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Abstract

Alzheimer’s disease (AD) is a prevalent and irreversible brain disorder and early
prediction of cognitive function is vital for detecting the onset. The volumes of brain
regions can serve as features for predicting cognitive decline, facilitating early de-
tection and intervention. In order to offer a comprehensive representation of brain
tissue changes in AD, we employ volume density curves to investigate the relation-
ship between brain regions and cognitive function. However, analyzing these volume
curves is complex due to their highly spatial and intrinsic dependence and piecewise
structure. To address these challenges, we propose Space-Factor-Guided Functional
Principal Component Analysis (SF-FPCA). This method utilizes factor processes to
extract low-dimensional features for intrinsic correlations among regions of interest
(ROIs) and applies Functional Principal Component Analysis (FPCA) to these pro-
cesses to address temporal dependence. Furthermore, by decomposing the loadings
into smooth functions of spatial coordinates and a piecewise constant matrix, we iden-
tify regions exhibiting smoothness within each region while discontinuities between
these regions. We apply SF-FPCA to analyze data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI). Our results demonstrate that SF-FPCA provides
the best fit compared to other methods. In addition, features extracted from volume
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curves using SF-FPCA enable more accurate prediction of cognitive function com-
pared to scalar volumes alone. Leveraging these extracted features, we identify 36
important ROIs influencing cognitive decline. Our investigation into brain atrophy
also reveals distinct mechanisms between the left and right hemispheres, shedding
light on the nuanced effects of brain region changes on cognitive decline in AD.

Key words and phrases: Volume density curve; cognitive function; high-dimensional func-
tional data; spatial correlation; factor analysis
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1 Introduction

Alzheimer’s disease (AD) is a prevalent and irreversible brain disorder among the elderly

population, characterized by a range of behavioral deficits including loss of memory, think-

ing, language skills, and reasoning abilities. Given the irreversible nature of AD and its

inability to be completely cured, early prediction of cognitive decline is crucial for detecting

the disease onset in its initial stages. Changes in brain volume, characterized by progres-

sive atrophy in specific structures, serve as a prominent neural correlate of AD (Talwar

et al., 2021). As AD progresses, neuronal damage and death lead to alterations in brain

volume, particularly affecting regions associated with cognitive function and memory (Fjell

and Walhovd, 2010; Albert et al., 2011).

The volumes of regions of interest (ROIs) can directly serve as features for predicting

cognitive decline in AD patients (de Jong et al., 2008; Ferrarini et al., 2008; Henneman et al.,

2009; Evans et al., 2010), aiding in the early detection of the disease and the implementation

of appropriate intervention measures. Furthermore, studying volume changes in specific

ROIs provides valuable insights into the pathophysiology of AD, shedding light on the

underlying mechanisms involved in disease progression and facilitating the identification of

potential biomarkers for monitoring disease progression.

Numerous studies have demonstrated the association between changes in ROI volumes

and AD. The atrophy of the hippocampus, in particular, has been extensively investigated

and is widely recognized as one of the most established biomarkers for AD (Likeman et al.,

2005; Leung et al., 2010; Antoniano-Villalobos et al., 2014). Other brain regions, such as

the temporal lobe, parietal lobe, and cingulate gyrus, have also been implicated in AD

pathology (Chincarini et al., 2014; Jacobs et al., 2011; Barnes et al., 2007). In this study,

our primary objective is to identify ROIs that are associated with cognitive function by

analyzing the volume of these regions, aiming to enhance the prediction of cognitive de-
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cline. We utilize the most recently updated data from the Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI) study, which includes magnetic resonance imaging (MRI) data and

mini-mental state examination (MMSE) scores. Following appropriate preprocessing steps,

detailed in Section S4, we convert the MRI data into volume density curves. These curves,

representing the volumes of ROIs, can be treated as high-dimensional functional variables

in our analysis.

While using scalar volume measurements to assess the impact of ROI volume changes in

AD offers a direct approach, leveraging density curves instead provides several advantages.

Firstly, density curves offer a more comprehensive representation of changes in brain tissue

associated with AD. Secondly, density curves offer a greater number of observation points

for analysis, thereby increasing sensitivity to AD-related changes. Density curves capture

variations in tissue density across different brain regions, and several studies (Zhong et al.,

2021; Li et al., 2022, 2023) have utilized density curve analysis to investigate AD. In our

study, we compare the predictive performance of regression models for cognitive function

using high-dimensional volume curves and scalar volumes. The results illustrated in Figure

2 demonstrate that the regression model constructed with features extracted from volume

curves as covariates outperforms the model based on scalar volumes.

Analyzing the volume density data presents several challenges. Firstly, we need to char-

acterize the intrinsic and spatial correlations among a large number of ROIs. A reasonable

assumption is that ROIs located closer to each other tend to exhibit greater similarity.

However, the brain comprises spatially contiguous regions, each consisting of various ROIs.

These regions may differ in cortical thickness, neuron density, connectivity patterns, and

functional expressions. The second challenge is to retain the distinctions between differ-

ent regions while accounting for spatial correlations. This requires our analysis to capture

both the similarities within regions and the differences between them. Similar challenges

have been discussed in previous neuroimaging studies, such as those highlighted by Zhu
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et al. (2014). Recently, methods for handling high-dimensional functional data have been

categorized into three main approaches: univariate functional principal component analy-

sis (uFPCA-HD), sparse functional principal component analysis (sFPCA-HD), and factor

models (FM-HD). uFPCA-HD (Gao et al., 2019) involves applying uFPCA separately to

each functional variable, largely overlooking the correlation among the functional variables.

Hu and Yao (2022) proposed sFPCA, which assumes that only a small number of curves

are important. However, this assumption may not hold true when variables are correlated,

leading to biased results. On the other hand, FM-HD methods do account for inter-variable

correlations but often ignore temporal dependence. For instance, Hu and Yao (2024) pro-

posed dynamic principal component analysis (DPCA), which is based on standard factor

analysis at each time point. Similarly, Hallin et al. (2022) and Guo et al. (2022) extended

the factor model by treating curves as elements in Hilbert space.

When dealing with high-dimensional functions that exhibit spatial correlation, sev-

eral methods have been developed to incorporate spatial information: Zhang et al. (2016)

introduced a functional conditional autoregressive (CAR) model tailored for spatially cor-

related functional data, considering spatial correlation within the covariance structure;

Marinescu et al. (2019) proposed Data-driven Inference of Vertexwise Evolution (DIVE),

assuming the existence of latent variables for each ROI to cluster the curves. However,

these methods rely solely on the adjacency matrix of spatial locations, neglecting precise

spatial coordinates and thus not fully leveraging spatial information. Another common

approach is spatio-temporal FPCA. For example, Hyun et al. (2016) developed FPCA for

spatio-temporal Gaussian processes (FPCA-ST) by extending one-dimensional eigenfunc-

tions over time to multi-dimensional eigenfunctions over space and time. Similarly, Chen

et al. (2017) proposed product FPCA (pFPCA), utilizing the product of eigenfunctions in

the space and time domains. Both FPCA-ST and pFPCA assume the smoothness of all

functional variables across spatial coordinates, disregarding differences between different
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brain regions.

We propose a Space-Factor-Guided Functional Principal Component Analysis (SF-

FPCA) approach to effectively capture the intrinsic and spatial correlation and piecewise

smoothness of the ROI volume curves. The fundamental concept behind SF-FPCA is to em-

ploy factor processes to organize the intrinsic correlations of ROI measures. Subsequently,

we apply univariate Functional Principal Component Analysis (uFPCA) to each compo-

nent of these factor processes to address temporal dependence and further extract features.

Our approach offers several novel aspects compared to existing methods. In uFPCA-HD,

applying FPCA to each functional variable can lead to a large number of duplicate features

due to inter-variable correlation, while some features related to this correlation are easily

ignored. In contrast, SF-FPCA efficiently utilizes correlation information among ROIs by

employing factor processes, thereby avoiding overlapping features. By applying FPCA to

the factor processes, SF-FPCA also captures temporal dependence more effectively than

FM-HD and can further extract features suitable for subsequent regression analysis. Fur-

thermore, by decomposing the loadings into smooth functions of spatial coordinates and

a piecewise constant matrix, SF-FPCA incorporates spatial coordinates to describe the

relationship between ROI correlations and spatial information, distinguishing it from other

methods. Compared to DIVE and the functional CAR model, SF-FPCA fully leverages

available spatial information and provides a more detailed modeling of spatial correlation.

Additionally, compared to pFPCA and FPCA-ST, SF-FPCA considers both the smooth

and discrete information of spatial locations, accounting for differences between different

brain regions and enabling a more comprehensive analysis.

Our analysis results show that predicting cognitive function based on volume curves out-

performs predictions based on scalar volume (see Figure 2), underscoring the advantages

of functional data analysis. Moreover, SF-FPCA achieves higher predictive accuracy for

fitting high-dimensional functional curves and MMSE compared to state-of-the-art compet-
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ing methods (see Tables 1 and 2). This suggests that the features extracted by SF-FPCA

most effectively represent the volume of ROI. Based on the extracted features from SF-

FPCA, we identify 36 ROIs associated with cognitive decline. We validate some critical

regions affecting AD, such as the left hippocampus and certain ROIs in the temporal and

frontal lobes. Additionally, we investigate the impact of cerebellar atrophy on cognitive

decline. Specifically, we uncover distinct impact mechanisms of different locations within

cerebellar vermal lobules on cognitive decline. Furthermore, we find that the mechanisms

differ between the left and right hemispheres and identify several ROIs that have received

limited or no research attention previously.

In Section 2, we introduce the SF-FPCA model, while the estimating method is dis-

cussed in Section 3. Section 4 applies the proposed method to analyze the ADNI data and

presents the scientific findings and interpretations. Section 5 further evaluates the utility

of the method via extensive simulations, and Section 6 concludes the paper with a brief re-

mark. The details on the data source and preprocessing steps, along with some simulation

and real data analysis results, are included in the supplementary materials.

2 Model

Suppose that the observations Xip¨q pi “ 1, ¨ ¨ ¨ , nq are independent and identically dis-

tributed with Xptq, where Xptq “ tX1ptq, ¨ ¨ ¨ , Xpptqu1 being the high-dimensional functional

variables. Particularly, in the ADNI data, Xjptq is the brain local volumetric measure at

quantile t P r0, 1s of ROI j “ 1, . . . , p with p “ 95. The high-dimensional feature is re-

flected in the number of volume curves, with a detailed introduction to ADNI provided in

Supplementary Material C. For simplicity, we assume that EtXjptqu “ 0 for any j. Figure

1 in Section 4 plots the heat map and the first 15 eigenvalues of the numerical approxi-

mation version of
∫
EtXptqX1ptqudt, revealing high correlations among different ROIs and
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indicating an obvious low-rank structure in the data. Following the idea of factor analysis

(Bai and Ng, 2013), we assume that Xptq are correlated due to a shared vector of factor

processes hptq, given by:

Xptq “ Bhptq ` uptq, (1)

where hptq “ th1ptq, ¨ ¨ ¨ , hqptqu1 is a q-dimensional vector of factor processes with q ! p,

B “ pb1, ¨ ¨ ¨ ,bpq1 “ pbjkqpˆq is a deterministic loading matrix, and uptq “ tu1ptq, ¨ ¨ ¨ , upptqu1

denotes the measurement error, which is independent of hptq with Etuptqu “ 0 and

vartuptqu “ σ2Ip.

However, Model (1) only captures correlations among ROIs and does not incorporate

spatial coordinates, thus neglecting potential spatial information. To address this limita-

tion, we propose a modification. Considering the 3-dimensional (3D) coordinates sj P r0, 1s3

of the center of ROI j, we extend Model (1) to:

Xptq “ pB ` fqhptq ` uptq, (2)

where f “ tfps1q, ¨ ¨ ¨ , fpspqu1 with fp¨q “ tf1p¨q, ¨ ¨ ¨ , fqp¨qu1 denotes smooth functions of the

spatial coordinates, and B is a matrix accounting for the extra non-smooth information.

Model (2) explains inter-variable and spatial correlations between ROIs through low-rank

and smooth structures. Furthermore, to capture differences between different regions, we

impose a piecewise constant structure on B. Particularly, we assume bj “ bj1 if ROIs j and

j1 belong to the same piece, while the number and composition of the pieces are allowed

to be unknown. In fact, model (2) is highly flexible. Particularly, when B “ 0, the model

captures cases where loadings vary smoothly over space; when f “ 0, it reduces to a factor

model, ignoring spatial coordinates and spatial information. Since B is constant within the

same piece due to the piecewise structure, the loadings are smooth within each piece. In

addition, the distinct piecewise constants reflect the differences among the different pieces.
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Thus, B and fp¨q jointly consider the piecewise smoothness, which simultaneously reflect

spatial correlation and differences between different regions. Additionally, we allow each

nonzero bj to be different, indicating that the piecewise constant is not necessary. It serves

only for interpretability, not as a constraint.

In order to further extract low-dimensional features, we apply the Karhunen-Loève

expansion (Ash and Gardner, 1975) to the factor processes hjptq pj “ 1, ¨ ¨ ¨ , qq, yielding:

hjptq “

8
ÿ

k“1

ξjkϕjkptq,

where ϕjkp¨q is the k-th orthogonal eigenfunction of the covariance function covthjpsq, hjptqu

satisfying
∫
ϕjkptqϕjk1ptqdt “ 1tk“k1u; ξjk represents the functional principal component

score with Epξjkq “ 0 and covpξjk, ξjk1q “ ρjk1tk“k1u; and ρjk denotes the k-th eigenvalue

corresponding to covthjpsq, hjptqu.

Under the constraints ρj1 ě ρj2 ě ¨ ¨ ¨ ą 0 and
ř8

k“1 ρjk ă 8, which imply that

suptPr0,1s Et
řK

k“1 ξjkϕjkptq ´
ř8

k“1 ξjkϕjkptqu2 Ñ 0 as K is large enough, we hence assume

that hjptq has the truncated form as,

hjptq “

K
ÿ

k“1

ξjkϕjkptq. (3)

Denote ζ “ pζ 1
1, ¨ ¨ ¨ , ζ 1

qq
1 with ζj “ pξj1, ¨ ¨ ¨ , ξjKq1 and Φptq “ diagtΦ1ptq, ¨ ¨ ¨ ,Φqptqu

with block j being Φjptq “ tϕj1ptq, ¨ ¨ ¨ , ϕjKptqu1. Coupled with (3), model (2) can be

rewritten as

Xptq “ pB ` fqΦ1ptqζ ` uptq. (4)

Model (4) is termed a space-factor-guided functional principal component analysis (SF-

FPCA) model. The proposed SF-FPCA model (4) naturally incorporates the intrinsic and

spatial correlations among ROI volume curves across quantiles t, facilitating a simple and
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sufficient representation of spatially correlated high-dimensional functional data. Particu-

larly, by decomposing the loadings into smooth functions of spatial coordinates fpsq and

the piecewise constant matrix B, we account for the existence of multiple piecewise smooth

regions with discontinuities and significant spatial correlations. The score ζ, representing

low-dimensional features derived from high-dimensional volume curves, can be directly uti-

lized for regression modeling of MMSE. By applying the transformation in Section 4, we can

identify the ROIs that are relevant to cognitive decline based on the estimated scores. In

this context, SF-FPCA specifies the inter-variable and spatial correlations among functional

variables and the temporal dependence. Compared to state-of-the-art methods, SF-FPCA

makes full use of spatial coordinate information and accounts for the piecewise smoothness

in volume curves with respect to spatial coordinates within ROIs.

However, obtaining identifiability for model (4) is challenging and may not be easily

achievable. To ensure identifiability, we introduce assumptions regarding the smoothness

of fp¨q by assuming it follows a truncated basis function expansion approximation:

fp¨q “

#

τ
ÿ

k“1

η1kMkp¨q, ¨ ¨ ¨ ,
τ
ÿ

k“1

ηqkMkp¨q

+1

“
␣

η1
1Mp¨q, ¨ ¨ ¨ ,η1

qMp¨q
(1

“ η1Mp¨q,

where η “ pη1, ¨ ¨ ¨ ,ηqq represents the coefficient matrix, and Mp¨q “ tM1p¨q, ¨ ¨ ¨ ,Mτ p¨qu1

are pre-defined smooth basis functions. Denoting M “ tMps1q, ¨ ¨ ¨ ,Mpspqu1, model (4) is

modified to

Xptq “ pB ` MηqΦ1ptqζ ` uptq. (5)

We will demonstrate that η is exactly identifiable, thereby ensuring the identifiability of

fp¨q up to basis approximation. Let txu denote the largest integer not exceeding x for any

real number x ě 0. For an index set C and matrix A, |C| represents the cardinality of

C, A¨j denotes the j-th column of A, and AC refers to the corresponding rows of A. To

guarantee the identifiability of model (5), we impose the following constraints:
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(I1) maxjPt1,¨¨¨ ,qu }B¨j}0 ď tpp ´ mq{2qu, rankpMCq “ τ , @C Ď t1, ¨ ¨ ¨ , pu with |C| “ m for

some integer m satisfying q ď τ ď m ď p.

(I2) η1η “ Iq and ηj1 ą 0 pj “ 1, ¨ ¨ ¨ , qq.

(I3) Epζζ 1q is diagonal with
řK

k“1 varpξ1kq ě ¨ ¨ ¨ ě
řK

k“1 varpξqkq ą 0 and varpξj1q ě ¨ ¨ ¨ ě

varpξjKq ą 0 pj “ 1, ¨ ¨ ¨ , qq.

(I4)
∫
ΦptqΦ1ptqdt “ IKq and ϕjkp0q ą 0 pj “ 1, ¨ ¨ ¨ , q; k “ 1, ¨ ¨ ¨ , Kq.

Condition (I1) requires the rows of B to be sparse, aligning with similar requirements in

Wang et al. (2017) and Bing et al. (2024). Conditions (I2)–(I4) impose restrictions on the

loadings, scores, and eigenfunctions, which are common in the literature on factor analysis

(Bai and Ng, 2013; Fan et al., 2013; Jiang et al., 2019; Liu et al., 2023) and FPCA (James

et al., 2000; Zhou et al., 2018). It is important to note that if Conditions (I2)-(I4) are

not imposed, then model (5) remains valid when B, η, Φ1ptq, and ζ are replaced by BA,

ηA, A1Φ1ptqD, and D1ζ, respectively, for any orthogonal matrices A and D. Hence, the

orthogonal operations on η, ζ, and Φptq serve only to ensure the identifiability of η, Φptq,

and ζ, rather than as a restriction. The identifiability of the model (5) is stated below,

with the proof provided in Supplementary Material A.

Theorem 1. Under the conditions (I1)-(I4), B,η,Φptq and ζ in model (5) are identifiable.

3 Estimation Procedure

We have the observations Xiptq pi “ 1, ¨ ¨ ¨ , nq. For possibly irregular and subject-specific

time points, we assume that Xip¨q are measured at ti “ pti1, ¨ ¨ ¨ , tini
q1. In ADNI data

analysis, t represents quantiles. Let thiptq, ζiu pi “ 1, ¨ ¨ ¨ , nq be iid copies of thptq, ζu.

We propose an iterative algorithm to estimate B,η,Φptq, and ζi in model p5q. Denote
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the estimate from the rth step by superscript prq. To initiate the iteration, we start by

computing initial values.

3.1 Initial Value

Denote C “ B ` f “ tbjk ` fkpsjqupˆq, and the covariance matrices of Xiptq and uiptq

by ΣXptq and Σuptq, respectively. Let rΣX “
∫
ΣXptqdt, rΣu “

∫
Σuptqdt and Λζ “

diagp
řK

k“1 ρ1k, ¨ ¨ ¨ ,
řK

k“1 ρqkq. By calculating the covariance matrix and integrating over t

on both sides of (2), we have

rΣX “ CΛζC
1 ` rΣu, (6)

which implies that p´1{2C is the eigenvector of rΣX. Following Bai and Ng (2013), we

then estimate the initial values of p´1{2C by the orthogonal eigenvectors of the numerical

approximation version of rΣX; i.e.,

Cp0q “ p1{2Eeigen

#

n´1
n
ÿ

i“1

n´1
i

ni
ÿ

l“1

XiptilqX
1
iptilq; q

+

, (7)

where EeigenpA; qq is a matrix composed of the orthogonal eigenvectors corresponding to

the q largest eigenvalues of matrix A. Obviously, p´1Cp0q1Cp0q “ Iq.

Notice that C “ B ` f “ B ` Mη, we then separate f “ Mη from C by performing

linear regression of C¨k pk “ 1, ¨ ¨ ¨ , qq on M, respectively. This yields the initial values of

η, fpsq and B as

ηp0q “ pM1Mq´1M1Cp0q, f p0qpsq “ ηp0q1Mpsq and Bp0q “ Cp0q ´ Mηp0q. (8)

Finally, by multiplying pC1Cq´1C1 on both sides of (2), we have

hiptq « pC1Cq´1C1Xiptq. (9)

Since p´1Cp0q1Cp0q “ Iq, we obtain the initial values of hiptq pi “ 1, ¨ ¨ ¨ , nq by

h
p0q

i ptq “ p´1Cp0q1Xiptq. (10)
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3.2 Iterative Step

In the pr ` 1q-th step, we firstly update B by the following penalized least square loss:

Bpr`1q “ argminB

p
ÿ

j“1

n
ÿ

i“1

ni
ÿ

l“1

!

Xijptilq ´ f prq1psjqh
prq

i ptilq ´ b1
jh

prq

i ptilq
)2

`λ1

p
ÿ

j“1

}bj}2 ` λ2

p
ÿ

j1ăj“1

wp}sj ´ sj1}2q ¨ }bj ´ bj1}2. (11)

The penalty wp}sj ´ sj1}2q ¨ }bj ´ bj1}2 is used to identify different pieces. The weight

wp}sj ´ sj1}2q decreases as }sj ´ sj1}2 increases, reflecting that ROIs closer to each other

are more likely to belong to the same piece. A similar idea can be found in Li and Sang

(2019). A simple choice for wp}sj ´ sj1}2q is 1{}sj ´ sj1}2. We apply the ADMM algorithm

to solve (11) and optimize the parameters λ1 and λ2 by minimizing normalized prediction

error (PE), defined in Section 4, through a 5-fold cross-validation. The calculation process

of ADMM and the cross-validation procedure are elaborated in Supplementary Material B.

By the equation (5), we have Xiptq ´Bhiptq « Mηhiptq. Then, by left-multiplyling M1

and right-multiplyling h1
iptilq on both sides and making the summation over i, we update

η by

ηpr`1q “ pM1Mq´1M1

«

n
ÿ

i“1

ni
ÿ

l“1

!

Xiptilq ´ Bpr`1qh
prq

i ptilq
)

h
prq1

i ptilq

ff

ˆ

#

n
ÿ

i“1

ni
ÿ

l“1

h
prq

i ptilqh
prq1

i ptilq

+´1

.(12)

After obtaining the updated estimators of η for each step, we perform an orthogonal

transformation to essure ηpr`1q1ηpr`1q “ Iq. We then obtain f pr`1qpsq “ ηpr`1q1Mpsq.

Given f pr`1qpsq and Bpr`1q, following (9), we update hiptq by

h
pr`1q

i ptq “ pCpr`1q1Cpr`1qq´1Cpr`1q1Xiptq

with Cpr`1q “ Bpr`1q ` f pr`1q. Now, we consider updating the scores ζ. Let Zp¨q “

tpZ1p¨q, ¨ ¨ ¨ , Zωp¨qu1 denote a vector of B-spline basis functions on r0, 1s, then we have

ϕjkp¨q « Θ1
jkZp¨q. Denote Θj “ pΘj1, ¨ ¨ ¨ ,ΘjKq1. With the B-spline approximation,

identification condition (I4) on Φptq can be written as ω´1ΘjΘ
1
j “ IK pj “ 1, ¨ ¨ ¨ , qq
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and ω
∫
ZptqZ1ptqdt “ Iω. In practice, we firstly generate B-spline basis functions at fine

grid points t1, ¨ ¨ ¨ , tngrid
as Zgrid “ tZpt1q, ¨ ¨ ¨ ,Zptngrid

qu1 using the bsplineS function from

the fda package in R. Then we apply singular value decomposition (SVD) on Zgrid as

Zgrid “ SVD and obtain
b

ngrid

ω
S as the final Zgrid to ensure ω

ngrid
Z1

gridZgrid “ Iω. More-

over, by the equation (3), for each j “ 1, ¨ ¨ ¨ , q, we obtain

hijptilq « Φ1
jptilqζij « Z1ptilqΘ

1
jζij.

Multiplyling Zptilq on both sides and making the summation over the observations of indi-

vidual i, we have
#

ni
ÿ

l“1

ZptilqZ
1ptilq

+´1# ni
ÿ

l“1

Zptilqhijptilq

+

« Θ1
jζij,

which is a factor model with response wij “ t
řni

l“1 ZptilqZ
1ptilqu´1t

řni

l“1 Zptilqhijptilqu, fac-

tor ζij and loading Θj. Denote Wj “ pw1j, ¨ ¨ ¨ ,wnjq
1 P Rnˆω and ζrjs “ pζ1j, ¨ ¨ ¨ , ζnjq

1 P

RnˆK , we hence update pζrjs,Θjq by

pζ
pr`1q

rjs
,Θ

pr`1q

j q “ argmin
ζrjs,Θj

›

›

›
W

pr`1q

j ´ ζrjsΘj

›

›

›

2

F
,

with } ¨ }F being the Frobenius-norm of a matrix, where W
pr`1q

j is Wj with hiptq replaced

by h
pr`1q

i ptq. Following Bai and Ng (2013), which states that the factors can be estimated

by principal component analysis (PCA), then we update (ζrjs,Θj) by

Θ
pr`1q1

j “ ω1{2EeigenpW
pr`1q1

j W
pr`1q

j ;Kq, (13)

ζ
pr`1q

rjs
“ ω´1{2W

pr`1q

j ˆ EeigenpW
pr`1q1

j W
pr`1q

j ;Kq. (14)

Finally, we update ϕjkptq by ϕpr`1q

jk ptq “ Θ
pr`1q1

jk Zptq. Repeat the above steps for r “ 1, 2, ¨ ¨ ¨

till B,η and pΘj, ζrjsq pj “ 1, ¨ ¨ ¨ , qq converge.
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3.3 Determining the number of factors and eigenfunctions

Under factor model for high-dimensional data, the criteria based on the parallel analysis

(Hayton et al., 2004), penalized loss (Bai and Ng, 2002), eigenvalue ratio test (Lam and Yao,

2012) and adjusted eigenvalues thresholding (Fan et al., 2022) are proposed to estimate the

number of factors. Here, using the idea of parallel analysis (Hayton et al., 2004), we select

q by comparing the eigenvalues of the observed data with those of random noise data. We

firstly calculate the eigenvalues of the observed data as

λX,j “ λj

#

n´1
n
ÿ

i“1

n´1
i

ni
ÿ

l“1

XiptilqX
1
iptilq

+

,

where λjpAq is the j-th eigenvalue of the matrix (or covariance function) A. Then, we

calculate the variance as varpXq “ pnpq´1
řn

i“1

řp
j“1 n

´1
i

řni

l“1X
2
ijptilq, and randomly gen-

erate rXijptilq „ Np0, varpXqq pi “ 1, ¨ ¨ ¨ , n; j “ 1, ¨ ¨ ¨ , p; l “ 1, ¨ ¨ ¨ , niq. We calculate the

eigenvalues of the random nosie data as

λ
rX,j “ λj

#

n´1
n
ÿ

i“1

n´1
i

ni
ÿ

l“1

rXiptilqrX
1
iptilq

+

.

We repeat this process 50 times and take the average of λ
rX,j across all repetitions as λ̄

rX,j

for each j “ 1, ¨ ¨ ¨ , p. Finally, we determine the number of factors q as

q “ maxtj : λX,j ą λ̄
rX,j, j “ 1, ¨ ¨ ¨ , pu. (15)

We use the similar method to select K. For each j “ 1, ¨ ¨ ¨ , q, we firstly calculate the

k-th eigenvalue of the covariance function of hp0q

ij ptq as λhj ,k “ λktΣhj
ps, tqu, where Σhj

ps, tq

is calculated by Yao et al. (2005) and h
p0q

ij ptq is calculated by (10). Then we calculate the

variance as varphjq “ pnqq´1
řn

i“1 n
´1
i

řni

l“1 h
p0q2
ij ptilq and randomly generate rhijptilq „ Np0,

varphjqq pi “ 1, ¨ ¨ ¨ , n; l “ 1, ¨ ¨ ¨ , niq. We calculate the k-th eigenvalue of noise data as

λ
rhj ,k

“ λktΣ
rhj

ps, tqu, repeat this process 50 times and take the average of λ
rhj ,k

across all
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repetitions as λ̄
rhj ,k

for each k. Finally, we determine the number of eigenfunctions K as

K “ max
j“1,¨¨¨ ,q

Kj, (16)

where Kj “ maxtk : λhj ,k ą λ̄
rhj ,k

u.

4 Analysis of the atrophy of ROIs on MMSE outcomes

with the ADNI data

In this section, we identify and evaluate the ROIs that are associated with cognitive de-

cline by analyzing the ADNI data. There are two challenges in modeling the consid-

ered ADNI data. The first is the curse of dimensionality in analyzing ROI atrophy’s

impact on MMSE outcomes. We collect 95 ROI curves, resulting in high-dimensional

functional data. Figure 1 (left) displays heat map of the covariance matrix calculated as

n´1
řn

i“1 n
´1
i

řni

l“1 XiptilqX
1
iptilq, where til P r0, 1s is the quantile. The heat map reveals

high correlations among different ROIs, highlighting the second challenge of incorporating

this correlation when modeling the volume curves. Motivated by the two problems, we plot

the first 15 eigenvalues of n´1
řn

i“1 n
´1
i

řni

l“1 XiptilqX
1
iptilq in Figure 1 (right). It indicates

that the considered data show an obvious low-rank structure, suggesting that SF-FPCA

can be used for the analysis.

To evaluate the fitting performance of volume curves between SF-FPCA and other ex-

isting methods, we perform unsupervised learning by applying SF-FPCA, FM-HD, DPCA,

sFPCA-HD, uFPCA-HD, FPCA-ST, pFPCA, and DIVE. All methods are applied to model

volume curves without considering age, gender, and MMSE score. We randomly divide the

data into a 50% training set and a 50% test set. This random splitting process is re-

peated 200 times to ensure robustness. Then we consider the normalized prediction error

PE“
ř

i,j n
´1
i

řni

l“1t
pXijptilq ´ Xijptilqu2{

ř

i,j n
´1
i

řni

l“1X
2
ijptilq for the observations Xijptilq

16



Figure 1: (a) The heat map of the matrix n´1
řn

i“1 n
´1
i

řni

l“1 XiptilqX
1
iptilq; (b) Red

solid line: The first 15 eigenvalues of the matrix n´1
řn

i“1 n
´1
i

řni

l“1 XiptilqX
1
iptilq in the

ADNI analysis; Blue solid line: The average of the first 15 eigenvalues of the matrix
n´1

řn
i“1 n

´1
i

řni

l“1
rXiptilqrX

1
iptilq; Black dashed line: x-axis.

in the testing set, which is independent of the training data but has the same distribution

as the training data. By Figure 1, based on the criteria in Section 3.3, we select q “ 3

and K “ 2 for SF-FPCA. For other competitive methods, we use grid search to select

parameters and display their corresponding optimal results. In Table 1, we present the

PEs of volume curves of SF-FPCA and other methods. The results show that SF-FPCA

achieves the highest prediction accuracy.

Furthermore, since the proposed SF-FPCA is used to address three challenges: intrin-

sic dependence, spatial dependence, and spatial distinctions, which are expressed by factor

model with simple loading B, smoothing loading f and piecewise structure on loading,

respectively. To demonstrate the necessity of the new framework, we compare the pre-

diction accuracy for volume curves of four methods: factor model with simple loading B

and f “ 0, factor model with smoothing loading f and B “ 0, factor model with both

simple and smoothing loading B ` f and then the proposed factor model with piecewise

smoothness for B ` f , termed by SF-FPCAB, SF-FPCAf , SF-FPCAB`f and SF-FPCA,

respectively. Here, SF-FPCAB, SF-FPCAf , and SF-FPCAB`f are derived by applying

the proposed algorithm for SF-FPCA with either B or f set to zero or by removing the

piecewise constant regularization on B. The prediction accuracy for volume curves of these

four methods is shown in Table 1. The results show that our proposed SF-FPCA, simul-
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taneously considering intrinsic dependence, spatial dependence, and spatial distinctions,

demonstrates the highest prediction accuracy for volume curves.

Table 1: PEs and the corresponding standard deviations (reported in parentheses) of the
volume curves in ADNI data.

SF-FPCA SF-FPCAB SF-FPCAf SF-FPCAB`f

PE 0.0662(0.0011) 0.0707(0.0012) 0.0698(0.0010) 0.0697(0.0011)

FPCA-ST pFPCA DIVE FM-HD

PE 0.0958(0.0017) 0.0772(0.0008) 0.2914(0.0021) 0.0716(0.0007)

uFPCA-HD sFPCA-HD DPCA

PE 0.1074(0.0009) 0.2184(0.0030) 0.1093(0.0015)

Next, we assess the impact of ROI volumes on MMSE scores. Initially, we compare

the fitting performances of volume curves and scalar volumes on MMSE predictions. Each

MMSE regression model includes age and gender (male=1, female=0) as additional co-

variates. The estimated scores pζ from SF-FPCA serve as covariates for linear regression

(Fun-LR), while scalar volumes are directly utilized for ridge regression (Vol-RR). Fur-

thermore, we explore dimensionality reduction of scalar volumes using a classical factor

model, employing the extracted factors as covariates for linear and ridge regressions. For

the scalar volume factor model, we consider scenarios with 2, 10, and 20 factors, denoted

by Vol-F2-LR, Vol-F10-LR, and Vol-F20-LR, respectively. Additionally, for 20 factors, we

also incorporate ridge regression, indicated by Vol-F20-RR. We split the data into 50%

training and 50% test sets, and tune the parameters of all ridge regressions using 10-fold

cross-validation. The results depicted in Figure 2 reveal that using scores extracted from

SF-FPCA as covariates yields superior predictive accuracy compared to models utilizing

scalar volumes, whether directly or via factorization. This finding underscores the advan-

tage of employing volume curves over scalar volumes.

Additionally, we evaluate the MMSE prediction accuracy for SF-FPCA and other com-

peting methods, including commonly used functional regression models such as 3D func-
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Figure 2: PEs of the regression models based on scores from SF-FPCA, scalar volumes,
and the factors from scalar volumes, respectively. Fun-LR is the linear regression using
scores from SF-FPCA as covariates; Vol-RR is the linear regression directly using scalar
volumes; Vol-F2-LR, Vol-F10-LR, and Vol-F20-LR are the linear regressions using latent
factors from scalar volumes with the number of factors being 2, 10, and 20; Vol-F20-RR
is the ridge regression using latent factors from scalar volumes with the number of factors
being 20.

tional regression (FLR-3D, Wang et al. 2014), functional linear regression and functional

additive regression (FLR and FAR, Fan et al. 2015), and the functional single-index model

(FSIM, Jiang et al. 2020). We also compare with linear regression models for MMSE us-

ing features extracted from uFPCA-HD, FM-HD, DPCA, sFPCA, FPCA-ST, pFPCA and

DIVE, respectively, incorporating age and gender as covariates. For the methods FLR-3D,

FLR, FAR and FSIM, we also include age and gender as linear terms in the model. As indi-

cated in Table 2, our proposed SF-FPCA, utilizing scores extracted from the volume curves,

demonstrates the highest prediction accuracy for MMSE. Combining the results from Table

1 on the prediction accuracy of the volume curves, we conclude that SF-FPCA effectively

captures the complex relationships within the volume curves across different ROIs and

retains sufficient information, thereby enhancing the predictive accuracy for MMSE.

SF-FPCA is designed to address several important aspects of high-dimensional func-

tional data. Firstly, by employing the FPCA framework, SF-FPCA takes into account the

dependence over time by capturing the temporal patterns and variations in the functional
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Table 2: PEs and the corresponding standard deviations (reported in parentheses) of
MMSE in ADNI data.

SF-FPCA FPCA-ST pFPCA DIVE

PE 0.5340(0.0521) 0.5798(0.0448) 0.5850(0.0458) 0.6083(0.0417)

FM-HD uFPCA-HD sFPCA-HD DPCA

PE 0.8470(0.1279) 0.5844(0.0468) 0.6346(0.0509) 1.3893(0.2357)

FLR-3D FLR FAR FSIM

PE 0.5639(0.0562) 0.6369(0.1045) 0.6364(0.1042) 0.5629(0.0578)

data. Secondly, SF-FPCA considers the inter-variable correlation among functional vari-

ables by a factor model structure. Additionally, SF-FPCA recognizes that the variation

of measured values with respect to spatial coordinates, which may simultaneously capture

spatial correlation and differences between different pieces.

We provide a detailed explanation of the analysis steps based on SF-FPCA and present

our findings. In the analysis, if bj “ bj1 , then we let ROIs j and j1 belong to the same piece.

Based on this approach, 89 ROIs are divided into three pieces of sizes 26, 29, and 34. In

addition, 2 ROIs are grouped into one set, while the remaining 4 ROIs are each assigned to

a unique piece. The detailed results are presented in Table S5 in Supplementary Material

F. To visualize the locations of these different pieces, we also plot Figure 3. We use blue to

mark the ROIs in the right hemisphere and red for the ROIs in the left hemisphere. This

figure provides a spatial representation of the ROIs, allowing for a better understanding of

their anatomical positions within the brain. Here are our findings:

• In piece 1, the main ROIs include cerebellar vermal lobules (ROI630, ROI631, ROI632),

ventricles (ROI4, ROI5, ROI14, ROI15, ROI43), caudate (ROI11, ROI50), lateral oc-

cipital (ROI1011, ROI2011), and anterior cingulate cortex (ROI1002, ROI2002, ROI2026).

These parts are predominantly located in the middle, deep, and posterior regions of

the brain, as depicted in Figure 3 (a).

• Piece 2 mainly consists of lateral orbitofrontal (ROI1012, ROI2012), par opercularis
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precentral (ROI1018, ROI2018), pars triangularis (ROI1020, ROI2020), and precentral

gyrus (ROI1024, ROI2024). These regions are primarily located in the anterior part of

the cerebral cortex. According to Figure 3 (b), the remaining ROIs in piece 2 are

situated at the bottom of the cerebral cortex.

• Piece 3 covers the remaining majority of ROIs, primarily distributed in the upper

and lateral regions of the cerebral cortex, such as medial orbitofrontal (ROI1014), right

superior parietal (ROI2029), superior frontal (ROI1028, ROI2028), and some areas of the

right temporal lobe (ROI2009, ROI2030, ROI2034). In addition, piece 3 also includes

most parts of the hippocampus (ROI53, ROI1016, ROI2016). See Figure 3 (c) for a

spatial visualization of these ROIs.

• We observe that certain ROIs in the right hemisphere are outside these three groups,

as depicted in Figure 3 (d)-(h), whereas this pattern is not observed in the left hemi-

sphere. This discrepancy emphasizes the distinctions between the two hemispheres.

We plan to delve deeper into these differences in our subsequent research on cognitive

function.

• As illustrated in Figure 3 (d), the right medial orbitofrontal (ROI2014) and insula

(ROI2035) appear to be separate, yet they may share some similarities. Research

by Levens and Phelps (2010) suggests that the right insula and right orbitalfrontal

cortex are implicated in emotional interference resolution in working memory tasks.

Moreover, we observe that the right middle temporal (ROI2015), right pars orbitalis

(ROI2019), right posterior cingulate (ROI2023), and right transverse temporal (ROI2034)

exhibit distinct characteristics compared to other regions in Figure 3 (e)-(h), re-

spectively. These differences warrant further investigation through detailed medical

analysis.

Our analysis primarily investigates the impact of ROI volumes on cognitive func-
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(a) Piece 1 (b) Piece 2 (c) Piece 3 (d) Piece 4

(e) Piece 5 (f) Piece 6 (g) Piece 7 (h) Piece 8

Figure 3: The locations of the ROIs in 8 pieces in the brain (ROIs in the left hemisphere are
marked in red and in the right are marked in blue). (a): Piece 1: ROIs primarily located in
the middle, deep, and posterior regions of the brain; (b): Piece 2: ROIs primarily located in
the anterior part and bottom of the cerebral cortex; (c): Piece 3: ROIs primarily located in
the upper and lateral regions of the cerebral cortex; (d): Piece 4: right medial orbitofrontal
and insula; (e): Piece 5: right posterior cingulate; (f): Piece 6: right transverse temporal;
(g): Piece 7: right pars orbitalis; (h): Piece 8: right middle temporal.

tions. Denote the regression coefficients corresponding to ζ by β “ pβ1, ¨ ¨ ¨ , β6q1, and

ζ 1β represents the measurement of the effect of ROIs on MMSE. Following the trans-

formation outlined in Supplementary Material E, we obtain ζ 1β “
∫
αptq1Xptqdt, where

αptq “ tα1ptq, ¨ ¨ ¨ , αpptqu1 “ pB ` fqtpB ` fq1pB ` fqu´1Φ1ptqβ is the regression coefficient

function of Xptq and can be used to elucidate the impact of the estimated eigen components

on MMSE. The varying sign of αjptq over t P r0, 1s suggests that Xjp¨q may have a positive

effect in some regions and a negative effect in others, making it challenging to assess the

overall impact of Xjp¨q. Therefore, in this paper,we consider the atrophy of ROI j to be a

influential risk factor for AD if the pointwise confidence interval of αjp¨q does not envelop

the x-axis, which indicates αjp¨q ą 0 or αjp¨q ă 0. Based on the estimates of αp¨q, we

identify 36 ROIs associated with cognitive functions and all the effects are positive, which

strongly implies the positive correlation between ROI atrophy and MMSE decline. Among
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the 36 ROIs, 21 are situated in the left hemisphere, 12 in the right hemisphere, and the

remaining 3 ROIs are the brain stem, cerebellar vermal lobules I-V, and VI-VII.

For each ROI that has an impact on AD, we plot its mean curve and pointwise confi-

dence bands based on 200 boostrap sampling, leading to the following observations. Figure

4 (a) illustrate that left hippocampal atrophy (ROI17) correlates with cognitive decline. As

discussed in Section 1, hippocampal volume is one of the most established biomarkers for

AD (Foundas et al., 1997; Antoniano-Villalobos et al., 2014). While the right hippocam-

pus is not significant. The results consistent with recent findings (Scheltens et al., 2021)

suggesting more severe atrophy of the left hippocampus in AD patients compared to the

right. Additionally, we find that atrophy of the parahippocampal gyrus (ROI1016, ROI2016)

is associated with cognitive decline, as shown in Figures 4(b) and 4(c), aligning with pre-

vious studies (van Hoesen et al., 2010). The left and right parahippocampal gyrus exhibit

similar mechanisms, with the left having a greater impact than the right, as depicted in

Figure 4(d).

(a) left hippocampus (b) left parahippocampal (c) right parahippocampal (d) left and right parahip-

pocampal

Figure 4: (a) Functional regression coefficient estimates and confidences bands of left hip-
pocampus; (b) and (c): Functional regression coefficient estimates and confidences bands
of left and right parahippocampal gyrus; (d): Comparison of the estimates of left and right
parahippocampal gyrus (left in red and right in blue) .

It appears that Figures 4(b) - 4(d) suggest a similar impact of left and right brain

atrophy on MMSE. However, among the 36 ROIs, aside from the parahippocampal gyrus,

we only identify four additional brain regions where the impact of the left and right parts
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on MMSE is similar, as depicted in Figures 5. These regions include the putamen (ROI12,

ROI51), basal forebrain (ROI91, ROI92), pallidum (ROI13, ROI52), and cerebellum exterior

(ROI6, ROI45). The effect of atrophy in the basal forebrain on cognitive function has

been studied in Hall et al. (2008), while de Jong et al. (2008) investigated the influence

of putamen and pallidum atrophy on cognitive decline. The regression results in de Jong

et al. (2008) suggested that the effect of left putamen is larger than that of the right.

However, there are few relevant studies on the cerebellum exterior. Even among regions

with similar mechanisms, there is no clear distinction in the impact between the left and

right hemispheres. The results in Figures 4(d) and 5 show that three pairs of ROIs exhibit a

greater impact in the left hemisphere, one pair shows a higher impact in the left hemisphere

only at high quantiles, and one pair shows a greater impact in the right hemisphere. Apart

from these five pairs of ROIs, the trends of the coefficient functions at the same locations

in the left and right hemispheres are even different. These observations indicate differences

in the impact of the left and right hemispheres on cognitive function.

(a) putamen (b) basal forebrain (c) pallidum (d) cerebellum exterior

Figure 5: Comparison of the estimates of the pairwise ROI in the left (red) and right (blue):
(a): Putamen; (b): Basal forebrain; (c): Pallidum; (d): Cerebellum exterior.

Furthermore, Figure S3(a) in Supplementary Material F suggests that left middle tem-

poral (ROI1015) atrophy induces cognitive decline, consistent with findings by Fruijtier et al.

(2019) who pointed out that medial temporal lobe atrophy is one of the three best-validated

neuroimaging biomarkers for AD. We further identify more detailed ROIs that affect cogni-
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tive functions in the temporal lobe, such as left transverse temporal (ROI1034), right inferior

temporal (ROI2009), and right fusiform gyrus (ROI2007) atrophy, all shown to induce cog-

nitive decline in Figures S3(b)-S3(d), consistent with findings by Yang et al. (2019). We

also find differences in the impacts of cognitive decline between the left and right temporal

lobes. Additionally, we identify numerous ROIs in the frontal lobe that have an effect on

MMSE, such as left lateral orbitofrontal (ROI1012), which has been well-studied in Rizvi

et al. (2021). There is relatively little research on left pars opercularis (ROI1018) and left

pars triangularis (ROI1020) atrophy for AD. The related results are shown in Figures S4 in

Supplementary Material F.

We investigate the effects of cerebellar atrophy on cognitive function, including cere-

bellum exterior (ROI6, ROI45), putamen (ROI12, ROI51), left ventral diencephalon (DC,

ROI28), and cerebellar vermal lobules I-VII (ROI630, ROI631) in Figures S5 in Supplemen-

tary Material F. There has been increasing attention on the association between cerebellar

atrophy and AD, such as de Jong et al. (2008) for putamen. Unlike the temporal and

frontal lobes, our findings indicate that left and right cerebellum may exert similar influ-

ences on cognitive function, particularly in cerebellum exterior and putamen. Furthermore,

we find that the atrophy in different locations of the cerebellar vermal lobules has varying

impacts on cognitive decline. Toniolo et al. (2018) found that the mechanisms of damage

in different locations of cerebellar vermal lobules vary from the early to late clinical stages

of AD. Our results show that the impact mechanisms on MMSE are completely different

between lobules I-V and VI-VII, and lobules VIII-X may not have any impact at all.

We show another 13 ROIs in Figures S6 in Supplementary Material F, some of which

are located in the parietal lobe (ROI1008, ROI1025, ROI2029) and cingulate gyrus (ROI1010,

ROI1023, ROI2023). Among these 13 ROIs, 7 have been well studied in existing literature,

such as Ji et al. (2021) for brain stem (ROI16), and Jacobs et al. (2011) for the parietal lobe.

We find in Figures S6(j) and S6(k) that the exacerbation of cognitive decline is associated
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with atrophy in pairs of posterior cingulate (ROI1023, ROI2023). We also observe significant

differences in the impact mechanisms between the left and right hemisphere at the pairwise

ROIs. Furthermore, we identify other 6 ROIs that are relevant to cognitive decline and

are rarely or never studied, which are left thalamus proper (ROI10), left accumbens area

(ROI26), left precentral (ROI1024), left insula (ROI1035), right cuneus (ROI2005) and right

paracentral (ROI2017). Most of them are located in the left hemisphere.

5 Numerical Studies

In this section, we conduct simulations to assess the prediction accuracy for Xp¨q of the

proposed method (SF-FPCA) by comparing it with state-of-the-art methods, including

uFPCA-HD, FM-HD, DPCA, and sFPCA-HD for high-dimensional functional data, and

FPCA-ST, pFPCA, and DIVE for spatially correlated high-dimensional functional data.

We also evaluate the prediction accuracy for Y by comparing these methods with functional

regression approaches, such as FLR-3D, FLR, FAR, and FSIM. Additionally, we provide

supplementary simulation results related to the performance of SF-FPCA in Supplementary

Materials D, which includes estimation consistency, selection of the number of factors and

eigenfunctions, and computational costs.

The performance of the estimator is evaluated via the PE of the high-dimensional

funticonal data Xp¨q and response Y for the observations in the testing set, which is inde-

pendent of the training data but has the same distribution and size as the training data.

The PE is calculated based on 200 repetitions. To compare the prediction accuracy of

high-dimensional functional data, we consider three scenarios of Xp¨q.

Scenario X1: To be fair for comparison, we generate data not adhering to any model

considered in the paper. For each j “ 1, ¨ ¨ ¨ , p, we generate each dimension of the 3D

coordinates sj “ psj1, sj2, sj3q
1 from Up0, 1q. Following similar settings in Hyun et al.
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(2016) and Chen et al. (2017), we generate data from the following model:

Xijptq “

3
ÿ

k“1

χ1,kψkpsj, tq `

4
ÿ

l“1

4
ÿ

k“1

χ2,lkϕ1,lpsjqϕ2,kptq ` εijptq,

where χ1,k „ Np0, k2`3q; ψ1psj, tq “
?
2{45 sintπpsj1`sj2`sj3q{15u cospπt{18q, ψ2psj, tq “

?
2{45 costπpsj1`sj2`sj3q{15u cospπt{18q, ψ3psj, tq “ 1{p30

?
3q cospπt{12q; χ2,lk „ Np0,

a

p17 ´ lkq{4q;

ϕ1,lpsq “ sinp2lπ}s}2{3q{10 if l is odd and cosp2lπ}s}2{3q{10 if l is even; ϕ2,kptq “
?
2 sinp2kπtq

if k is odd and
?
2 cosp2kπtq if k is even; and εijptq „ Np0, 0.2q. We set pn, pq “ p200, 100q.

For each individual, 20 observation time points are randomly sampled from Up0, 1q.

Scenario X2: We generate data from the estimated SF-FPCA model for analyzing the

ADNI data, where ni “ 101, n “ 803 and p “ 95. The sj represents the 3D coordinates

of the center for ROI j. We take q “ 3 and K “ 2 that selected in Section 4. Denote

pB, pη, pΘ, pζi as the resulting estimators of SF-FPCA based on the ADNI analysis, then

we generate data as Xiptq “ pB ` fqΦ1ptqζi ` uiptq, where B is generated based on the

grouping structure of ROIs, f and Φptq are generated by adding random noise to pf and

pΦptq respectively, ζi “ pζi and uijptq „ Np0, 0.01q. Particularly, bj “ p1,´1, 1q1 if ROI j

belongs to pieces 1 or 4-8, bj “ p0, 0, 0q1 if ROI j belongs to piece 2, and bj “ p5, 5,´5q1 if

it belongs to piece 3; fjpsq “ η1
jMpsq with ηj “ pηj `Np0, 0.01Iτ q; and ϕjk “ Θ1

jkZptq with

Θjk “ pΘ1
jk ` Np0, 0.03Imq.

Scenario X3: We compare the proposed SF-FPCA method with other competing

methods using the original density curves only in the ADNI3 study without undergoing the

log quantile density transformation. Particularly, Xijptq represents the density of volume t

at ROI j for individual i, n “ 380, p “ 95, and sj still denotes the 3D coordinates for the

center of ROI j.

Table 3 presents the PEs of SF-FPCA, FM-HD, DPCA, sFPCA-HD, uPFCA-HD,

FPCA-ST, pFPCA, and DIVE with their corresponding optimal tuning parameters in

Scenarios X1-X3. By leveraging both factor structure and spatial information, our pro-

27



posed SF-FPCA consistently outperforms across all scenarios. In addition, we also note

that FM-HD typically performs well due to its utilization of the factor structure. Incor-

porating spatial information, methods such as FPCA-ST, pFPCA, and DIVE demonstrate

superior performance compared to sFPCA-HD and DPCA across most scenarios.

Combining the findings from Scenario X3 with those illustrated in Table 1 from Section

4, SF-FPCA achieves the highest prediction accuracy utilizing both original density curves

and its transformed curves. This indicates that the features extracted by SF-FPCA can

comprehensively represent the ROI information.

Table 3: The PEs of Xp¨q of all the mentioned methods in Scenario X1-X3.

Scenario X1 Scenario X2 Scenario X3

SF-FPCA 0.4131(0.0068) 0.1669(0.0037) 0.0865(0.0037)

FPCA-ST 0.5471(0.0092) 0.3057(0.0009) 0.1487(0.0032)

pFPCA 0.4845(0.0088) 0.2001(0.0011) 0.1372(0.0026)

DIVE 0.6220(0.0034) 0.3072(0.0023) 0.6116(0.0024)

FM-HD 0.4271(0.0073) 0.2285(0.0010) 0.1188(0.0020)

uFPCA-HD 0.4838(0.0070) 0.2085(0.0012) 0.1781(0.0034)

sFPCA-HD 0.7561(0.0048) 0.6582(0.0016) 0.5023(0.0048)

DPCA 0.7652(0.0038) 0.5646(0.0009) 0.1848(0.0035)

Furthermore, to facilitate comparison with all competing methods, we further add the

response variable Y for each setting. Particularly,

Scenario Y1: The predictor functions Xip¨q are generated under Scenario X1, and the

response Yi is modeled by the following nonlinear functional regression:

Yi “

p´1
ÿ

j“1

∫
tsinptq ` cosptquXijptqXi,j`1ptq dt `

p
ÿ

j“1

∫
sinptqXijptq dt

`

p
ÿ

j“1

∫
cosptqsigntX2

ijptquX2
ijptq dt `

p
ÿ

j“1

∫
cosptqX3

ijptq dt ` εi,

where signpaq is the sign of a and εi „ Np0, 2q.

Scenario Y2: The generation of Xip¨q follows Scenario X2, while Yi is modeled using
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the functional linear regression model:

Yi “

p
ÿ

j“1

∫
sinp2πtqXijptq dt ` εi,

where εi „ Np0, 2q.

Scenario Y3: Xip¨q is identical to Scenario X3, which consists of the original density

curves only from the ADNI3 study without the log quantile density transformation, and Yi

represents the corresponding real MMSE.

As shown in Table 4, the linear regression model based on the extracted scores using

our proposed SF-FPCA achieves the highest prediction accuracy for Y across all scenarios.

Combining the results of predicting Xp¨q in Table 3, SF-FPCA captures the complex de-

pendencies among the high-dimensional functional data and retains sufficient information,

thereby enhancing the predictive accuracy for Y .

Table 4: The PEs of Y of all the mentioned methods in Scenario Y1-Y3.

Scenario Y1 Scenario Y2 Scenario Y3

SF-FPCA 0.4934(0.0987) 0.2539(0.0198) 0.8999(0.0811)

FLR-3D 0.5810(0.1559) 0.3803(0.0264) 0.9681(0.0738)

FLR 0.6043(0.0947) 0.4189(0.0192) 0.9747(0.0230)

FAR 0.6379(0.1107) 0.6316(0.0232) 1.0071(0.0227)

FSIM 0.5696(0.1937) 0.4330(0.0624) 1.0383(0.1980)

FPCA-ST 0.6177(0.1126) 0.2801(0.0217) 0.9419(0.0589)

pFPCA 0.5596(0.1075) 0.3076(0.0230) 0.9906(0.0323)

DIVE 0.5926(0.1911) 0.7667(0.0211) 1.0165(0.0278)

FM-HD 0.5854(0.1211) 0.3477(0.0343) 1.0877(0.1835)

uFPCA-HD 0.6036(0.1175) 0.3151(0.0234) 1.0085(0.0415)

sFPCA-HD 0.6642(0.1405) 0.7816(0.0261) 1.0869(0.1122)

DPCA 0.6195(0.1423) 0.5256(0.0623) 1.5102(0.3801)
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6 Discussion

We have utilized ROI volume changes to explore the intricate relationships between brain

atrophy and cognitive decline, aiming to provide a comprehensive understanding of brain

tissue alterations in AD. Instead of relying on scalar volumes, we employ volume density

curves of ROIs, which offer enhanced sensitivity to AD-related changes and lead to improved

prediction of cognitive function.

Given the complex interplay among high-dimensional ROI volume curves and their

spatial relationships, we develop a computationally efficient model called SF-FPCA. SF-

FPCA effectively captures correlations among functional variables using factor processes,

while applying FPCA to these factor processes enables us to address temporal dependence

and extract low-dimensional features. Importantly, SF-FPCA fully incorporates the high

spatial correlation and piecewise smooth characteristics among various ROIs, resulting in

superior fitting accuracy compared to existing competing methods.

Using the features extracted from SF-FPCA, we identify 36 ROIs associated with cog-

nitive decline, shedding light on several ROIs that have received limited or no research

attention in previous studies. Furthermore, we delve into the impact of cerebellar atro-

phy on cognitive decline and uncover differences in mechanisms between the left and right

hemispheres. This comprehensive analysis contributes to a deeper understanding of the in-

tricate relationship between brain structure alterations and cognitive decline in AD. ADNI

patients are primarily from North America, rather than being representative of a global

population. As a result, some of our new findings, particularly those that are less studied,

may apply only to this dataset. Evaluating the transferability of our findings by applying

the proposed method to other datasets with different populations, such as the UK Biobank,

would be valuable.

In our study, we utilize SF-FPCA to extract information from ROI volume curves and
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integrate age and gender as predictors within a linear regression framework to forecast

cognitive function. However, there are several avenues for further research that could build

upon our work.

Firstly, future studies could extend the linear SF-FPCA approach to a generalized

framework that accommodates nonlinear relationships. By capturing more complex rela-

tionships between ROI volume curves and latent processes, we may enhance feature extrac-

tion and improve predictive performance. Nonetheless, exploring the computational and

theoretical feasibility of such a nonlinear framework would require further investigation.

Secondly, there is potential to enhance AD analysis by incorporating additional infor-

mation and employing more sophisticated modeling techniques. For instance, integrating

neural networks to fuse MRI data, biomarkers, and volumetric measurement curves could

provide a comprehensive approach to extract information for predicting cognitive function

more accurately. However, explaining the impact of different types of data on cognitive

function within complex models may pose challenges.
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