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S1 Supplementary Material A: Proof of Theorem 1

Noting that M is given, consider two combinations of parameters pBp1q,ηp1q,Φp1qptq, ζp1qq

and pBp2q,ηp2q,Φp2qptq, ζp2qq both satisfying model (5), i.e. pBp1q ` Mηp1qqΦp1q1ptqζp1q “

pBp2q ` Mηp2qqΦp2q1ptqζp2q. We consider the similar proofs in Wang et al. (2017) and Bing

et al. (2024).

Let S be the set of indices such that B
p1q

S “ B
p2q

S “ 0 P R|S|ˆq. By condition (I1), it is

easy to show that there exists such S and |S| ě m because both Bp1q and Bp2q have at most

tpp´mq{2u rows whose elements are not all equal to 0. LetXSptq,uSptq be the corresponding
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subvectors of Xptq,uptq for fixed t. Denote ΣXS ptq and ΣuS ptq be the covariance matrix

of XSptq and uSptq respectively for the fixed t. Further, denote rΣXS “
∫
ΣXS ptqdt and

rΣuS “
∫
ΣuS ptqdt. Because BS “ 0, we have

XSptq “ pBS ` MSηqΦ1
ptqζ ` uSptq “ MSηΦ

1
ptqζ ` uSptq.

Thus, pηp1q,Φp1qptq, ζp1qq and pηp2q,Φp2qptq, ζp2qq satisfyMSη
p1qΦp1q1ptqζp1q “ MSη

p2qΦp2q1ptqζp2q.

By conditions (I3) and (I4),

rΣXS “ MSηΛζη
1M1

S ` rΣuS , (S1)

where Λζ “ diag
␣
řK

k“1 varpξ1kq, ¨ ¨ ¨ ,
řK

k“1 varpξqkq
(

is a diagonal matrix. By condition

(I1), we haveM1
SMS is invertible. Multiplying both sides of (S1) on the left by pM1

SMSq´1M1
S

and on the right by MSpM1
SMSq´1, we have

pM1
SMSq

´1M1
S
rΣXSMSpM1

SMSq
´1

´ pM1
SMSq

´1M1
S
rΣuSMSpM1

SMSq
´1

“ ηΛζη
1,

and this imlies ηp1qΛ
p1q

ζ ηp1q1 “ ηp2qΛ
p2q

ζ ηp2q1. By conditions (I2) and (I3), we have ηp1q1ηp1q “

ηp2q1ηp2q “ Iq and Λ
p1q

ζ and Λ
p2q

ζ are both diagonal matrix with decreasing element. The first

q eigenvectors associated with the first q largest eigenvalues of the matrix pM1
SMSq´1M1

S
rΣXS

MSpM1
SMSq´1 ´ pM1

SMSq´1M1
S
rΣuSMSpM1

SMSq´1 are thus determined by pηp1q,Λ
p1q

ζ q

and pηp2q,Λ
p2q

ζ q. According to the uniqueness of the matrix eigen decomposition, we have

ηp1q “ ηp2q and Λ
p1q

ζ “ Λ
p2q

ζ .

Because ηp1q “ ηp2q, we have MSηΦ
p1q1ptqζp1q “ MSηΦ

p2q1ptqζp2q. Along with the rank

constraints of η and MS in conditions (I1) and (I2), this implies Φp1q1ptqζp1q “ Φp2q1ptqζp2q.
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Then, we consider the covariance function matrix of Φ1ptqζ. By simple calculation, we have

covtΦ1
ptqζ,Φ1

psqζu “ diag

#

K
ÿ

k“1

varpξ1kqϕ1kptqϕ1kpsq, ¨ ¨ ¨ ,
K
ÿ

k“1

varpξqkqϕqkptqϕqkpsq

+

.

Then, for each j “ 1, ¨ ¨ ¨ , q, we have

Φ
p1q1

j ptqΛ
p1q

ζ,jΦ
p1q

j psq “ Φ
p2q1

j ptqΛ
p2q

ζ,jΦ
p2q

j psq, (S2)

where Λζ,j “ diagtvarpξj1q, ¨ ¨ ¨ , varpξjKqu is a diagonal matrix with decreasing elements.

Multiplying both sides of equation (S2) on the left by Φ
p1q

j ptq and on the right by Φ
p2q1

j psq

and integrating with respect to t and s, then by condition (I4), we have

Λ
p1q

ζ,j

∫
Φ

p1q

j ptqΦ
p2q1

j ptqdt “

∫
Φ

p1q

j ptqΦ
p2q1

j ptqdtΛ
p2q

ζ,j. (S3)

That is,

¨

˚

˚

˚

˚

˚

˝

varpξ
p1q

j1 q
∫
ϕ

p1q

j1 ptqϕ
p2q

j1 ptqdt ¨ ¨ ¨ varpξ
p1q

j1 q
∫
ϕ

p1q

j1 ptqϕ
p2q

jKptqdt

...
. . .

...

varpξ
p1q

jKq
∫
ϕ

p1q

jKptqϕ
p2q

j1 ptqdt ¨ ¨ ¨ varpξ
p1q

jKq
∫
ϕ

p1q

jKptqϕ
p2q

jKptqdt

˛

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˝

varpξ
p2q

j1 q
∫
ϕ

p1q

j1 ptqϕ
p2q

j1 ptqdt ¨ ¨ ¨ varpξ
p2q

jKq
∫
ϕ

p1q

j1 ptqϕ
p2q

jKptqdt

...
. . .

...

varpξ
p2q

j1 q
∫
ϕ

p1q

jKptqϕ
p2q

j1 ptqdt ¨ ¨ ¨ varpξ
p2q

jKq
∫
ϕ

p1q

jKptqϕ
p2q

jKptqdt

˛

‹

‹

‹

‹

‹

‚

.

(S4)

Because Λ
p1q

ζ,j and Λ
p2q

ζ,j are not equal to 0, it easy to show that the unique solution to (S4)

is Λ
p1q

ζ,j “ Λ
p2q

ζ,j and
∫
Φ

p1q

j ptqΦ
p2q1

j ptqdt is diagnoal but not equal to 0. Then, by (S3), we
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have

Λζ,j “

"∫
Φ

p1q

j ptqΦ
p2q1

j ptqdt

*

Λζ,j

"∫
Φ

p2q

j psqΦ
p1q1

j psqds

*

“ Λζ,j

"∫
Φ

p2q

j ptqΦ
p1q1

j ptqdt

*2

,

which indicates the elements of the diagnoal matrix
∫
Φ

p1q

j ptqΦ
p2q1

j ptqdt are only 1 or -1

(Without loss of generality, we assume they are both equal to 1). The last equation is

because Λζ,j and
∫
Φ

p1q

j ptqΦ
p2q1

j ptqdt are both diagnoal matrices. Then, multiplying both

sides of equation (S2) on the left by Φ
p1q

j ptq and integrating with respect to t, we have

Λζ,jΦ
p1q

j psq “

!

Φ
p1q

j ptqΦ
p1q1

j ptqdt
)

Λζ,jΦ
p1q

j psq “

"∫
Φ

p1q

j ptqΦ
p2q1

j ptqdt

*

Λζ,jΦ
p2q

j psq “ Λζ,jΦ
p2q

j psq.

Because Λζ,j is invertible, then Φ
p1q

j psq “ Φ
p2q

j psq for each j “ 1, ¨ ¨ ¨ , q and Φp1qpsq “

Φp2qpsq. This implies

pBp1q
` Mηq

"∫
Φ1

ptqΦptqdt

*

Epζζ 1
q “ pBp2q

` Mηq

"∫
Φ1

ptqΦptqdt

*

Epζζ 1
q.

By the conditions (I3) and (I4), we have
∫
Φ1ptqΦptqdt “ KIq and Epζζ 1q is invertible.

Thus, we have Bp1q “ Bp2q.

S2 Supplementary Material B: Calculation of (11)

Our goal is to obtain Bpr`1q based on (11). For simplicity of notation, we omit the super-

script pr ` 1q of f pr`1qpsq and h
pr`1q

i ptq. Denote Γ “ pΓjj1qj1ăj and Lagrangian multipliers
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ν “ pνjj1qj1ăj. Based on (11), we update pB,Γ,νq by the following optimization problem:

min
B,Γ,ν

p
ÿ

j“1

n
ÿ

i“1

ni
ÿ

l“1

tXijptilq ´ f 1
psjqhiptilq ´b1

jhiptilq
(2

` λ1

p
ÿ

j“1

}bj}2 ` λ2

p
ÿ

j1ăj“1

wp}sj ´ sj1}2q ¨ }Γjj1}2

`

p
ÿ

j1ăj“1

ν 1
jj1pbj ´ bj1 ´ Γjj1q `

p
ÿ

j1ăj“1

µ

2
}bj ´ bj1 ´ Γjj1}

2
2,

where µ is a pre-given hyperparameter.

Let Apt`1q be the updation of A in the pt ` 1q-th step, pxq` “ maxpx, 0q, and Aa:b

represent the subvector of vector A corresponding to the positions a through b. We update

pb
pt`1q

j ,Γ
pt`1q

jj1 ,ν
pt`1q

jj1 q pj1 ă j “ 1, ¨ ¨ ¨ , pq as follows:

b
pt`1q

j “ p}rb
pt`1q

j }2 ´ λ1q` ¨

rb
pt`1q

j

}rb
pt`1q

j }2

,

Γ
pt`1q

jj1 “

!

}rΓ
pt`1q

jj1 }2 ´ λ2wp}sj ´ sj1}2q

)

`
¨

rΓ
pt`1q

jj1

}rΓ
pt`1q

jj1 }2

,

ν
pt`1q

jj1 “ ν
ptq
jj1 ` µpb

pt`1q

j ´ b
pt`1q

j1 ´ Γ
pt`1q

jj1 q,

(S5)

where

rb
pt`1q

j “

¨

˝

#

µD ` 2
n
ÿ

i“1

n
ÿ

l“1

rhiptilqrh
1
iptilq

+´1 «

2
n
ÿ

i“1

n
ÿ

l“1

rhiptilq tXiptilq ´ fhiptilqu ´ Eptq

ff

˛

‚

pj´1qq`1 : jq

,

rΓ
pt`1q

jj1 “
ν

ptq
jj1 ` µpb

pt`1q

j ´ b
pt`1q

j1 q

µ
,

and

D “ ppIp ´ 1pˆpq b Iq, 1pˆp is a matrix with all elements being 1 and b denotes Kronecker product,

Eptq
“

#

ÿ

j1ăj

´

ν
ptq
1j ´ ν

ptq
j1 ´ Γ

ptq
1j ` Γ

ptq
j1

¯

, ¨ ¨ ¨ ,
ÿ

j1ăj

´

ν
ptq
pj ´ ν

ptq
jp ´ Γ

ptq
pj ` Γ

ptq
jp

¯

+

P Rpq,

rhiptq “ diagthiptq, ¨ ¨ ¨ ,hiptqu P Rpqˆp.

We update (S5) until convergence and obtain the final B as the solution of (11).
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Among the cross-validation procedure, the components B,Φp¨q and fp¨q are shared

among all the individuals and are estimated by the training set. In the test set, we only

update ζ because it is specific to individuals. Particularly, for ζi in the test data, by model

(4), we estimate ζi by

ζtest
i “

!

ni
ÿ

l“1

Φtrian
ptilqΦ

trian1
ptilq

)´1” ni
ÿ

l“1

Φtrian
ptilqtpBtrian

` f trianq
1

ˆ pBtrian
` f trianqu

´1
pBtrian

` f trianq
1Xtest

i ptilq
ı

,

where the superscripts “train” and “test” represent the components obtained from the

training set and the test set, respectively.

S3 Supplementary Material C: Data Description and

Explanatory Analysis

ADNI is a longitudinal multicenter study involving scientists from 59 research centers across

the United States and Canada. It collects imaging, genetic, clinical, and cognitive data

from subjects diagnosed as cognitively normal (CN), with mild cognitive impairment (MCI),

and with AD. The study aims to investigate the association between AD and biomarkers,

neuropsychological scores, medical imaging data, and genetic variants. It spans four stages:

ADNI-1, ADNI-GO, ADNI-2, and ADNI-3. The data considered in this paper are sourced

from the ADNI-GO and ADNI-3 studies, which commenced in 2009 and 2016, respectively.

In addition to MRI data and MMSE scores, we extract age and gender information from

the dataset. The dataset comprises 803 participants, including 413 males and 390 females,

with an average age of 81.6 years at the last assessments, ranging from 55 to 103 years.
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Among the participants, 292 individuals were diagnosed with AD, 213 with MCI, and 298

were CN.

The transition from CN to MCI and ultimately to AD is often accompanied by progres-

sive atrophy of specific brain structures (Fotenos et al., 2005). Therefore, studying brain

volume data can contribute to a better understanding and detection of the pathological

processes associated with AD. MRI, utilized in ADNI, is a brain imaging technique primar-

ily used for evaluating and analyzing the structure and function of various brain regions.

It allows for the examination of anatomical structures, neuronal density, and metabolic

conditions within specific regions of the brain. MRI contains a massive amount of infor-

mation, posing challenges in accurately assessing the impact of volume changes of ROIs on

AD. Brain volume data are more effective in detecting subtle changes in brain structure,

thereby enabling a more accurate assessment of the impact of ROI volume changes on AD.

Numerous studies (Ferrarini et al., 2008; Henneman et al., 2009; Evans et al., 2010) have

used volumetric measurements obtained from MRI to investigate the impact of brain atro-

phy on cognitive function. Hence, we perform preprocessing on the original MRI data and

extract relevant information pertaining to the volumes of the ROIs.

The original MRI data are preprocessed using advanced normalization tools (Avants

et al., 2011). The preprocessing procedure consists of several steps: N4 bias correction,

registration-based brain extraction, and a prior-based N4-Atropos 6 tissue segmentation

using the oasis template. By performing multi-atlas cortical parcellation, we obtain the

brain local volumetric measures of 101 ROIs defined by the manually edited labels of the

publicly available MindBoggle-101 dataset (Klein and Tourville, 2012). After excluding

subjects whose imaging data do not pass standard imaging quality controls and removing

six ROIs with large missing values, the log-Jacobian transformation map for each individual

in the standard space is divided into 95 ROIs. The 3D coordinates of the center for each

ROI are determined by minimizing the distance between all measured loci and the center.
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To address the limitations of density functions not residing in a linear space, which actu-

ally is required by model (2), we employ the log quantile density transformation (Petersen

and Müller, 2016; Li et al., 2023) and take the log quantile density function of the density

curves along the 95 ROIs as functional variables. This transformation allows us to effec-

tively represent the density curves as functional variables suitable for analysis. Concretely,

let f, F,Q “ F´1 represent the density function, the cumulative distribution function and

the quantile functions of the volume. The log quantile density transformation is given

by logtdQptq{dtu “ logtdF´1ptq{dtu “ ´logrftQptqus. We randomly sample curves from

female participants aged 80 to 90 years old, belonging to the CN and non-CN groups, in

the left cerebellum exterior region. Our analysis using the proposed SF-FPCA in Section 4

reveals that atrophy of the left cerebellum exterior exacerbates functional decline. Figure

S1(a) illustrates the differences in local volumes between individuals with cognitive impair-

ment and normal subjects, showing evidence of brain volume change among those with

cognitive impairment. The brain volume curves provide an intuitive and comprehensive

representation of brain volume values for each ROI, retaining essential information such as

mode, spread, and shape of these densities.

The MMSE score is commonly used to measure cognitive ability, with lower scores in-

dicating cognitive impairment. In our subsequent regression analysis, we treat the MMSE

score as the response variable. The average MMSE score for the participants is 26.5, with

a maximum score of 30 and a minimum score of 4. Moreover, age and gender have been

validated as important features influencing cognitive function (Gao et al., 1998) and can

serve as additional covariates in the subsequent regression analysis. Figure S1(b) displays

the density of MMSE scores among individuals with AD, differentiated by gender, reveal-

ing that females are more likely to have lower MMSE scores (8-11) and less likely to have

higher MMSE scores (18-26) than males. Figure S1(c) illustrates the density of MMSE

scores across different age groups in individuals with AD, suggesting a decline in cognitive
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function with increasing age.

Figure S1: (a): Curves of left cerebellum exterior in selected females with CN (red) or not
(blue) between the ages of 80 and 90; (b): The probability density of MMSE scores for
females (red) and males (blue) with AD; (c): The probability density of MMSE scores for
individuals with AD categorized into two age groups: younger than 70 years old (red) and
older than 90 years old (blue).

S4 Supplementary Material D: Simulation results re-

lated to the performance of SF-FPCA

We provide supplementary simulation results related to the performance of SF-FPCA,

which includes estimation consistency, selection of the number of factors and eigenfunctions,

and computational costs.

We generate data from the SF-FPCA model as Xiptq “ pB ` fqΦ1ptqζi ` uiptq. To

construct B, we set bj “ p1{2{2p1, ¨ ¨ ¨ , 1q1 for j “ 1, ¨ ¨ ¨ , 100 and bj “ 0 for j “ 101, ¨ ¨ ¨ , p.

To construct fp¨q “ η1Mp¨q, we generate Mpsq “ ĂMps1q bĂMps2q bĂMps3q as the Kronecker

product of three B-spline basis functions, with each basis function corresponds to one

dimension of s “ ps1, s2, s3q
1. Each dimension of the coordinates sj “ psj1, sj2, sj3q1 for

location j “ 1, ¨ ¨ ¨ , p is generated from Up0, 1q. For η P Rτ , we firstly generate q random

τ -dimensional vectors from Np0τ , Iτ q and then apply singular value decomposition (SVD)

to obtain the final η. The components of Φptq are defined as ϕjkptq “
?
2 sintpk ` 1qπtu
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if k is odd and
?
2 cospkπtq if k is even pj “ 1, ¨ ¨ ¨ , qq. We generate ζi „ Np0Kq,Σζq,

where Σζ “ diagpξijkqj“1,¨¨¨ ,q;k“1,¨¨¨ ,K and varpξijkq “ t3pq ` 1´ jq ´ 1upK ´ kq{pK ´ 1q ` 1.

We generate uiptq „ Np0p, 3Ipq. For each trajectory Xijp¨q, we randomly sample 100

observation time points from Up0, 1q, unless stated otherwise.

Estimation consistency

We set pp, q,Kq “ p500, 2, 2q and vary n among p100, 200, 400q to check whether all

components of the model can be consistently estimated. To check whether all the pieces

specified by B are consistently identified, we introduce the normalized mutual information

(NMI), which is a common measure for similarity between clusterings (Ke et al., 2015).

Suppose D1 “ tD11, D12, ¨ ¨ ¨ u and D2 “ tD21, D22, ¨ ¨ ¨ u are two sets of disjoint clusters of

t1, ¨ ¨ ¨ , pu, we define

NMIpD1,D2q “
2IpD1;D2q

tHpD1q ` HpD2qu
,

where IpD1;D2q “
ř

k,jp|D1k X D2j|{pqlogtp|D1k X D2j|{p|D1k||D2j|qu is the mutual infor-

mation between D1 and D2, and HpD1q “ ´
ř

kp|D1k|{pqlogp|D1k|{pq is the entropy of

D1. NMI takes values on r0, 1s, and large NMI implies that the two grouping structures

are close. In our scenario, D1 denotes the estimated grouping structure by SF-FPCA

and D2 is the true one. The performance of pfp¨q, pΦp¨q and pζ are evaluated via the mean

square error MSEf “ ppqq´1}pf ´ f0}
2
F , MSEΦ “ pqKq´1

ř

j,k

∫
tpϕjkptq ´ ϕjk0ptqu2 dt, and

MSEζ “ pnqKq´1
řn

i“1 }pζi ´ ζi0}
2
2.

Based on 200 repetitions, the mean(sd) of NMI values are 0.9243(0.0434), 0.9604(0.0407),

and 1(0) for the scenarios with n “ 100, 200, 400, respectively, which indicates the pieces

can be well identified in each setting. The results in Figure S2 show that as n increases,

the estimates of fp¨q,Φp¨q and ζ become more precise, demonstrating that the proposed

model can be consistently estimated.
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(a) MSEf (b) MSEΦ (c) MSEζ

Figure S2: The performance of the estimates of fp¨q,Φp¨q and ζ over 200 repetitions of
SF-FPCA when n varies

Selection of the number of factors and eigenfunctions

We check if the criteria work well by setting pn, pq “ p100, 500q and varying q among

p2, 3, 4, 5, 6q and K among (2,4,6,8,10). The results in Tables S1 and S2 demonstrate that,

under all settings, we accurately identify the true number of factors and eigenfunctions

using the criteria (15) and (16).

Table S1: The values of pq in different settings with fixed K.

q0 “ 2 q0 “ 3 q0 “ 4 q0 “ 5 q0 “ 6

pq(sd) 2(0) 3(0) 4(0) 5(0) 6(0)

Table S2: The values of pK in different settings with fixed q.

K0 “ 2 K0 “ 4 K0 “ 6 K0 “ 8 K0 “ 10

pK(sd) 2(0) 4(0) 6(0) 8(0) 10(0)

Computational costs

The results in Tables S3 and S4 show the computation time required for convergence

under each setting with 10 repetitions and are computed in R (version 4.4.0) on a 14-core

machine with 32 GB of RAM.

First, we examine the effect of the number of factors q and the number of eigenfunctions

11



K on computational cost by varying q and K across p2, 5, 10, 20q, while keeping pn, p, niq

fixed at p100, 100, 50q. The results in Table S3 show that variations in K have minimal

impact on computational cost, as only Φp¨q and ζ depend on K, and their computation

involves only eigenvalue decomposition truncated at the first K eigenvalues. In contrast,

changes in q significantly increase computation time, mainly due to the high cost of updat-

ing the inverses of several q ˆ q matrices.

Table S3: Average computation time (seconds) over 10 repetitions given different q,K.

K “ 2 K “ 5 K “ 10 K “ 20

q “ 2 1.27 1.28 1.27 0.89

q “ 5 5.32 4.24 5.08 4.64

q “ 10 15.70 15.37 15.43 15.75

q “ 20 72.47 70.64 74.02 74.36

Second, we examine the impact of sample size n, number of variables p, and number of

observations ni on computational cost by varying n, p and ni across p100, 200, 500q, while

keeping pq,Kq fixed at p2, 2q. The results in Table S4 show that increasing n, p and ni all

raise computational costs, with changes in p having a much more significant impact than

those in n or ni. This is mainly due to the ADMM algorithm used in the iteration for B,

which involves estimating p2{2 ˆ q parameters and thus consumes the largest portion of

computation time.

Table S4: Average computation time (seconds) over 10 repetitions given different n, p, ni.

ni “ 100 ni “ 200 ni “ 500

p “ 100 p “ 200 p “ 500 p “ 100 p “ 200 p “ 500 p “ 100 p “ 200 p “ 500

n “ 100 1.81 4.21 21.40 2.76 5.03 25.77 3.22 7.45 33.44

n “ 200 2.55 5.00 24.07 2.67 5.97 28.32 4.90 11.90 40.38

n “ 500 2.56 6.55 31.19 4.28 10.27 34.92 9.33 20.74 59.02
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S5 Supplementary Material E: The transformation from

the regression relationships between MMSE and

scores to ROI measures.

With the regression coeffcients corresponding to ζi denoted by β “ pβ1, ¨ ¨ ¨ , βKqq
1, ζ 1

iβ is

viewed as the measurement of the effect of the ROIs on MMSE. By multiplyingΦptqpC1Cq´1C1

on both sides of (4) with C “ B ` f , we obtain ΦptqpC1Cq´1C1Xiptq « ΦptqΦ1ptqζi. After

combining it with the identification condition
∫
ΦptqΦ1ptqdt “ IKq, we have

∫
β1ΦptqpC1Cq

´1C1Xiptqdt « β1

∫
ΦptqΦ1

ptqdtζi “ β1ζi.

Then, the regression relationship ζ 1
iβ between response and score ζi can be written as∫

X1
iptqαptqdt between response and original functional covariates Xiptq, where αptq “

tα1ptq, ¨ ¨ ¨ , αpptqu1 “ CpC1Cq´1Φ1ptqβ is the regression coefficient function.

S6 Supplementary Material F: Table and figures in

the real data analysis

Table S5 shows the used 95 ROIs in the real data analysis and their pieces based on pB.

Figures S3, S4 and S5 show the coefficient functions of the selected ROIs in temporal lobe,

frontal lobe and cerebellum. Figure S6 shows the coefficient function of other 19 ROIs that

are the risk factors for AD.
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Table S5: The used 95 ROIs in anaylsis and their pieces.

ROI name ROI name ROI name
Piece 1
4 left lateral ventricle 50 right caudate 1009 left inferior temporal
5 left inferior lateral ventricle 91 left basal forebrain 1011 left lateral occipital
10 left thalamus proper 630 cerebellar vermal lobules I-V 2002 right caudal anterior cingulate

11 left caudate 631 cerebellar vermal lobules VI-VII 2011 right lateral occipital
14 3rd ventricle 632 cerebellar vermal lobules VIII-X 2013 right lingual
15 4th ventricle 1002 left caudal anterior cingulate 2021 right pericalcarine
17 left hippocampus 1005 left cuneus 2025 right precuneus
26 left accumbens area 1007 left fusiform 2026 right rostral anterior cingulate

43 right lateral ventricle 1008 left inferior parietal

Piece 2
6 left cerebellum exterior 1012 left lateral orbitofrontal 2003 right caudal middle frontal
12 left putamen 1015 left middle temporal 2005 right cuneus
45 right cerebellum exterior 1018 left pars opercularis 2008 right inferior parietal
46 right cerebellum white matter 1020 left pars triangularis 2010 right isthmus cingulate
49 right thalamus proper 1021 left pericalcarine 2012 right lateral orbitofrontal
51 right putamen 1024 left precentral 2018 right pars opercularis
52 right pallidum 1026 left rostral anterior cingulate 2020 right pars triangularis
54 right amygdala 1027 left rostral middle frontal 2024 right precentral
58 right accumbens area 1029 left superior parietal 2027 right rostral middle frontal
60 right ventral DC 1034 left transverse temporal

Piece 3
7 left cerebellum white matter 1013 left lingual 2006 right entorhinal
13 left pallidum 1014 left medial orbitofrontal 2007 right fusiform
16 Brain stem 1016 left parahippocampal 2009 right inferior temporal
18 left amygdala 1017 left paracentral 2016 right parahippocampal
24 CSF 1019 left pars orbitalis 2017 right paracentral
28 left ventral DC 1022 left postcentral 2022 right postcentral
44 right inferior lateral ventricle 1023 left posterior cingulate 2028 right superior frontal
53 right hippocampus 1025 left precuneus 2029 right superior parietal
92 right basal forebrain 1028 left superior frontal 2030 right superior temporal
1003 left caudal middle frontal 1030 left superior temporal 2031 right supramarginal
1006 left entorhinal 1031 left supramarginal
1010 left isthmus cingulate 1035 left insula

Piece 4
2014 right medial orbitofrontal 2035 right insula

Piece 5
2015 right middle temporal

Piece 6
2019 right pars orbitalis

Piece 7
2023 right posterior cingulate

Piece 8
2034 right transverse temporal
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(a) left middle temporal (b) left transverse temporal (c) right inferior temporal (d) right fusiforml

Figure S3: Functional regression coefficient estimates in temporal lobe (a): Left middle
temporal; (b): Left transverse temporal; (c): Right inferior temporal; (d): Right fusiforml.

(a) left lateral orbitofrontal (b) left medial orbitofrontal

(c) right superior frontal (d) left pars opercularis (e) left pars triangularis

Figure S4: Functional regression coefficient estimates in frontal lobe (a): Left lateral or-
bitofrontal; (b): Left medial orbitofrontal; (c): Right superior frontal; (d): Left pars
opercularis; (e): Left pars triangularis.
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(a) left cerebellum exterior (b) left putamen (c) right cerebellum exte-

rior

(d) right putamen (e) left ventral DC (f) cerebellar vermal lobules

I-V

(g) cerebellar vermal lob-

ules VI-VI

Figure S5: Functional regression coefficient estimates in cerebellum (a): Left cerebellum
exterior; (b): Left putamen; (c): Right cerebellum exterior; (d): Right putamen; (e): Left
ventral DC; (f): Cerebellar vermal lobules I-V; (g): Cerebellar vermal lobules VI-VII.
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(a) left isthmus cingulate (b) brain stem

(c) left precuneus (d) left inferior parietal (e) right superior parietal

(f) left thalamus proper (g) left accumbens area (h) right cuneus (i) right paracentral

(j) left posterior cingulate (k) right posterior cingulate (l) left precentral (m) left insula

Figure S6: Functional regression coefficient estimates and confidence bands of other 13
ROIs.
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