
Asymptotic Properties of Semiparametric Maximum Likelihood

Estimator in Normal Transformation Models for Bivariate

Survival Data

(Technical Report)

Yi Li, Ross L. Prentice and Xihong Lin ∗

Abstract

In this technical report, we resort to the modern empirical process theory to study the asymp-
totic properties of the semiparametric maximum likelihood estimator in normal transformation
models for bivariate survival data. We prove that the semiparametric maximum likelihood esti-
mators exist, are consistent and asymptotically normal, and reach the semiparametric efficiency
bound, under the semiparametric normal transformation model.

KEY WORDS: Bivariate Failure Time; Semiparametric Normal Transformation; Semiparametric Maximum

Likelihood Estimate; Consistency; Asymptotic Normality.

RUNNING TITLE: Semiparametric Normal Transformation Models.

∗Yi Li is Associate Professor, Department of Biostatistics, Harvard School of Public Health and Dana-Farber Cancer Institute,
Boston, MA 02115; Ross L. Prentice is Member, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, and Professor
of Biostatistics, University of Washington, Seattle, WA 98195; Xihong Lin is Professor, Department of Biostatistics, Harvard
School of Public Health, Boston, MA 02115. This work was partially supported by U. S. National Cancer Institute grants R01
CA95747 (Li), P01 CA53996 (Prentice), R01 CA76404 (Lin). The first author (Li) also thanks Professor David Harrington for
many helpful discussions.



1 Introduction

Consider a survival time pair (T̃1, T̃2), where each T̃j marginally has a cumulative hazard Λj(t). Then Λj(T̃j)

marginally follows a unit exponential distribution, and its probit transformation

Tj = Φ−1
{

1− e−Λj(T̃j)
}

(1)

has a standard normal distribution, where Φ(·) is the CDF for N(0, 1).

To specify the correlation structure within the survival time pair (T̃1, T̃2), we assume that the normally

transformed survival time pair (T1, T2) is jointly normally distributed with correlation coefficient ρ and with

a joint tail probability function

Ψ(z1, z2; ρ) =
∫ ∞
z1

∫ ∞
z2

φ(x1, x2; ρ)dx1dx2 (2)

where φ(x1, x2; ρ) is the pdf for a bivariate normal vector with mean (0, 0) and covariance matrix
(

1 ρ
ρ 1

)
.

It follows that the bivariate survival function for the original survival time pair (T̃1, T̃2) is

S(t̃1, t̃2; ρ) = P (T̃1 > t̃1, T̃2 > t̃2; ρ) = Ψ[Φ−1{F1(t̃1)},Φ−1{F2(t̃2)}; ρ] (3)

where Fj(·) are the marginal CDFs of T̃j(j = 1, 2) respectively. Moreover, the density for the original survival

time pair (T̃1, T̃2) is

f(t̃1, t̃2; ρ) = f1(t̃1)f2(t̃2)eg(t1,t2) (4)

where ti = Φ−1
{

1− e−Λi(t̃i)
}

, fi(t̃) = λi(t̃) exp{−Λi(t̃)} is the marginal density for T̃i, i = 1, 2 and

g(t1, t2) = −0.5 log(1− ρ2)− 0.5(1− ρ2)−1(ρ2t21 + ρ2t22 − 2ρt1t2). (5)

Indeed, the correlation parameter ρ provides a summary measure for the pairwise dependence, whose con-

nection with the other commonly used dependence measures, including the cross ratio, Kendall’s tau and

Spearman’s rho, can be found in Li and Lin (2006).

We consider estimation of the unknown (ρ,Λ1,Λ2) based on a censored sample of m pairs. That is, we esti-

mate the marginal hazard rate and the correlation parameter on the basis of observed pairs (X̃i1, δi1, X̃i2, δi2),

where X̃ij = T̃ij ∧ Ũij
def
= min(T̃ij , Ũij), δij = I(T̃ij ≤ Ũij), for j = 1, 2. For simplicity, we assume that the

censoring mechanism satisfies the usual random censorship, i.e. the censoring pair (Ũi1, Ũi2) is independent
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of the survival pair (T̃i1, T̃i2). Under this random censorship, the likelihood function can be factorized into

the product of contributions from the survival and censoring times, facilitating likelihood-based inferential

procedures.

In many applications involving bivariate survival data, including studies of disease occurrence patterns

of twins or siblings, it is natural to restrict the marginal cumulative hazard to be common for members of

the same pair. Hence, we first consider drawing inference with Λ1 ≡ Λ2(= Λ) in Section 2, followed by the

case of distinct marginal cumulative hazards Λ1 6≡ Λ2 in Section 3. We summarize this report in Section 4.

2 Semiparametric Maximum Likelihood Estimation With A Com-
mon Marginal Cumulative Hazard

We begin by noting that the likelihood function for the unknown parameters (Λ, ρ), based on the observed

data (X̃ij , δij), j = 1, 2, i = 1, . . . ,m, can be written, up to a constant, as the product of factors (i = 1, . . . ,m)

L̃i(ρ,Λ) = {eg(Xi1,Xi2)Λ′(X̃i1)Λ′(X̃i2)e−Λ(X̃i1)−Λ(X̃i2)}δi1δi2{Ψ1(Xi1, Xi2; ρ)Λ′(X̃i1)e−Λ(X̃i1)}δi1(1−δi2)

×{Ψ2(Xi1, Xi2; ρ)Λ′(X̃i2)e−Λ(X̃i2)}(1−δi1)δi2 × {Ψ(Xi1, Xi2; ρ)}(1−δi1)(1−δi2), (6)

where we denote the transformed observed time by Xij = Φ−1{1−exp(−Λ(X̃ij)} for j = 1, 2, Ψj(x1, x2; ρ) =

− ∂
∂xj

Ψ(x1, x2; ρ)/φ(xj) for j = 1, 2. Indeed, Ψj(x1, x2; ρ) = P (T3−j ≥ x3−j |Tj = xj) for j = 1, 2.

Directly maximizing the above likelihood in a space containing continuous hazard Λ(·) is not feasible, as

one can always let the likelihood go to ∞ by choosing some continuous function Λ(·) with fixed values at

each X̃ij while letting Λ′(·) go to ∞ at an observed failure time (i.e. at some X̃ij with δij = 1). Thus we

need consider the following parameter space for Λ

{Λ : Λ is cadlag and piecewise constant}

where by cadlag we mean right continuous with left hand limit. It follows that the MLE of Λ(·) will be

the one which jumps only at distinct observed failure times. We denote the jump size of Λ(·) at t by

∆Λ(t) = Λ(t)− Λ(t−). The SPMLE is the maximizer to the empirical likelihood function L(ρ,Λ), which is

the product of terms (6) with Λ′(·) replaced by ∆Λ(·). We denote the log empirical likelihood function by

`(ρ,Λ) = logL(ρ,Λ).

The main results of the paper are proved under the following set of regularity conditions.
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(c.1) (Boundness) ρ lies in a known open interval within [−1, 1].

(c.2) (Finite Interval) There exist a τ > 0 and a constant c0 > 0 such that P (Ũij ≥ τ) = P (Ũij = τ) > c0.

In practice, τ is usually the duration of the study.

(c.3) (Differentiability) Assume the marginal cumulative hazard Λ(t) is differentiable and Λ′(t) > 0 over

[0, τ ]. Moreover, Λ(τ) <∞.

Under these conditions, we show that the SPMLEs do exist and are finite. Furthermore, we show in the

next two Propositions that, the SPMLEs of Λ̂, stay bounded and that the SPMLEs of {ρ,Λ(·)} are consistent

and asymptotically normal estimators of the true parameters.

We first present two Lemmas which will be used for proving the asymptotics under the common marginal

hazard models.

Lemma 1 Under the common hazard model and with probability 1,

Qi(ρ,Λ)
def
= {eg(Xi1,Xi2)e−Λ(X̃i1)−Λ(X̃i2)}δi1δi2{Ψ1(Xi1, Xi2; ρ)e−Λ(X̃i1)}δi1(1−δi2)

×{Ψ2(Xi1, Xi2; ρ)e−Λ(X̃i2)}(1−δi1)δi2{Ψ(Xi1, Xi2; ρ)}(1−δi1)(1−δi2)

< O(1)
2∏
j=1

{1 + Λ(X̃ij)}−(1+δij).

where O(1) is a finite constant independent of ρ,Λ().

Proof: To avoid interruption, we list below several equalities frequently used in the development. For

any p > 0 when x→∞.

φ(x) = o(1)x−p, 1− Φ(x) = o(1)x−p,
1− Φ(x)
φ(x)

= O(1)x−1.

These equalities can be conveniently obtained using the L’Hopital rule. Moreover, let x = Φ−1(1 − e−t),

then applying the L’Hopital rule,

x2/(1 + t)→ C0 (7)

when t→∞. Here C0 is a fixed positive constant (Indeed, numerically C0 = 1.324 . . .).

Note

eg(Xi1,Xi2)e−Λ(X̃i1)e−Λ(X̃i2) =
φ(x1, x2; ρ)
φ(x1)φ(x2)

{1− Φ(x1)}{1− Φ(x2)}, (8)

3



where, for notational ease, we denote by xj = Xij = Φ−1{1− e−Λ(X̃ij)}. In view of (7),

1− Φ(xj)
φ(xj)

= O(1){1 + Λ(X̃ij)}−1/2 ≤ O(1).

By the boundness condition (c.1), we assume that ρ ∈ (−1 + ε0, 1 − ε0), where 0 < ε0 < 1 is a known

constant. Then

φ(s1, s2; ρ) = {2π(1− ρ2)1/2}−1 exp[−{2(1− ρ2)}−1(s2
1 + s2

2 − 2ρs1s2)]

= {2π(1− ρ2)1/2}−1 exp(−{2(1− ρ2)}−1[|ρ|{s1 − sign(ρ)s2}2 + (1− |ρ|)s2
1 + (1− |ρ|)s2

2])

≤ {2π(1− ρ2)1/2}−1 exp[−{2(1− ρ2)}−1{(1− |ρ|)s2
1 + (1− |ρ|)s2

2}]

≤ (2πε1/20 )−1 exp(−s2
1/4) exp(−s2

2/4)

= O(1){φ(s1)φ(s2)}1/2.

Consider φ(xj) = o(1)x−8
j . Hence, in view of (7), (8) ≤

∏
j{1 + Λ(X̃ij)}−2.

Next consider

Ψ2(x1, x2; ρ)e−Λ(X̃i2) = − ∂

∂x2
Ψ(x1, x2, ρ)

1− Φ(x2)
φ(x2)

, (9)

where − ∂
∂x2

Ψ(x1, x2, ρ) =
∫∞
x1
φ(s1, x2; ρ)ds1. Hence, (9) ={∫

x1

exp(−s2
1/4)ds1

}
e−x

2
2/4

1− Φ(x2)
φ(x2)

. (10)

L’Hopital rule will give for any p > 0,
∫
x1

exp(−s2
1/4)ds1 = o(1)x−p1 , e−x

2
2/4 = o(1)x−p2 and {1−Φ(x2)}

φ(x2) =

O(1)x−1
2 . Hence, in particular, by choosing p = 4, (10) ≤ o(1)x−4

1 x−4
2 ≤ o(1){1 + Λ(X̃ij)}−2. Similarly, we

have that

Ψ1(Xi1, Xi2; ρ)e−Λ(X̃i1) ≤ O(1)
∏
j

{1 + Λ(X̃ij)}−2.

Now consider the inequality

Ψ(x1, x2; ρ) = P (X1 ≥ x1, X2 ≥ x2; ρ) ≤ min{P (X1 ≥ x1), P (X2 ≥ x2)} ≤ {P (X1 ≥ x1)P (X1 ≥ x1)}1/2.

Since P (Xj ≥ xj) = 1 − Φ(xj) = o(1)x−pj (j = 1, 2) for any p > 0, we have that Ψ(x1, x2; ρ) ≤
∏
j{1 +

Λ(X̃ij)}−1 by choosing p = 4. Thus, combining all the terms, we have that

Qi(ρ,Λ) < O(1)
∏
j

{1 + Λ(X̃ij)}−{1+δi1+δi2−δi1δi2} < O(1)
∏
j

{1 + Λ(X̃ij)}−(1+δij).
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Next we show that the SPMLEs do exist and are finite.

Lemma 2 (existence of SPMLEs) Denote by Nmax = maxiNi(τ) the maximum number of observed failures

for a pair over [0, τ ]., where Ni(τ) =
∑
j I(T̃ij ≤ τ, δij = 1). If Nmax > 1, then the maximum likelihood

estimators of `(ρ,Λ), (ρ̂, Λ̂) exist and are finite.

Proof: Let `i(ρ,Λ) be the log of (6) with Λ′(·) replaced by the jumpsize ∆Λ(·) and `(ρ,Λ) =
∑m
i=1 `i(ρ,Λ)

be the log empirical likelihood for the observed data. Following Murphy (Theorem 1, 1994), the maximizer

of ρ lies inside the parameter space. Moreover, since `(ρ,Λ) is also a continuous function of jumpsizes, we

only need to show that the maximizing jumpsizes are finite.

First note that

`i(ρ,Λ) < δi1δi2{g(Xi1, Xi2) + log ∆Λ(X̃i1) + log ∆Λ(X̃i2)− Λ(X̃i1)− Λ(X̃i2)}

+δi1(1− δi2){log ∆Λ(X̃i1)− Λ(X̃i1)}+ (1− δi1)δi2{log ∆Λ(X̃i2)− Λ(X̃i2)}

because 0 ≤ Ψj(Xi1, Xi2; ρ) ≤ 1 for j = 1, 2 and 0 ≤ Ψ(Xi1, Xi2; ρ) ≤ 1. Also recall g(t1, t2) as defined in

(5) and note

ρ2t21 + ρ2t22 − 2ρt1t2 = ρ2{t1 − sign(ρ)t2}2 + 2{sign(ρ)ρ2 − ρ}t1t2.

Hence,

g(t1, t2) < const+
|ρ|

1 + |ρ|
|t1t2| < const+

1
2
|t1t2|

in view of ρ ∈ (−1 + ε0, 1 − ε0). In particular, const is the finite supremum of −0.5 log(1 − ρ2) over

(−1 + ε0, 1− ε0). Therefore,

`i(ρ,Λ) < const+
1
2
δi1δi2|Xi1Xi2|+ δi1{log ∆Λ(X̃i1)− Λ(X̃i1)}+ δi2{log ∆Λ(X̃i2)− Λ(X̃i2)}

≤ const+
m∑
i=1

2∑
j=1

δij{X2
ij + log ∆Λ(X̃ij)− Λ(X̃i1)}.

wherein the second inequality follows from

δi1δi2|Xi1Xi2| ≤
1
2

(δ2
i1X

2
i1 + δ2

i2X
2
i2) =

1
2

(δi1X2
i1 + δi2X

2
i2).
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Finally, denote by λ1, . . . , λK the jumpsizes of Λ at distinct observed failure times t1, . . . , tK over [0, τ ].

Since Nmax > 1, it follows that K > 1. Then

`(ρ,Λ) ≤ O(1) +
K∑
k=1

n(k)

1
4
{Φ−1(1− e−

∑k
j=1 λj )}2 + log λk −

k∑
j=1

λj


≤ O(1) +

K∑
k=1

n(k)

log λk − (1− C0

4
)
k∑
j=1

λj


where nk ≥ 1 is the number of ties at tk, k = 1, . . . ,K and the second inequality comes from (7) and C0 is

the constant defined right after (7). Hence `(ρ,Λ) will diverge to −∞ if λj → ∞ for some j ∈ {1, . . . ,K},

yielding a contradiction. �

Proposition 1 (Consistency) Denote by (ρ0,Λ0) the true parameters. Then |ρ̂−ρ0| → 0 and supt∈[0,τ ] |Λ̂(t)−

Λ0(t)| → 0 almost surely.

Proof: Two major steps are involved in this proof. We first show the SPMLEs stay bounded, followed

by showing every convergent subsequence converges to the true parameters.

To proceed, denote by ρ̂, Λ̂ the SPMLEs for the true parameters. Our immediate goal is to show by con-

tradiction that Λ̂0(·) has an upper bound in [0, τ ] with probability one. The contradiction will be established

as follows: we construct a step function Λ̄ which jumps only at distinct observed failure times, ie X̃ij for

which δij = 1 such that Λ̄ will be close to the true function Λ0. Since ρ̂, Λ̂ maximize the likelihood, it follows

that

0 ≤ `(ρ̂, Λ̂)− `(ρ0, Λ̄). (11)

Then we prove that, if Λ̂(τ) → ∞ the right-hand side of the inequality will be negative, yielding a contra-

diction.

Specifically, the step function Λ̄ can be constructed as follows. Differentiating `(ρ,Λ) with respect to

∆Λ(X̃ij) and setting it to 0 leads to the following equation

δij

∆Λ(X̃ij)
=

m∑
k=1

Rk(X̃ij ; ρ̂, Λ̂), (12)

where

Rk(t; ρ,Λ) = Rk1(t; ρ,Λ) +Rk2(t; ρ,Λ)
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=
[{
δk1δk2

ρ2Xk1 − ρXk2

1− ρ2
+ (1− δk1)(1− δk2)

Ψ1(Xk1, Xk2; ρ)φ(Xk1)
Ψ(Xk1, Xk2; ρ)

−ρδk1(1− δk2)
φ(Xk2 − ρXk1; 1− ρ2)

1− Φ(Xk2 − ρXk1; 1− ρ2)
+ δk2(1− δk1)

φ(Xk1 − ρXk2; 1− ρ2)
1− Φ(Xk1 − ρXk2; 1− ρ2)

}
× 1− Φ(Xk1)

φ(Xk1)
+ δk1

]
I(X̃k1 > t)

+
[{
δk1δk2

ρ2Xk2 − ρXk1

1− ρ2
+ (1− δk1)(1− δk2)

Ψ2(Xk1, Xk2; ρ)φ(Xk2)
Ψ(Xk1, Xk2; ρ)

−ρδk2(1− δk1)
φ(Xk1 − ρXk2; 1− ρ2)

1− Φ(Xk1 − ρXk2; 1− ρ2)
+ δk1(1− δk2)

φ(Xk2 − ρXk1; 1− ρ2)
1− Φ(Xk2 − ρXk1; 1− ρ2)

}
× 1− Φ(Xk2)

φ(Xk2)
+ δk2

]
I(X̃k2 > t).

Here φ(x; θ) and Φ(x; θ) denote the density and distribution functions for the normal random variable with

mean 0 and variance θ, respectively. In particular, φ(x; 1) and Φ(x; 1) are the density and distribution

functions for the standard normal random variable.

We are now able to construct a step function Λ̄, which mimics Λ̂, such that it jumps at distinct observed

failure times X̃ij for which δij = 1 and its jump size at X̃ij satisfies

δij

∆Λ̄(X̃ij)
=

m∑
k=1

Rk(X̃ij ; ρ0,Λ0),

Thus, Λ̄(t) =
∑
ij I(X̃ij ≤ t)∆Λ̄(X̃ij).

We then show that Λ̄(t) converges to Λ0(t) uniformly over [0, τ ] almost surely. To see this, consider the

class satisfying the Glivenko-Cantelli property, {Rk(t; ρ0,Λ0) : t ∈ [0, τ ]}. Then we obtain

sup | 1
m

∑
Rk(t; ρ0,Λ0)− µ(t)| → 0

almost surely, where µ(t) = E{Rk(t; ρ0,Λ0)}. Next denote by x = Φ−1{1− e−Λ0(t)} and consider

E{Rk1(t; ρ0,Λ0)}

=
∫ ∞
x

1− Φ(x1)
φ(x1)

∫ ∞
−∞

ρ2
0x1 − ρ0x2

1− ρ2
0

φ(x1, x2; ρ0)P (Ui1 ≥ x1, Ui2 ≥ x2)dx1dx2

+
∫ ∞
x

1− Φ(x1)
φ(x1)

∫ ∞
−∞

Ψ1(x1, x2; ρ0)φ(x1)
Ψ(x1, x2; ρ0)

Ψ(x1, x2; ρ0)P (Ui2 ∈ dx2|Ui1 = x1)P (Ui1 ∈ dx1))

−ρ0

∫ ∞
x

1− Φ(x1)
φ(x1)

∫ ∞
−∞

φ(x2 − ρ0x1; 1− ρ2
0)

1− Φ(x2 − ρ0x1; 1− ρ2
0)
−∂Ψ(x1, x2; ρ0)

∂x1

×P (Ui2 ∈ dx2|Ui1 ≥ x1)P (Ui1 ≥ dx1)dx1

+
∫ ∞
x

1− Φ(x1)
φ(x1)

∫ ∞
−∞

φ(x1 − ρ0x2; 1− ρ2
0)

1− Φ(x1 − ρ0x2; 1− ρ2
0)
−∂Ψ(x1, x2; ρ0)

∂x2
P (Ui2 ≥ x2|Ui1 = x1)dx2P (Ui1 ∈ dx1)
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+
∫ ∞
x

P (Ui1 ≥ x1)φ(x1)dx1

=
∫ ∞
x

{1− Φ(x1)}
∫ ∞
−∞

ρ2
0x1 − ρ0x2

1− ρ2
0

φ(x2 − ρ0x1; 1− ρ2
0)P (Ui1 ≥ x1, Ui2 ≥ x2)dx1dx2 (13)

+
∫ ∞
x

{1− Φ(x1)}
∫ ∞
−∞
{1− Φ(x2 − ρ0x1; 1− ρ2

0)}P (Ui2 ∈ dx2|Ui1 = x1))P (Ui1 ∈ dx1) (14)

−ρ0

∫ ∞
x

{1− Φ(x1)}P (Ui1 ≥ x1)
∫ ∞
−∞

φ(x2 − ρ0x1; 1− ρ2
0)P (Ui2 ∈ dx2|Ui1 = x1)dx1 (15)

+
∫ ∞
x

{1− Φ(x1)}
∫ ∞
−∞

φ(x1 − ρ0x2; 1− ρ2
0)
φ(x2)
φ(x1)

P (Ui2 ≥ x2|Ui1 = x1)dx2P (Ui1 ∈ dx1) (16)

+
∫ ∞
x

P (Ui1 ≥ x1)φ(x1)dx1, (17)

wherein the second equality is owing to that

−∂Ψ(x1, x2; ρ0)
∂xj

/φ(xj) = Ψj(x1, x2; ρ0) = 1− Φ(x3−j − ρ0xj ; 1− ρ2
0).

Now consider the inner integral in (14). Integration by parts gives∫ ∞
−∞
{1− Φ(x2 − ρ0x1; 1− ρ2

0)}P (Ui2 ∈ dx2|Ui1 = x1)

= −{1− Φ(x2 − ρ0x1; 1− ρ2
0)}P (Ui2 ≥ x2|Ui1 = x1)|x2=∞

x2=−∞

−
∫ ∞
−∞
−P (Ui2 ≥ x2|Ui1 = x1)

d

dx2
{−Φ(x2 − ρ0x1; 1− ρ2

0)}dx2

= 1−
∫ ∞
−∞

P (Ui2 ≥ x2|Ui1 = x1)φ(x2 − ρ0x1; 1− ρ2
0)dx2.

Using the equality φ(x1 − ρ0x2; 1− ρ2
0)φ(x2)
φ(x1) = φ(x2 − ρ0x1; 1− ρ2

0), we obtain that (16) is equal to∫ ∞
x

{1− Φ(x1)}
∫ ∞
−∞

φ(x2 − ρ0x1; 1− ρ2
0)P (Ui2 ≥ x2|Ui1 = x1)dx2P (Ui1 ∈ dx1).

Hence, (14) + (16)+ (17) will be∫ ∞
x

{1− Φ(x1)}P (Ui1 ∈ dx1) +
∫ ∞
x

P (Ui1 ≥ x1)φ(x1)dx1

= P (Ui1 ≥ x)× {1− Φ(x)} = P (Ui1 ≥ x)e−Λ0(t),

wherein the first equality is due to integration by parts.

Then consider the inner integral in (15)∫ ∞
−∞

φ(x2 − ρ0x1; 1− ρ2
0)P (Ui2 ∈ dx2|Ui1 ≥ x1)

= −φ(x2 − ρ0x1; 1− ρ2
0)P (Ui2 ≥ x2|Ui1 ≥ x1)|x2=∞

x2=−∞
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+
∫ ∞
−∞

P (Ui2 ≥ x2|Ui1 ≥ x1)
d

dx2
φ(x2 − ρ0x1; 1− ρ2

0)dx2

= −
∫ ∞
−∞

P (Ui2 ≥ x2|Ui1 ≥ x1)
x2 − ρ0x1

1− ρ2
0

φ(x2 − ρ0x1; 1− ρ2
0)dx2.

Hence (13)+ (15) = 0 and

E{Rk1(t; ρ0,Λ0)} = P (Ui1 ≥ x)e−Λ0(t).

Similarly, we can show that

E{Rk2(t; ρ0,Λ0)} = P (Ui2 ≥ x)e−Λ0(t),

leading to

µ(t) = P (Ui1 ≥ x)e−Λ0(t) + P (Ui2 ≥ x)e−Λ0(t)

= P (Ũi1 ≥ t)e−Λ0(t) + P (Ũi2 ≥ t)e−Λ0(t),

and that µ(t) is unformly bounded away from 0 over [0, τ ] under condition (c.1). It then follows that

Λ̄ =
1
m

m∑
i=1

2∑
j=1

I(X̃ij ≤ t)δij

{
1
m

m∑
k=1

Rk(X̃ij ; ρ0,Λ0)

}−1

converges uniformly to E{
∑2
j=1 I(X̃ij ≤ t)δij/µ(X̃ij)} due to the boundness of the indicators, namely

I(X̃ij ≤ t) and δij . On the other hand, since

E

 2∑
j=1

I(X̃ij ≤ t)δij
µ(X̃ij)

 =
∫ t

0

1
µ(s)

2∑
j=1

P (Ũij ≥ s)e−Λ0(s)dΛ0(s)

= Λ0(t),

it follows that Λ̄ converges uniformly to Λ0 over [0, τ ].

Because ρ̂, Λ̂ maximizes `(ρ,Λ), clearly 0 ≤ 1
m`(ρ̂, Λ̂) − 1

m`(ρ0, Λ̄). Furthermore, the construction of Λ̄

reveals that
1
m
`(ρ0, Λ̄) = O(1) +

1
m

m∑
i=1

2∑
j=1

δij log(m−1).

Hence, by Proposition 1, we have that

1
m
`(ρ̂, Λ̂) ≤ O(1) +

1
m

m∑
i=1

2∑
j=1

δij log{∆Λ̂(X̃ij)} −
1
m

m∑
i=1

2∑
j=1

(1 + δij) log{1 + Λ̂(X̃ij)}.

Hence,

0 ≤ O(1) +
1
m

m∑
i=1

2∑
j=1

δij log{m∆Λ̂(X̃ij)} −
1
m

m∑
i=1

2∑
j=1

(1 + δij) log{1 + Λ̂(X̃ij)}. (18)
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We will show that as Λ̂(τ) → ∞, the right hand side of (18) will eventually turn negative, yielding a

contradiction. For this purpose, we adopt a useful partitioning scheme as in Zeng et al. (2005). Specifically,

we partition [0, τ ] as follows: let s0 = τ and choose 0 ≤ s1 < s0 such that

1
2
E{

2∑
j=1

I(X̃ij = s0)} =
1
2
E{

2∑
j=1

(1 + δij)I(X̃ij = s0)} > E{
2∑
j=1

δijI(X̃ij ∈ [s1, s0))}

The existence of such s1 is guaranteed by regularity condition (c.1). Then define a constant 0 < c < 1 such

that
E{
∑2
j=1 δijI(X̃ij ∈ [s1, s0))}

E{
∑2
j=1 δijI(X̃ij ∈ [0, s0))}

≥ c

1− c
.

If s1 > 0, we consider s2 such that

s2 = inf{0 < s < s1 : (1− c)E{
2∑
j=1

(1 + δij)I(X̃ij ∈ [s1, s0))} ≥ E{
2∑
j=1

δijI(X̃ij ∈ [s, s1))}.

Such a process can continue. That is, we choose

sq+1 = inf{0 < s < sq : (1− c)E{
2∑
j=1

(1 + δij)I(X̃ij ∈ [sq, sq−1))} ≥ E{
2∑
j=1

δijI(X̃ij ∈ [s, sq))}, (19)

yielding a sequence of s0, s1, . . . such that

1
2
E{

2∑
j=1

I(X̃ij = s0)} =
1
2
E{

2∑
j=1

(1 + δij)I(X̃ij = s0)} > E{
2∑
j=1

δijI(X̃ij ∈ [s1, s0))}

(1− c)E{
2∑
j=1

(1 + δij)I(X̃ij ∈ [sq, sq−1))} ≥ E{
2∑
j=1

δijI(X̃ij ∈ [sq+1, sq))}

for q ≥ 1.

We show this sequence cannot be infinite, i.e. there exist a finite N such that sN+1 = 0. Otherwise, we

assume sq → s∗. By the continuity of the distributions involved, (19) implies that

(1− c)E{
2∑
j=1

(1 + δij)I(X̃ij ∈ [sq, sq−1))} = E{
2∑
j=1

δijI(X̃ij ∈ [sq+1, sq))}

for q ≥ 1.

Summing over q = 1, 2 . . . , we have that

(1− c)E{
2∑
j=1

(1 + δij)I(X̃ij ∈ [s∗, s0))} = E{
2∑
j=1

δijI(X̃ij ∈ [s∗, s1))}.

Hence, (1−c)E(
∑2
j=1 I(X̃ij ∈ [s∗, s0)) ≤ cE(

∑2
j=1 δijI(X̃ij ∈ [s∗, s1))} which contradicts with the definition

of c. Hence there exists a finite N such that τ = s0 > s1 . . . > SN+1 = 0.
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Now the right hand side of (11) is bounded above by

O(1) +
N∑
q=0

1
m

∑
i,j

I(X̃ij ∈ [sq+1, sq)) log{m∆Λ̂(X̃ij)} −
1
m

∑
i,j

I(X̃ij = τ)(1 + δij) log{1 + Λ̂(τ)}

−
N∑
q=0

1
m

∑
i,j

I(X̃ij ∈ [sq+1, sq))(1 + δij) log{1 + Λ̂(X̃ij)}

≤ O(1) +
N∑
q=0

1
m

∑
i,j

I(X̃ij ∈ [sq+1, sq)) log{m∆Λ̂(X̃ij)} −
1
m

∑
i,j

I(X̃ij = τ)(1 + δij) log{1 + Λ̂(τ)}

−
N∑
q=0

1
m

∑
i,j

I(X̃ij ∈ [sq+1, sq))(1 + δij) log{1 + Λ̂(sq+1)}.

The concavity of log() yields that

1
m

∑
i,j

I(X̃ij ∈ [sq+1, sq))δij log{m∆Λ̂(X̃ij)}

≤ 1
m

∑
i,j

I(X̃ij ∈ [sq+1, sq))δij log

{
m

∑
i,j I(X̃ij ∈ [sq+1, sq))δij∆Λ̂(X̃ij)∑

i,j δijI(X̃ij ∈ [sq+1, sq))

}

≤ 1
m

∑
i,j

I(X̃ij ∈ [sq+1, sq))δij

{
log Λ̂(sq)− log

∑
i,j δijI(X̃ij ∈ [sq+1, sq))

m

}

≤ O(1) +
1
m

∑
i,j

δijI(X̃ij ∈ [sq+1, sq)) log Λ̂(sq).

Therefore the above is bounded from above by

O(1) +
N∑
q=0

1
m

∑
i,j

I(X̃ij ∈ [sq+1, sq)) log Λ̂(sq)−
1
m

∑
i,j

I(X̃ij = τ)(1 + δij) log{1 + Λ̂(τ)}

−
N∑
q=0

1
m

∑
i,j

I(X̃ij ∈ [sq+1, sq))(1 + δij) log{1 + Λ̂(sq+1)}.

After rearranging items of the above, this bound is equal to, apart from a bounded constant,

− 1
2m

∑
i,j

I(X̃ij = τ)(1 + δij) log{1 + Λ̂(τ)}

−

 1
2m

∑
i,j

I(X̃ij = τ)(1 + δij) log{1 + Λ̂(τ)}

− 1
m

∑
i,j

I(X̃ij ∈ [s1, τ)) log Λ̂(τ)


−

m∑
q=1

 1
m

∑
i,j

I(X̃ij ∈ [sq, sq−1))(1 + δij) log{1 + Λ̂(sq)}
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− 1
m

∑
i,j

I(X̃ij ∈ [sq+1, sq))δij log{1 + Λ̂(sq)}

 .
The first term diverges to −∞ with probability 1 when Λ̂(τ)→∞ with probability 1. The second term

is negative almost surely due to the choice of s1. By the choice of the sequence of sq, the third term will also

be nonnegative, when m is large. Hence the right hand side of (11) diverges to∞ almost surely, establishing

the contradiction. Hence, we have shown that with probability 1 Λ̂ has an upper bound. By the Helly

selection theorem and with an abuse of notation, we can assume that ρ̂→ ρ∗, and Λ̂ converges pointwise to

some increasing function, say, Λ∗.

The second step involves showing ρ∗ = ρ0,Λ∗ = Λ0. We consider

0 ≤ 1
m
`(ρ̂, Λ̂)− 1

m
`(ρ0, Λ̄)

=
1
m

∑
logQi(ρ̂, Λ̂)− 1

m

∑
logQi(ρ0, Λ̄)

+
1
m

m∑
i=1

2∑
j=1

δij log

{
∆Λ̂(X̃ij)
∆Λ̄(X̃ij)

}
.

We can easily see that Λ̂(t) is absolutely continuous with respect to Λ̄(t) and

Λ̂(t) =
∫ t

0

Em{R(O; ρ0,Λ0, s)}
Em{R(O; ρ̂, Λ̂, s)}

dΛ̄(s) (20)

whereO represents the underlying random variables for the observed data (X̃ij , δij), Em denotes the empirical

average and R(Ok; ρ,Λ, t)
def
= Rk(t; ρ,Λ). Direct calculation yields

|R(Ok; ρ̂, Λ̂, t)−R(Ok; ρ∗,Λ∗, t)|

< O(1){|ρ̂− ρ∗|+
2∑
j=1

|Λ̂(X̃ij)− Λ∗(X̃ij)|+
∫ τ

0

|Λ̂(s)− Λ∗(s)|ds}.

Because of the boundness of Λ̂, dominated convergence yields
∫ τ

0
|Λ̂(s)− Λ∗(s)|ds→ 0. Hence

sup
t∈[0,τ ]

|Em{R(O; ρ̂, Λ̂, t)} − Em{R(O; ρ∗,Λ∗, t)}| → 0

almost surely. Both classes

{R(O; ρ∗,Λ∗, t), t ∈ [0, τ ]}, {R(O; ρ0,Λ0, t), t ∈ [0, τ ]}

consist of the multiplication of a monotone indicator function and a t-independent random variable, e.g∑2
j=1 I(X̃ij ≥ t)Bij and hence both are Glivenko-Cantelli, leading to

sup
t∈[0,τ ]

|Em{R(O; ρ0,Λ0, t)} − E{R(O; ρ0,Λ0, t)}| → 0,
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and

sup
t∈[0,τ ]

|Em{R(O; ρ̂, Λ̂, t)} − E{R(O; ρ∗,Λ∗, t)}| → 0.

Furthermore, as E{(R(O; ρ∗,Λ∗, t)} is uniformly bounded away from 0, taking the limit on both sides of

(20) will give

Λ∗(t) =
∫ t

0

E{R(O; ρ0,Λ0, t)}
E{R(O; ρ∗,Λ∗, t)}

dΛ0(t).

Thus, Λ∗(t) is absolutely continuous with respect to Λ0(t) and hence is differentiable with respect to t. Using

similar argument we will have

Em{logQi(ρ̂, Λ̂)} → E{logQi(ρ∗,Λ∗)}

and

Em{logQi(ρ0, Λ̄)} → E{logQi(ρ0,Λ0)}

in probability. Hence we have

0 ≤ 1
m
`(ρ̂, Λ̂)− 1

m
`(ρ0, Λ̄)

→ E log

{
Qi(ρ∗,Λ∗)Λ′∗(X̃ij)
Qi(ρ0,Λ0)Λ′0(X̃ij)

}

which is the negative Kulback-Leibler information, implying ρ∗ = ρ0,Λ∗ = Λ0. Hence we conclude, with

probability 1, ρ̂→ ρ0 and pointwise Λ̂→ Λ0. Then the uniform convergence of Λ̂ follows immediately since

Λ0 is a continuous monotone function. �

Proposition 2 (Asymptotic Normality) The scaled process
√
m(ρ̂− ρ0, Λ̂−Λ0) converges weakly to a zero-

mean Gaussian process in the metric space R × l∞[0, τ ], where l∞[0, τ ] is the linear space containing all

the bounded functions in [0, τ ] equipped with the supremum norm. Furthermore, ρ̂ and
∫ τ

0
η(s)dΛ̂(s) are

asymptotically efficient, where η(s) is any function of bounded variation over [0, τ ].

Proof: The proof involves invoking Theorem 3.3.1 of van der Vaart and Wellner (1996), which requires

4 sufficient conditions, namely, weak convergence of the empirical process at the truth, approximation of the

score operator, Fréchet differentiability of the asymptotic score and invertibility of the information operator.

To proceed, we need to define a random map ξm and a fixed map ξ in a set, say, A, containing the true

parameter and the possible values of the estimator (or at least asymptotically). Specifically, denoting by
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θ = (ρ,Λ) the unknown parameters and defining the true parameters θ0 and their estimates θ̂ likewise, we

define a small neighborhood containing the true parameter θ0 as

A = {θ = (ρ,Λ) : ||θ − θ0|| ≤ ε},

where ||θ − θ0||
def
= |ρ − ρ0| + supt∈[0,τ ] |Λ(t) − Λ0(t)| and ε is a small positive constant. It then follows by

Proposition 1 that, when the sample size is sufficiently large, the estimates, θ̂, fall into A almost surely. We

also define a set

H = {h = (h1, h2) : h1 ∈ R, andh2 is afunction of bounded variation; |h1| ≤ 1, ||h2||V ≤ 1},

where for a function of bounded variation h2, ||h2||V denotes its total variation over [0, τ ], that is, ||h2||V =∫ τ
0
|dh2|+ |h2(0)|. We are ready to define ξm and ξ as random and fixed maps respectively from A to l∞(H),

consisting of all the bounded functionals on H. Specifically

ξm(ρ,Λ)[h1, h2] = Em(ψθ,h), ξ(ρ,Λ)[h1, h2] = E(ψθ,h),

where Em denotes the empirical average, ψθ,h = h1`ρ(ρ,Λ) + `Λ(ρ,Λ)[
∫ .

0
h2dΛ], `ρ is the score for ρ and

`Λ[
∫ .

0
h2dΛ] is the score for Λ along the submodel Λ(·) + ε

∫ .
0
h2dΛ. The MLE’s and the true parameters

thus satisfy ξm(ρ̂, Λ̂) = 0 and ξ(ρ0,Λ0) = 0. Examining the forms of `ρ, `Λ (given later) will yield ψθ0,h is a

P-Donsker class when h varies over H. Hence,
√
m{ξm(ρ0,Λ0) − ξ(ρ0,Λ0)} will converge in distribution to

a tight random element, satisfying the first sufficient condition (weak convergence of the empirical process

at the truth) of Theorem 3.3.1 of van der Vaart and Wellner (1996). It can be further shown that the class

ψθ,h−ψθ0,h is a P-Donsker on A×H and suph∈HE(ψθ,h−ψθ0,h)2 → 0 when θ → θ0. Since θ̂ → θ uniformly

and almost surely by Proposition 1, Lemma 3.3.5 of van der Vaart and Wellner (1996) implies that

||
√
m{ξm(ρ̂, Λ̂)− ξ(ρ̂, Λ̂)} −

√
m{ξm(ρ0,Λ0)− ξ(ρ0,Λ0)}||H = op(1 +

√
m||θ̂ − θ0||), (21)

where the norm || · ||H is defined for any map ξ on H as ||ξ||H = suph∈H |ξ[h]|. Indeed, (21) is the second

sufficient condition (approximation of the score operator) of Theorem 3.3.1 of van der Vaart and Wellner

(1996). We next consider the condition of Fréchet-differentiability of ξ at θ0, namely,

||ξ(θ)− ξ(θ0)− ξ̇θ0(θ − θ0)||H = o(||θ − θ0||).

Indeed, this follows from the finiteness of the moments of the joint normal distribution [in view of (2)].
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We finally show the invertibility of ξ̇θ0 . After linearizing the score equation ξm(ρ̂, Λ̂) − ξ(ρ0,Λ0) = 0,

standard computation would yield

√
m{ξ(θ̂)[h]− ξ(θ0)[h]} =

√
mE(ψθ̂,h − ψθ0,h)

= −
√
m(Em − E)ψθ0,h + op(1 +

√
m(||θ − θ0||). (22)

Also note that

ξ(θ̂)[h]− ξ(θ0)[h] = ξ̇θ0(θ̂ − θ0)[h] + op(||θ̂ − θ0||

= W1[h1, h2](ρ̂− ρ0) +
∫
W2[h1, h2]d(Λ̂− Λ0) + op(||θ̂ − θ0||),

where Wi, i = 1, 2, are linear operators on H satisfying

W1[h1, h2]h̃1 +
∫
W2[h1, h2]h̃2dΛ0

=
d

dε
E

{
h1`ρ(ρε,Λε) + `Λ(ρε,Λε)[

∫ .

0

h2dΛε]
}

(23)

with ρε = ρ0 + εh̃1, Λε = Λ0(·) +
∫ .

0
εh̃2dΛ0. If ξ̇θ0 is invertible, the same argument in the proof of Theorem

3.3.1 leads to the
√
m consistency of θ̂. Hence the remainder term op(1 +

√
m(||θ − θ0||) in (22) can be

replaced by op(1). We now prove that ξ̇θ0 is invertible. Specifically, suppose, there exist h1, h2 such that

Wi[h1, h2] = 0 for i = 1, 2, we wish to show h1 = 0, h2 = 0. Consider (23). Choosing h̃1 = h1, h̃2 = h2, we

have that

E

{
h1`ρ(ρ0,Λ0) + `Λ(ρ0,Λ0)[

∫ .

0

h2dΛ0]
}2

= 0.

Hence,

h1`ρ(ρ0,Λ0) + `Λ(ρ0,Λ0)[
∫ .

0

h2dΛ0] = 0 (24)

almost surely.

We next show that (24) implies h1 = 0, h2 = 0. Note that the left hand side of (24) is the score

function at the true value along a one-dimensional submodel {ρ0 + εh1,Λ0(·) + ε
∫ ·

0
h2dΛ0}. Denote by

xj = Φ−1
[
1− e−Λ0(X̃ij)

]
for j = 1, 2. Direct calculation yields

`Λ(θ0)[
∫ .

0

h2dΛ0]

=
{

(δi1δi2
ρ0

1− ρ2
0

(x2 − ρ0x1) + δi1(1− δi2)
ρ0φ(x2 − ρ0x1; 1− ρ2

0)
1− Φ(x2 − ρ0x1; 1− ρ2

0)
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+δi2(1− δi1)
−φ(x1 − ρ0x2; 1− ρ2

0)
1− Φ(x1 − ρ0x2; 1− ρ2

0)

+(1− δi2)(1− δi1)
−{1− Φ(x2 − ρ0x1; 1− ρ2

0)}φ(x1)
Ψ(x1, x2; ρ0)

)
}

exp{−Λ0(X̃i1)}
φ(x1)

∫ X̃i1

0

h2(s)dΛ0(s)

+
{

(δi1δi2
ρ0

1− ρ2
0

(x1 − ρ0x2) + δi2(1− δi1)
ρ0φ(x1 − ρ0x2; 1− ρ2

0)
1− Φ(x1 − ρ0x2; 1− ρ2

0)

+δi1(1− δi2)
−φ(x2 − ρ0x1; 1− ρ2

0)
1− Φ(x2 − ρ0x1; 1− ρ2

0)

+(1− δi2)(1− δi1)
−{1− Φ(x1 − ρ0x2; 1− ρ2

0)}φ(x2)
Ψ(x1, x2; ρ0)

)
}

exp{−Λ0(X̃i2)}
φ(x2)

∫ X̃i2

0

h2(s)dΛ0(s)

+δi1(Zi1(h2(X̃i1)−
∫ X̃i1

0

h2(s)dΛ0(s) + δi2(h2(X̃i2)−
∫ X̃i2

0

h2(s)dΛ0(s)

and

`ρ(θ0) = δi1δi2
ρ0(1− ρ2

0) + (1 + ρ2
0)x1x2 − ρ0(x2

1 + x2
2)

(1− ρ2
0)2

+δi1(1− δi2)

∫∞
x2
a(t2, x1; ρ0)dt2

1− Φ(x2 − ρ0x1; 1− ρ2
0)

+δi2(1− δi1)

∫∞
x1
a(t1, x2; ρ0)dt1

1− Φ(x1 − ρ0x2; 1− ρ2
0)

+(1− δi2)(1− δi1)
∫ ∞
x1

∫ ∞
x2

a(t1, t2; ρ0)φ(t2)dt2dt1

where a(t1, t2; ρ) = ∂
∂ρφ(t1 − ρt2; 1− ρ2).

Consider (24) and set δi1 = δi2 = 0 and X̃ij = sj ∈ [0, τ ] for j = 1, 2. Then we obtain the following

integral equation

{
1− Φ(s2 − ρ0s1; 1− ρ2

0)
}
e−Λ0(s̃1)

∫ s̃1

0

h2(s)dΛ0(s)

+
{

1− Φ(s1 − ρ0s2; 1− ρ2
0)
}
e−Λ0(s̃2)

∫ s̃2

0

h2(s)dΛ0(s)

= h1Ψ(s1, s2; ρ0)
∫ ∞
s1

∫ ∞
s2

a(t1, t2; ρ0)φ(t2)dt2dt1

where sj = Φ−1(1 − e−Λ0(s̃j)) for j = 1, 2. In the above integral equation of h2, fix s̃1 and let s̃2 → 0, we

conclude e−Λ0(s̃1)
∫ s̃1

0
h2(s)dΛ0(s) = 0 for any s̃1 ∈ [0, τ ]. Hence h2 ≡ 0 on [0, τ ], which also implies h1 = 0.

Therefore, we have shown the invertibility of ξ̇θ0 , which, in junction with the other proved conditions, implies

the weak convergence of
√
m(θ̂ − θ0). Specifically, for any h ∈ H

√
m

{
h1(ρ̂− ρ0) +

∫ τ

0

h2d(Λ̂− Λ0)
}

= −
√
m(Em − E)ψθ0,h̃ + op(1),
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where h̃
def
= (h̃1, h̃2) = (W1,W2)−1(h1, h2). Setting h2 = 0 reveals that ρ̂ is an asymptotically linear

estimator for ρ0, with the influence function lying in the space spanned by the score functions, and hence

in the tangent space of the semiparametric normal transformation model. Similarly, setting h1 = 0, h2 = η

(without loss of generality, we assume here that ||η||V = 1; otherwise, we can easily apply a normalization

η/||η||V ) reveals that
∫ τ

0
η(s)dΛ̂ is also an asymptotically linear estimator for

∫ τ
0
η(s)dΛ0, with corresponding

influence functions on the space spanned by the score functions. Therefore, the semiparametric efficiency

theory [see e.g. Proposition 1 in (Bickel et al., 1993, ch3.2)] both ρ̂ ,
∫ τ

0
η(s)dΛ̂ are efficient estimators. �

3 Semiparametric Maximum Likelihood Estimation With Strati-
fied Hazards

In this section, we relax the condition of a common marginal hazard and allow each member of the pair to

have a distinct hazard. That is, each T̃ij has a cumulative hazard Λj(·) such that Λ1(·) 6≡ Λ1(·).

We consider a joint maximum likelihood estimation for inference. The ensuing development is parallel

to that in the common hazard model. Specifically, our inference stems from the log likelihood function of

unknown parameters (Λ1,Λ2, ρ) based on the observed data (X̃ij , δij), j = 1, 2, i = 1, . . . ,m, which can be

written, up to a constant, as the product over i = 1, . . . ,m of terms

L̃i(ρ,Λ1,Λ2) = {eg(Xi1,Xi2)Λ′1(X̃i1)Λ′2(X̃i2)e−Λ1(X̃i1)−Λ2(X̃i2)}δi1δi2{Ψ1(Xi1, Xi2; ρ)Λ′1(X̃i1)e−Λ1(X̃i1)}δi1(1−δi2)

×{Ψ2(Xi1, Xi2; ρ)Λ′2(X̃i2)e−Λ2(X̃i2)}(1−δi1)δi2 × {Ψ(Xi1, Xi2; ρ)}(1−δi1)(1−δi2). (25)

Here Xij = Φ−1{1 − exp(−Λj(X̃ij)} for j = 1, 2. Again, directly maximizing the likelihood function (25)

in a space containing continuous hazards Λ1(·) or Λ2(·) is infeasible, as one can always make the likelihood

be arbitrarily large by constructing some continuous functions Λ1(·) and Λ2(·) with fixed values at each X̃ij

while letting Λ′1(·) or Λ′2(·) go to ∞ at an observed failure time. Hence, when performing the maximum

likelihood estimation, we need to consider the following parameter space for (Λ1,Λ2):

{(Λ1,Λ2) : Λ1,Λ2 are cadlag and piecewise constant}.

It follows that the SPMLE, (ρ̂, Λ̂1, Λ̂2), is the maximizer to the empirical likelihood function `(ρ,Λ1,Λ2),

which is obtained from (25) with the derivatives Λ′1(·) and Λ′2(·) at the observed failure times replaced by

their jumps ∆Λ1(·) and ∆Λ2(·) at the corresponding time points, respectively. Using the similar arguments
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for Lemma 2 in Section A.1, we know that (ρ̂, Λ̂1, Λ̂2) do exist and are finite. Furthermore, under conditions

(c.1)-(c.3) [we let both Λ1 and Λ2 satisfy (c.3)], the asymptotic properties of the SPMLEs are summarized in

the following two theorems, namely, the consistency theorem, followed by the asymptotic normality theorem.

Proposition 3 (Consistency) Denote by (ρ0,Λ01,Λ02) the true parameters. Then |ρ̂−ρ0| → 0, supt∈[0,τ ] |Λ̂1(t)−

Λ01(t)| → 0 and supt∈[0,τ ] |Λ̂2(t)− Λ02(t)| → 0 almost surely.

Proof: This proposition can be proved along the lines for the cases of common marginal hazard model.

That is, we show by contradiction that the SPMLEs Λ̂1, Λ̂2 stay bounded, followed by showing every conver-

gent subsequence converge to the true parameters. Specifically, we construct two step functions Λ̄j(j = 1, 2),

which jump only at distinct observed failure times, ie X̃ij for which δij = 1 such that Λ̄j will be close to

the true function Λ0j . Differentiating `(ρ,Λ1,Λ2) with respect to ∆Λj(X̃ij) and setting it to 0, we have the

following equations [compare to (12)]

δij

∆Λj(X̃ij)
=

m∑
k=1

Rkj(X̃ij ; ρ̂, Λ̂1, Λ̂2)

where

Rk1(t; ρ,Λ1,Λ2) =
[{
δk1δk2

ρ2Xk1 − ρXk2

1− ρ2
+ (1− δk1)(1− δk2)

Ψ1(Xk1, Xk2; ρ)φ(Xk1)
Ψ(Xk1, Xk2; ρ)

−ρδk1(1− δk2)
φ(Xk2 − ρXk1; 1− ρ2)

1− Φ(Xk2 − ρXk1; 1− ρ2)
+ δk2(1− δk1)

φ(Xk1 − ρXk2; 1− ρ2)
1− Φ(Xk1 − ρXk2; 1− ρ2)

}
× 1− Φ(Xk1)

φ(Xk1)
+ δk1

]
I(X̃k1 > t)

and

Rk2(t; ρ,Λ1,Λ2) =
[{
δk1δk2

ρ2Xk2 − ρXk1

1− ρ2
+ (1− δk1)(1− δk2)

Ψ2(Xk1, Xk2; ρ)φ(Xk2)
Ψ(Xk1, Xk2; ρ)

−ρδk2(1− δk1)
φ(Xk1 − ρXk2; 1− ρ2)

1− Φ(Xk1 − ρXk2; 1− ρ2)
+ δk1(1− δk2)

φ(Xk2 − ρXk1; 1− ρ2)
1− Φ(Xk2 − ρXk1; 1− ρ2)

}
× 1− Φ(Xk2)

φ(Xk2)
+ δk2

]
I(X̃k2 > t).

We let the jump size of Λ̄j , which mimics Λ̂j , satisfy

δij

∆Λ̄j(X̃ij)
=

m∑
k=1

Rkj(X̃ij ; ρ0,Λ01,Λ02).

Thus, Λ̄j(t) =
∑
ij I(X̃ij ≤ t)∆Λ̄j(X̃ij) for j = 1, 2.
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Since ρ̂, Λ̂1, Λ̂2 maximize the likelihood, it follows that

0 ≤ `(ρ̂, Λ̂1, Λ̂2)− `(ρ0, Λ̄1, Λ̄2). (26)

Then we can use similar arguments as in the common hazard cases to show that if Λ̂1(τ)→∞ or Λ̂2(τ)→∞,

the right-hand side of inequality (26) will be negative, yielding a contradiction. The proof can be completed

by using the same arguments as in the common hazard cases to show every convergent subsequence converges

to the true parameters. �

Proposition 4 (Asymptotic Normality) The empirical process
√
m(ρ̂ − ρ0, Λ̂1 − Λ01, Λ̂2 − Λ02) converges

weakly to a zero-mean Gaussian process in the metric space R × l∞[0, τ ] × l∞[0, τ ], where l∞[0, τ ] is the

linear space containing all the bounded functions in [0, τ ] equipped with the supremum norm. Furthermore,

ρ̂,
∫ τ

0
η1(s)dΛ̂1(s) and

∫ τ
0
η2(s)dΛ̂2(s) are asymptotically efficient, where η1(s), η2(s) are any functions of

bounded variation over [0, τ ].

Proof: The arguments are parallel to those in the proof of Proposition 2, and thus are omitted. �

4 A Simple One-Step double-robust IPCW Estimator

When the censoring time, for example, the drop-out time or the time from study entry to the end of the

study is common for both pair members (Lin and Ying, 1993; Tsai and Crowley, 1998; Wang and Wells, 1998;

Nan et al., 2006), one may apply the ideas of Robins and Rotnitzky (1992) and van der Laan et al. (2002)

to construct a simple one-step estimator for estimating the multivariate survival functions at any fixed time

points, say, (t1, t2). Such an estimator might be appealing because, when the underlying semiparametric

normal transformation model is correctly specified, it is locally semiparametric efficient in the sense that its

asymptotic variance reaches the supremum of the Cramer-Rao bounds among all the parametric sub-models

which pass through the true model (van der Laan et al, 2002). Moreover, this estimator enjoys a double

robustness property such that it is consistent even if the underlying semiparametric normal transformation

model is misspecified.

The idea is to use an IPCW (inverse-probability-of-censoring-weighted) estimator (Robins and Rotnitzky,

1992) as an initial estimator, and add to it an estimate of the empirical mean of the estimated efficient

influence function in the class of semiparametric models, wherein the bivariate survival S(u, v) = P (T̃1 >
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u, T̃2 > v) is nonparametric and the censoring time is independent from the true survival time. Indeed,

van der Laan et al. (2002) allowed the censoring mechanism to satisfy coarsening at random, including

independent censoring as an important special case.

To facilitate the ensuing development, we denote by B = I(T̃1 > t1, T̃2 > t2), T̃ ∗ = T̃1 ∨ T̃2
def
=

max(T̃1, T̃2), t∗ = t1 ∨ t2, X̃∗ = X̃1 ∨ X̃2,∆ = I(B is observed) and by V the earliest time at which B is

observed, in which case V = T̃ ∗ ∧ t∗. Also, we denote by Yi = (X̃i1, X̃i2, δi1, δi2) the observation from each

pair, which is an iid realization of Y = (X̃1, X̃2, δ1, δ2), and let G be the survival function for the common

censoring time Ũ .

The IPCW estimator stems from the observation (see, e.g. van der Laan et al., 2002)

E

{
∆B
G(V )

}
= E

{
∆B
G(t∗)

}
= S(t1, t2),

which naturally leads to the following estimator

µ0
m =

1
m

m∑
i=1

∆iBi
Gm(t∗)

=
1
m

m∑
i=1

I(X̃i1 > t1, X̃i2 > t2)
Gm(t∗)

.

Here, Gm is the Kaplan-Meier estimator for G based on the m observations {Ũi ∧ T̃ ∗i , I(Ũi ≤ T̃ ∗i )}, where

T̃ ∗i plays the role of censoring Ũi.

The local efficient estimator will be constructed by subtracting from the influence curve of µ0
m (when

Gm = G is known), IC0(Y |G,µ0) = ∆B
G(V ) − µ0, its projection IC∗nuonto the tangent space of the nuisance

parameter G, which is given by

IC∗nu(Y |Q, G) = −
∫ t∗

0

Q(u)
dM(u)
G(u)

where M(u) = I{Ũi ≤ u, I(Ũ ≤ T̃ ∗)} −
∫ u

0
I(X̃∗ ≥ s)d{−logG(s)}, Q = E{B|X̃∗ ≥ u, I(T̃1 > s), I(T̃2 >

s), 0 < s < u}. We write Q in the conditioning part owing to that the projection of IC0 onto the tangent

space of the nuisance G depends on the true law of S(·, ·) throughQ. Some algebra would give the closed-form

expression of Q as follows

Q(u) =


I(T̃1 > t1)P (T̃2 > t2 ∨ u|T̃1)/P (T̃2 > t2 ∨ u|T̃1) if T̃1 ≤ u, T̃2 > u,

I(T̃2 > t2)P (T̃1 > t1 ∨ u|T̃2)/P (T̃1 > t1 ∨ u|T̃1) if T̃1 > u, T̃2 ≤ u,
P (T̃1 > t1 ∨ u, T̃2 > t2)/P (T̃1 > t1 ∨ u, T̃2 > t2 ∨ u) if T̃1 > u, T̃2 > u.

Hence, the efficient influence curve IC∗ is given by

IC∗(Y |Q, G, µ) = IC0(Y |G,µ)− IC∗nu(Y |Q, G)
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and the optimal estimating equation, corresponding to the efficient influence curve, is

0 =
1
m

m∑
i=1

IC∗(Yi|Qm, Gm, µ)

where Qm is the estimator for Q, with all the bivariate survivals and conditional survivals involving in Q

estimated based on the semiparametric normal transformation model.

Thus, a one-step Newton-Raphson algorithm yields a solution

µ1
m = µ0

m +
1
m

m∑
i=1

IC∗(Yi|Qm, Gm, µ0
m) = µ0

m −
1
m

m∑
i=1

IC∗nu(Yi|Qm, Gm),

which is a locally efficient estimator when the semiparametric normal transformation model is correctly

specified. On the other hand, even if the underlying semiparametric normal transformation model is not

true, because of the (double) unbiasedness property (van der Laan et al., 2002)

E{IC∗(Y |Q1, G1, µ)} = 0, if G1 = GorQ1 = Q{S(·, ·)},

this one-step estimator will also be consistent. Furthermore, a simple variance estimator for µ1
m is given by

1
m2

m∑
i=1

{IC∗(Yi|Qm, Gm, µ0
m)}2, (27)

which is valid even when the semiparametric normal transformation model is misspecified.

In theory, one would be able to extend the results from the univariate censoring mechanism to accommo-

date arbitrary bivariate censoring (Robins, Rotnitzky and van der Laan, 1999). However, bivariate censoring

will result in loss of the monotonicity of the missingness, as opposed to univariate censoring. Therefore, the

closed-form projections onto the tangent space for the censoring distributions are in general not available

and, in practice, more complicated successive approximations or Monte Carlo simulations (see, e.g., Keles et

al., 2004), are needed to obtain the desired projections. We may explore this in a separate project.

5 Conclusion

In this report, we have proposed a semiparametric maximum likelihood estimation procedure for normal

transformation models for bivariate failure time data. As the likelihood function involves infinite-dimensional

parameters, we resort to modern asymptotic techniques to establish the asymptotic results. Specifically, we

have shown that the SPMLEs are consistent, asymptotically normal and semiparametric efficient, under the

semiparametric normal transformation model.
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