK-class problem, whereY is the class label taking values in{1, . . . ,K}

andX is the correspondingp-dimensional vector of predictors. We assume that the population-
average probability of classk is ωk = Pr(Y = k) > 0 for k = 1, . . . ,K satisfying

∑K
k=1 ωk =80

1. The conditional density ofX given classk is modeled by a multivariate Gaussian distribution,
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Fig. 1. An illustrative example with two classes. Even though both classes have the
same mean inX2, X2 is informative for classification and variable selection and

should not be removed by a variable selection method.

i.e.X | Y = k ∼ Np(µk,Σ), whereµk = (µk1, . . . , µkp)
T is the class-specific mean vector and

Σ is ap× p positive definite covariance matrix with(j, j′)th elementsσjj′ (j, j′ = 1, . . . , p). As
assumed in linear discriminant analysis, the covariance matrix Σ is a constant across different
classes, which may be plausible as, for example, gene expressions across disease classes often85

differ in the means rather than in the covariance structure (Guo et al., 2010).
Let ω = (ω1, . . . , ωK)T and Ω be the inverse ofΣ with (j, j′)th elementsΩjj′ (j, j′ =

1, . . . , p). Further, letµ = (µT
1 , . . . , µ

T
K)T be the vector containing all class means andx =

(x1, . . . , xp)
T be an observation.

Givenωk, µk (k = 1, . . . ,K) andΩ, linear discriminant analysis classifies an observationx 90

to a class, sayk∗, that maximizes

Pr(Y = k | X = x) = c(x)ωk exp

{

−1

2
(x− µk)

TΩ(x− µk)

}

, (1)

wherec(x) is a normalizing constant that does not depend onk. For variable selection, we com-
pare classesk and l, wherek 6= l with k, l = 1, . . . ,K. Specifically, we consider the pairwise
difference fork 6= l:

log Pr(Y = k | X = x)− log Pr(Y = l | X = x) = log ωk − logωl

−1

2

p
∑

j=1

p
∑

j′=1

Ωjj′(µkj + µlj)(µkj′ − µlj′)

+

p
∑

j=1

xj







p
∑

j′=1

Ωjj′(µkj′ − µlj′)







.
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Hence, the necessary and sufficient condition for variablej being non-informative to distinguish95

classesk andl is

p
∑

j′=1

Ωjj′(µkj′ − µlj′) = 0. (2)

Further we note that a sufficient condition leading to (2) is,for j′ = 1, . . . , p,

Ωjj′ = 0 or µkj′ − µlj′ = 0, j′ 6= j

µkj − µlj = 0, j′ = j. (3)

SinceΩjj′ = 0 indicates conditional independence betweenXj andXj′ given all other variables,
(3) implies that if a variable is conditionally independentof all the variables helpful for discrimi-
nating classesk andl, and is itself indistinguishable for classesk andl, it is then non-informative100

for discriminating classesk andl. Compared with the necessary and sufficient condition (2), the
informativeness of features as defined by (3) is more interpretable in practice, as it elucidates
why a given variable, sayj in (3), is non-informative for discriminating classesk andl in terms
of mean and in the presence of correlation. This motivates usto construct a variable selection
procedure for selecting informative variables and identifying the distinguishable classes simul-105

taneously.

2·2. Covariance-enhanced discriminant analysis
Let (yi, xi) be theith observation (i = 1, . . . , n) from aK-class problem with known class

label yi and predictor vectorxi. Let S(µ) = n−1
∑n

i=1

∑K
k=1 I(yi = k)(xi − µk)(xi − µk)

T .
A natural approach to inference is to maximize the log-likelihood function110

ln(ω, µ,Ω) =
1

n

n
∑

i=1

K
∑

k=1

I(yi = k) log ωk +
1

2
log |Ω| − 1

2
tr{S(µ)Ω},

but with high-dimensional parametersµ andΩ, a direct maximization is not stable. Regulariza-
tion terms onµ andΩ are needed to enhance stability.

Motivated by condition (3), we propose to regularize the pairwise differences in class centroids
for each variable and the off-diagonal elements of the concentration matrix. Specifically, let
p = pn be a function of the sample sizen. We maximize115

Qn(ω, µ,Ω) = ln(ω, µ,Ω)− λ1n

pn
∑

j=1

∑

1≤k<l≤K

|µkj − µlj| − λ2n

∑

j 6=j′

|Ωjj′ | (4)

subject to

K
∑

k=1

ωk = 1, Ω ≻ 0 (5)

where≻ 0 indicates positive definiteness. The first penalty term in (4) shrinks the pairwise dif-
ferences in class centroids for each variable, whereas the second penalty term resembles that of
the graphical lasso for estimating the concentration matrix (Yuan & Lin, 2007; Friedman et al.,
2008). When the tuning parameters,λ1n andλ2n, are large enough, some of theµkj − µlj and120
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Ωjj′ will be estimated as zero. Further, if for somek 6= l,

pn
∑

j′=1

Ω̂jj′(µ̂kj′ − µ̂lj′) = 0, (6)

then variablej can be considered non-informative for distinguishing classesk and l, though it
could still be informative for discriminating other pairs of classes. Moreover, if (6) holds for all
pairs(k, l) with k, l = 1, . . . ,K andk < l, then variablej is considered to make no contribution
to the classification and can be removed from the fitted model. 125

Remark1. While the proposed method with (4)--(5) does not directly enforce the structure
described by (3), and the double penalization might somewhat bias the results, we opt for (4)-
-(5) for two reasons. First, directly using (3) would lead toa complicated nonconvex problem.
Second, the second penalty on (4) effectively enforces sparsity onΩ, which seems a reasonable
assumption for large precision matrices, see, for example,Bickel & Levina (2008), Friedman 130

et al. (2008), Lam & Fan (2009), Cai et al. (2011) and Witten etal. (2011), and can often simplify
computation and interpretation.

One natural variant of the proposed method is the doublyl1-penalized linear discriminant,

max
ω,µ,Ω

ln(ω, µ,Ω)− λ1n

pn
∑

j=1

K
∑

k=1

|µkj| − λ2n

∑

j 6=j′

|Ωjj′|, (7)

under the constraints
∑K

k=1 ωk = 1 andΩ ≻ 0. The first penalty term shrinks all class centroids
towards zero, the global centroid of the centered data. If all theµkj (k = 1, . . . ,K) are estimated 135

to be zero, variablej is considered non-informative, in the spirit of the nearestshrunken centroid
method (Tibshirani et al., 2003). Criterion (7) can be considered to be an improved version of the
shrunken centroid method which assumes that the covariancematrix is diagonal. Further, unlike
(4), both (7) and the shrunken centroid method claim a variable as non-informative only when
all theµkj (k = 1, . . . ,K) are estimated as zeros and do not identify class-specific discriminable 140

variables.

3. ASYMPTOTIC PROPERTIES

Let ω = (ωT
(1), ωK)T , whereω(1) = (ω1, . . . , ωK−1)

T andωK = 1−∑K−1
k=1 ωk. Let ω∗ =

(ω∗T
(1), ω

∗
K)T , µ∗, Ω∗ andΣ∗ be the true values ofω, µ, Ω andΣ, respectively. We further define

A = {(j, l) : Ω∗
jl 6= 0, j, l = 1, . . . , pn, j 6= l},

B = {(k, k′, j) : µ∗
kj − µ∗

k′j = 0, k < k′, k, k′ = 1, . . . ,K, j = 1, . . . , pn} :
A contains the indices of off-diagonal elements inΩ∗ which are truly nonzero, andB contains 145

the indices of class pairs and variables that have zero mean difference.
For a symmetric matrixA, write tr(A) for the trace ofA, andλmin(A) andλmax(A) for the

minimum and maximum eigenvalues ofA. Define the operator norm and the Frobenius norm,
respectively, as‖A‖ = λ

1/2
max(ATA) and‖A‖F = tr1/2(ATA). Write |F| for the cardinality of

the setF andFc for the complement of the setF . Letan = |A| andbn = K(K − 1)pn/2− |B|; 150

an is the number of nonzero elements in the off-diagonal entries ofΩ∗, andbn is the number of
class pair and variables that have nonzero mean differences. Finally, let τik = I(Yi = k) and
nk =

∑n
i=1 τik for i = 1, . . . , n andk = 1, . . . ,K.
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We assume the following conditions to establish consistency and sparsistency:

(A) there exist positive constantsκ1 andκ2 such thatκ1 < λmin(Σ
∗) ≤ λmax(Σ

∗) < κ2 for all n;155

(B) there exist positive constantsc1 andc2 such thatc1 ≤ min1≤k≤K nk/n ≤ max1≤k≤K nk/n
≤ c2 for all n;

(C) for someη > 0,
(i). λ1n

√
p
n
/
√

b∗max →∞, λ1n
√
p
n
{b∗max log (K(K − 1)pn/2− bn)}−1/2 > 1 + η and

αmax
n = op(λ1n

√
p
n
); and160

(ii). αmin
n /

√

b∗max →∞, αmin
n /

√

b∗max log bn > 1 + η and4κ2λ1n
√
p
n
(K − 1) < αmin

n ,

where b∗max = max1≤j≤pn σ
∗
jj, αmax

n = maxB

∣

∣

∣

∑n
i=1(τik′n

−1
k′ − τikn

−1
k )

∑K
l=1 τilµ

∗
lj

∣

∣

∣
, and

αmin
n = minBc

∣

∣

∣

∑n
i=1(τik′n

−1
k′ − τikn

−1
k )

∑K
l=1 τilµ

∗
lj

∣

∣

∣
.

Condition (A) bounds the eigenvalues of the covariance matrix Σ∗ uniformly, and condition
(B) implies that theK samples are of comparable sizes. Both are the commonly used conditions165

in the high dimensional setting (Cai & Liu, 2011), which facilitates the proof for consistency.
Condition (C) is analogous to the conditions in Theorem 2.3 of Rinaldo (2009), which is used
for the proof of sparsistency.

THEOREM 1. Under conditions (A) and (B), iflog pn/n = O(λ2
1n), log pn/n = O(λ2

2n), and
(pn + an)(log pn)

m/n = O(1) for somem > 1, there exist a local maximizer̂ω(1), µ̂, and170

Ω̂ for the maximization problem (4)--(5) satisfying‖ω̂(1) − ω∗
(1)‖22 = Op(n

−1), ‖µ̂− µ∗‖22 =
Op(pn log pn/n), and‖Ω̂− Ω∗‖2F = Op{(pn + an) log pn/n}.

THEOREM 2. Under the conditions given in Theorem1, for the local maximizer of(4)--
(5) satisfying‖ω̂(1) − ω∗

(1)‖22 = Op(n
−1), ‖µ̂− µ∗‖22 = Op(pn log pn/n), max1≤j≤pn ‖µ̂(j) −

µ∗
(j)‖22 = Op(ρn1) for a sequenceρn1 → 0, ‖Ω̂− Ω∗‖2F = Op{(pn + an) log pn/n}, and‖Ω̂−175

Ω∗‖2 = Op(ρn2) for a sequenceρn2 → 0, we have

(i) if log pn/n+ ρn1 + ρn2 = O(λ2
2n), then with probability tending to 1,̂Ωjl = 0 for all (j, l) ∈

Ac, j 6= l,
(ii) if condition (C) holds, thenlimn→∞Pr(B̂ = B) = 1, whereB̂ = {(k, k′, j) : µ̂kj − µ̂k′j =

0, for 1 ≤ k < k′ ≤ K andj = 1, . . . , pn}.180

Theorem 1 reveals that with proper tuning parametersλ1n andλ2n, the covariance-enhanced
discriminant analysis estimators are consistent with certain rates of convergence. Theorem 2
shows the sparsistency ofΩ̂ and of the fusion estimator̂µ, ensuring the selection consistency for
the true signals among the predictors and the identificationin accordance with their correspond-
ing discriminable classes.185

Theorem 1 indicates that̂µ is consistent whenpn/n = O{(log pn)−m} with somem > 1,
which seems restrictive. There are at leastpn nonzero elements, each of which can be estimated at
best with raten−1/2, so the total square error is at least of ratepn/n, and for high-dimensionality,
we pay the pricelog pn. The rate decays to zero slowly, which implies thatpn can be comparable
to n without violating the results in practice. And what we care about is the mean difference190

δ∗µ = {µ∗
kj − µ∗

k′j , k, k
′ = 1, . . . ,K, k < k′, j = 1, . . . , pn}. If δ∗µ is sparse enough, we expect

consistency and sparsistency hold forpn > n.
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Further, we consider the binary classification problem. Thefollowing theorem establishes the
asymptotic optimality of the proposed method in terms of misclassification error under certain
conditions on the divergence rates ofbn, pn, an and∆2

pn , where∆2
pn = δ∗Tµ Ω∗δ∗µ. 195

THEOREM 3. In the binary case,K = 2, under the conditions given in Theorem2, and as-
suming that

cn = max{ρ1/2n2 ,
a
1/2
n

∆pnn
1/2

,
b
1/2
n

∆pnn
1/2

,
b
1/2
n ρ

1/2
n1

∆pn

} → 0, n→∞, (8)

we have

(i) the conditional misclassification rate of the proposed covariance-enhanced discriminant
analysis is 200

Rn = Φ[−{1 +Op(cn)}∆pn/2],

whereΦ is the standard normal cumulative distribution function;
(ii) if ∆pn is bounded, then the proposed method is asymptotically optimal and

Rn

ROPT
− 1 = Op(cn),

whereROPT = Φ(−∆pn/2) denotes the misclassification rate of the optimal classification
rule (Anderson, 2003);

(iii) if ∆pn →∞, for the proposed method we haveRn −ROPT
P−→ 0; 205

(iv) if ∆pn →∞ andcn∆2
pn → 0, then the proposed method is asymptotically optimal.

Remark2. Condition (8) is related to the convergence rate of estimators µ̂ and Ω̂ and the
number of nonzero elements inδ∗µ andΩ∗. Essentially it holds with the sparsity assumptions
on Ω∗ andδ∗µ and with the existence of consistent estimators ofµ∗ andΩ∗ when the values of
nonzero mean differences are bounded. Theorem 3 is important as it discusses the asymptotical210

optimality in terms of misclassification error, when‖δ∗µ‖2, the magnitude of mean differences,
diverges to infinity at different rates.

4. IMPLEMENTATION AND TUNING PARAMETER SELECTION

Note thatω̂k =
∑n

i=1 I(yi = k)/n (k = 1, . . . ,K) whereas the estimators ofµ andΩ can be
obtained through an iterative algorithm: we fixµ and estimateΩ, then we fix the estimatedΩ and 215

estimateµ; we iterate between these two steps until the algorithm converges. Since the value of
the objective function (4) decreases over iterations, convergence is guaranteed.

Whenµ is fixed, to maximizeQn with respect toΩ, it suffices to maximize

Q1(Ω) = log |Ω| − tr{S(µ)Ω} − 1

2
λ2n

∑

j 6=j′

|Ωjj′| (9)

over all non-negative definite matricesΩ for a known covariance matrixS(µ), similar to the
problem of estimating sparse graphs. Hence, we can apply thegraphical lasso algorithm (Fried-220

man et al., 2008) to efficiently solve forΩ.
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WhenΩ is fixed, to maximizeQn with respect toµ, it suffices to minimize

n−1
n
∑

i=1

K
∑

k=1

I(yi = k)(xi − µk)
TΩ(xi − µk) +

1

2
λ1n

pn
∑

j=1

∑

1≤k<k′≤K

|µkj − µk′j |. (10)

It is challenging to directly minimize (10) with respect toµ, due to the fusion penalty. We ap-
ply local quadratic approximation (Fan & Li, 2001) to convert the minimization in (10) into a
generalized ridge problem. Specifically, we write225

|µ(t+1)
kj − µ

(t+1)
k′j | ≈

(µ
(t+1)
kj − µ

(t+1)
k′j )2

2|µ(t)
kj − µ

(t)
k′j|

+
1

2
|µ(t)

kj − µ
(t)
k′j |,

where t is the iteration index used to denote iterations of the localquadratic approximation.
Consequently, we only need to consider the objective function

Q2(µ) = n−1
n
∑

i=1

K
∑

k=1

τik(xi − µk)
TΩ(xi − µk) +

1

2
λ1n

pn
∑

j=1

∑

1≤k<k′≤K

(µkj − µk′j)
2

2|µ(t)
kj − µ

(t)
k′j |

, (11)

whereτik = I(yi = k), and thus,µ(t+1) = argminµQ2(µ).
Overall, the algorithm proceeds as follows:

1. initializeµ(0) with some plausible values, and sets = 1;230

2. for iterations, apply the graphical lasso algorithm to maximize (9) withµ replaced byµ(s−1)

and obtainΩ(s);
3. with Ω replaced byΩ(s), iteratively minimize the generalized ridge criterion (11) until

∑pn
j=1

∑K
k=1 |µ

(t+1)
kj − µ

(t)
kj |/

∑pn
j=1

∑K
k=1 |µ

(t)
kj | is small enough to obtainµ(s);

4. if |Qn(ω̂, µ
(s),Ω(s))−Qn(ω̂, µ

(s−1),Ω(s−1))| is small enough, stop the algorithm. Other-235

wise, sets← s+ 1 and go to Step 2.

In terms of selecting the tuning parametersλ1n andλ2n, we follow the suggestion in Wang
et al. (2007) and use a BIC-type criterion:

BIC(λ1n, λ2n) = −2nln(ω̂, µ̂, Ω̂) + (K − 1 + dµ̂ + dΩ̂) log(n), (12)

wheredµ̂ is the number of distinct nonzero elements inµ̂ and dΩ̂ is the number of nonzero
elements in̂Ω.240

5. SIMULATION STUDIES

In this section, we assess the finite sample performance of the proposed method. For compar-
ison, we consider several related methods, including fusion-regularized linear discriminant anal-
ysis (Guo, 2010), doublyl1-penalized linear discriminant analysis (7), sparse discriminant anal-
ysis (Clemmensen et al., 2011),l1-penalized linear discriminant analysis and fused-penalized245

linear discriminant analysis (Witten & Tibshirani, 2011).Fusion-regularized linear discriminant
analysis is a special case of our method when the covariance matrix is assumed diagonal.

Example1. Consider a three-class scenario with a total ofp = 210 variables, generated ac-
cording to the following mechanism: the first 10 variables are independentN(µkj, 1) for class
k, whereas the remaining 200 variables are independent and identically distributed fromN(0, 1)250



Covariance-Enhanced Discriminant Analysis 9

Table 1.Means of the informative variables in
simulated examples 1-3

Example Variables Class 1 Class 2 Class 3

1 & 2 1--5 0 0 −2.5

6--10 1.5 −1.5 −1.5

3 1--4 0 0 −2.5

5 −0.5 2 −2.5

6--10 1.5 −1.5 −1.5

for all three classes. Table 1 gives the means for the first 10 variables. For example, in class 1,
variables 1--5 all have mean 0, and variables 6--10 all have mean 1.5.

Example2. The true model is the same as that in Example 1 except that the covariance matrix
is the AR(1) correlation structure with autocorrelation coefficient0.6 for variables 1--5 and vari-
ables 6--10. Variables 1--5 are independent of variables 6--10, and both groups are independent255

of the remaining 200 variables.

Example3. The true model is the same as that in Example 1 except that variable 5 has different
means from variables 1--4 and the correlation structure among variables 1--10 differs from those
in Examples 1 and 2. Specifically, the means of variable 5 are respectively−0.5, 2, and−2.5 in
the three classes. Variables 1--5 have an exchangeable correlation structure with parameter0.5. 260

Variables 6--10 are correlated with the same structure but independent of variables 1--5. Table 1
gives the means for the first ten variables.

Only the first ten variables are informative in each simulation example. Moreover, in Exam-
ples 1 and 2, a variable is informative for separating a pair of classes if it has unequal means for
the corresponding classes. For example, variables 1--5 areinformative for separating classes 1265

and 3 or classes 2 and 3, but not for separating classes 1 and 2,and similarly for variables 6--10.
For Example 3, it is less straightforward to identify the informative variables for discriminating
classes 1 and 2. For example, variable 1 has equal means for classes 1 and 2, but it contributes
to the classification through its correlation with the informative variable 5, just as Figure 1 illus-
trated. Therefore, unlike in Examples 1 and 2, variables 1--5 are all informative for separating270

classes 1 and 2.
For each example, we generate 200 data sets, each consistingof n1 = n2 = n3 = 50 training

and test samples. We then apply each method to the training data and record the misclassifica-
tion error rate evaluated on the testing data, the proportion of incorrectly removed informative
variables, i.e., the false negative rate, the proportion ofincorrectly selected non-informative vari-275

ables, i.e., the false positive rate, and the model size.
Table 2 summarizes the misclassification error rates and variable selection results for the six

methods over 200 replications. Overall, the proposed method outperforms other competitors in
terms of classification accuracy and has prediction accuracy competitive with smaller models.
In terms of variable selection, all methods, except for sparse discriminant analysis (Clemmensen280

et al., 2011), are effective at identifying the informativevariables, while the proposed method is
more effective at removing non-informative variables. Sparse discriminant analysis has decent
classification accuracy overall, but tends to miss important variables.

If a variable is non-informative for discriminating a pair of classes, and the corresponding
estimated parameters satisfy equation (6), we consider it as correct fusion. Table 3 summarizes285

the fusion results for all the examples. Each row in the tablepresents the average proportion



10 P. XU, J. ZHU, L. ZHUAND Y. LI

Table 2.Misclassification error rates and variable selection results for Exam-
ples 1--3. Means and standard errors (in parentheses) of various performance

measures based on 200 replications

Example Method ER(%) FN(%) FP(%) MS

1 Proposed Method 0.23(0.36) 0(0) 0.29(0.59) 10.58(1.18)
Guo 0.29(0.45) 0(0) 7.66(6.71) 25.32(13.41)

DoublyL1 2.62(4.41) 0(0) 46.86(9.34) 103.72(18.69)
Clemmensen 0.38(0.52) 0(0) 0.47(0.56) 10.95(1.12)
Witten-L1 0.29(0.48) 0(0) 15.29(15.79) 40.59(31.58)

Witten-Fused 0.29(0.69) 0(0) 3.04(15.81) 16.07(31.61)
2 Proposed Method 3.91(1.55) 0(0) 0.53(0.48) 10.71(0.87)

Guo 11.38(4.93) 0(0) 9.22(8.49) 28.45(16.97)
DoublyL1 7.11(4.58) 0(0) 77.64(13.32) 165.29(26.64)

Clemmensen 4.34(1.68) 3.40(5.71) 1.71(4.08) 13.42(8.16)
Witten-L1 4.39(1.63) 0(0) 33.25(36.75) 76.50(73.49)

Witten-Fused 4.24(1.66) 0(0) 14.14(31.93) 38.28(63.86)
3 Proposed Method 1.87(1.05) 0(0) 0.47(0.53) 10.93(1.06)

Guo 8.11(2.22) 0(0) 8.72(7.03) 27.44(14.05)
DoublyL1 2.43(1.27) 0(0) 63.87(10.99) 137.73(21.97)

Clemmensen 2.00(1.12) 6.85(8.12) 1.70 (1.03) 12.72(1.55)
Witten-L1 2.61(1.31) 0(0) 21.80(32.70) 53.60(65.40)

Witten-Fused 3.75(1.46) 0(0) 10.92(29.24) 31.84(58.48)

ER is the misclassification error rate on the test data set, FNis the false negative rate, FP is the
false positive rate, and MS is the model size.

of fused variables out of the five for separating the corresponding pair of classes. For example,
the first row indicates that for the proposed method, on average 99.5% of the first five variables
are fused for classes 1 and 2. Note that 100% is the optimal value except for variables 1--5
in Example 3 of the table, as variables 1--5 are informative for separating classes 1 and 2 in290

Example 3, and thus 0% should be the optimal value for the corresponding row. The methods
of Clemmensen et al. (2011) and Witten & Tibshirani (2011) donot provide fusion results for
any specific pair of classes, which are not listed in Table 3. The proposed method outperforms
the method of Guo (2010) in correctly separating the specificpairs of classes, while doublyl1-
penalized linear discriminant analysis can hardly fuse anyof the first ten variables using the295

criterion (6), especially when some of variables are correlated. The doublyl1-penalized method
only penalizes the individualµkj ’s, not the pairwise differences; thus a variable can only befused
if all µkj (k = 1, . . . ,K) are estimated as zero, but clearly it is not a favorable estimate for the
first ten variables as the true class means are different.

6. KIDNEY TRANSPLANT REJECTION AND TISSUE INJURY300

The kidney transplant rejection and tissue injury data (Flencher et al., 2004) consists of 62
tissue samples from kidney transplant patients, including17 normal donor kidneys, 19 well-
functioning transplants without rejection, 13 kidneys undergoing acute rejection, and 13 trans-
plants with renal dysfunction without rejection. Each sample is described by 12,625 genes from
kidney biopsies and peripheral blood lymphocytes. Distinguishing these four types of patients305

is crucial to balancing the need for immunosuppression to prevent rejection, while minimizing
drug-induced toxicities.
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Table 3.Pairwise class fusion results(%) for Examples 1--3. All
results are averaged over 200 repetitions, with standard devia-

tions in parentheses

Example Variables Pair Proposed Method Guo DoublyL1

1 1--5 1/2 99.50 88.10 52.10
(3.13) (16.30) (35.92)

6--10 2/3 99.40 86.20 0.00
(3.42) (16.09) (0.00)

2 1--5 1/2 97.90 86.30 1.05
(11.41) (18.87) (0.89)

6--10 2/3 98.10 87.80 0.00
(10.91) (18.68) (0.00)

3 1--5 1/2 0.90 34.40 0.10
(3.20) (9.06) (1.00)

6--10 2/3 99.80 87.40 0.00
(2.00) (19.37) (0.00)

Pair corresponds to a pair of indiscriminable classes for the variables in the
corresponding row (except for variables 1--5 in Example 3).For example, the
first row indicates that variables 1--5 are non-informativefor separating classes
1 and 2. The numbers in the following columns give the proportions of vari-
ables in the set that are identified as non-informative for separating a given pair
of classes by each method. The optimal value is 100% in each case except for
variables 1--5 in Example 3, where the optimal value should be 0%.

Before applying our method, we pre-select a subset of genes according to their variances, since
with large variabilities are generally considered to be potentially most relevant to biological
function (Mar et al., 2011). Similar to Guo et al. (2010), we select the 100 genes with largest310

variances and the 100 genes with smallest variances from the12,625 genes. The selection does
not use any class label information. Then we center these 200genes before classification.

To assess performance, we randomly split the data set into the training and test data sets with
ratio 2:1. We estimate and select the genes on the training data set and evaluate the classification
accuracy on the test data set. This procedure is repeated 100times. In terms of classification accu-315

racy, the proposed method performs best while doublyl1-penalized linear discriminant analysis
performs worst, see Figure 1 in the Supplementary Material.

To assess variable selection, for each gene, we count the number of times that it was selected
based on 100 random splits. We choose 25 most informative genes according to this frequency.
There are 19 most informative genes selected by all five methods and besides these 19 com-320

mon genes, the proposed method selected the following genesas the most informative genes:
HCFC1, PLIN2, LOC646347, IDS, SPAG5, and TIGR(HG4518-HT4921), some of which are
significantly relevant to renal functions. For example, theHCFC1 gene, as a member of the host
cell factor family, was reported in Wilson et al. (1995) to behighly expressed in fetal tissues
and the adult kidney; the expression of PLIN2 has been shown as a predictor of cancer-specific325

survival in clear cell renal carcinoma Yao et al. (2007); SPAG5 is highly expressed in human
normal kidneys (Chang et al., 2001) while the level of expression is much lower in hypogonadal
kidneys than in normal kidneys (Suzuki et al., 2006).

The proposed method reveals that the selected 19 most informative genes are not all infor-
mative for discriminating every pair of classes. For example, Figure 2 shows that gene AGGF1,330

reported to have strong protein expression in blood vesselsembedded in kidney tissues (Fan
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Fig. 2. Pairwise class fusion results for the proposed method with the 19 most in-
formative genes selected in the kidney transplant rejection and tissue injury data
set. Each row corresponds to a gene. Each column correspondsto a class pair. A
dark spot indicates that the corresponding gene is non-informative for separating

the corresponding pair of classes.

et al., 2009), does not discriminate the acute rejection class from the renal dysfunction without
rejection class, while it is informative for other pairs of classes; gene GRINA, which plays a
major role in gentamicin ototoxicity (Leung et al., 2004) and in 1,25(OH)2 D3 synthesis (Parisi
et al., 2010), does not separate the normal, acute rejectionand renal dysfunction without rejec-335

tion classes; and gene RFNG, which is strongly expressed in the kidney (Challen et al., 2006),
does not discriminate the normal class from the acute rejection class. Further, though some of
the genes have the same means across different classes, theyare informative in classification via
correlations with other informative genes. For example, gene AGGF1 discriminates the normal
class from the acute rejection and renal dysfunction without rejection classes, though it has the340

same mean within these three classes based on Figure 2 in the Supplementary Material.
In summary, the proposed method identifies new genes that arerelevant to renal functions, and

by using the underlying covariance structure between genes, it elucidates the impact of genes
on discriminating particular renal functional classes, a crucial step in the development of gene
therapy.345
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SUPPLEMENTARY MATERIAL

Supplementary material available atBiometrikaonline includes technical proofs and figures
for the kidney transplant rejection and tissue injury data.
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