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Preface

Survival analysis plays a pivotal role in statistical modeling, particularly in medical, biological,

and reliability studies where time-to-event data is fundamental. Over the past few decades, the

development of rigorous mathematical frameworks, such as counting processes and martingales,

has significantly advanced the field. This note, based on several lectures delivered as part of the

Michigan Biostatistics survival analysis class, provides a comprehensive yet accessible treatment of

survival analysis through the lens of modern statistical methodology, focusing on counting processes

and their applications to survival models.

Unlike many existing books on survival analysis, this note takes a deeper dive into the un-

derlying stochastic structures that govern survival data. By leveraging counting processes and

martingale theory, we provide a robust theoretical foundation for a various topics, such as nonpara-

metric estimation and comparison of survival functions, Cox models, and competing risk processes.

A distinguishing feature of this note is its balance between theoretical rigor and practical implemen-

tation. While theoretical derivations are presented in a detailed and structured manner, the note

also incorporates applied examples, demonstrating how these advanced methods can be utilized in

real-world scenarios. Additionally, it connects classical techniques with their modern extensions,

bridging the gap between foundational concepts and cutting-edge applications. By equipping read-

ers with the tools necessary to analyze and interpret survival data within a rigorous stochastic

framework, the note aims to foster a more profound appreciation of the mathematical principles

that underpin survival analysis.

This note is intended for graduate students, researchers, and practitioners who seek a deeper

understanding of survival analysis. A working knowledge of probability theory and statistical infer-

ence will be beneficial, though essential concepts are introduced as needed. While measure theory

can enhance understanding, this note does not assume prior knowledge of it. I have intentionally

refrained from introducing the definitions of σ-algebras and conditional expectations with respect to

σ-algebras. Those interested in these topics can refer to a separate note I wrote while teaching mea-

sure theory in Harvard Biostatistics https://public.websites.umich.edu/~yili/yinote.pdf.

Additionally, I have tried to keep technicalities to a minimum to prevent confusion with complex

concepts, and to make the material self-contained. The list of references has been kept brief, with a

more comprehensive compilation to be provided at a later stage. I welcome feedback and discussions

from readers.
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1 Stochastic Processes

We consider (Ω,F , P ), a probability space, where Ω is the sample space containing all the possible

outcomes (each element of Ω is called a sample point), F is a collection of subsets of Ω (called a

σ-algebra) so that each element of F is an event, and P measures the probability of each event.

In the context of stochastic processes, we introduce {Ft}t≥0 as a time-indexed filtration, meaning

a non-decreasing family of sub-σ-algebras of F . That is, Ft is a σ-algebra containing history up

to time t, i.e., the collection of all the information up to t, such that information increases over

time, or Fs ⊆ Ft ⊂ F if s ≤ t; see a graphical illustration in Figure 1. The definition of a filtration

generated by a series of events can be found in Chung (1974) and Fleming & Harrington (2013).

Time 0 Time 1 Time 2 Time 3 Time 4

Start Event A Event B Event C Event D

0 1 2 3 4 5
Time

 

Figure 1: Illustration of a filtration: the progression of information over time, with accumulated
information shaded in blue and future information shaded in gray. The red line at t = 2 marks the
current time.

A stochastic process {X(t, ω)}t≥0 is a collection of random variables indexed by time t, defined

on a (Ω,F , P ), where ω ∈ Ω represents a sample point in the sample space. The process is

essentially a bivariate map from the time domain and the sample space to a subset of the real line.

The evolution of the process over time is governed by a specified probability law.

A stochastic process {X(t, ω)}t≥0 is said to be adapted to a filtration {Ft}t≥0 if, for each t,

the random variable X(t, ω) is Ft-measurable. This means that for any b < ∞, the event

{ω : X(t, ω) < b} ∈ Ft, ∀t ≥ 0.

Intuitively, this implies that at any time t, the value of X(t, ω) is completely determined by the

information contained in Ft. Given a specific ω, the function X(t, ω) as a function of t is called the

sample path or realization of the stochastic process. Figure 4 shows 5 sample paths of a stochastic

process (more specifically, Brownian Motion) corresponding to 5 different ω’s. For notational

convenience, we often drop ω and write X(t) instead of X(t, ω). Even with this simplification, it is

important to keep in mind that the randomness of the process is induced by ω. When the context

is clear, we may use X(t) to refer to the entire process {X(t)}t≥0, though Wikipedia recommends

against it.
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Finally, in contexts involving multiple subjects, we may introduce subscripts, such as Fi,t and

Xi(t), to denote individual-specific filtrations and processes for a particular subject i.

1.1 Counting processes in the survival context

Building on the defined probability spaces and filtrations, we turn to an application of stochastic

processes in survival analysis. All the random variables introduced below are defined in a common

probability space (Ω,F , P ). As a special case of stochastic processes, we define counting processes

in a survival context with a homogeneous population consisting of n independent subjects indexed

by i = 1, 2, . . . , n. For each subject, define the following random variables on (Ω,F , P ):

• Ti : Ω → [0,∞) denotes the true underlying continuous survival time for subject i.

• Ci : Ω → [0,∞) represents the potential continuous censoring time for subject i, assumed to

be independent of Ti.

Our primary interest is in the distribution of Ti. However, since Ti is subject to right censoring,

we do not observe Ti directly. Instead, we observe

Xi = min(Ti, Ci)
def
= Ti ∧ Ci,

which represents the observed survival time, along with the event indicator

∆i = I(Ti ≤ Ci),

where ∆i = 1 indicates that the event occurred, and ∆i = 0 indicates that the observation was

censored. Here, I(·) denotes the indicator function. We aim to use the observed data, based on

some conditions, to estimate the distributions of Ti’s.

Assume that the Ti’s are independently and identically distributed (i.i.d.). For any t > 0, define

the hazard function to be

λ(t) = lim
dt→0+

1

dt
P (t ≤ Ti < t+ dt | Ti ≥ t),

which is the instantaneous failure rate, given survival up to t. Also, define the cumulative hazard

function

Λ(t) =

∫ t

0
λ(s) ds,

which is of our main interest. It measures the total accumulated risk of an event occurring up to

time t and is directly linked to the survival function

S(t)
def
= P (Ti > t)

via S(t) = exp{−Λ(t)}, meaning that higher cumulative hazard values correspond to lower survival

probabilities. We assume that Λ(t) < ∞ for all t < ∞, implying that the survival time Ti is

unbounded. For simplicity, we also assume that the censoring times Ci, i = 1, . . . , n, are i.i.d. Based

on the observed i.i.d. data {(Xi,∆i)}ni=1, we can estimate Λ(t) via the Nelson-Aalen estimator.
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A key assumption ensuring the validity of the Nelson-Aalen estimator is independent censoring.

Unfortunately, based solely on the observed data {(Xi,∆i)}ni=1, this assumption is not statistically

testable (Tsiatis 2006); one must rely on subject matter knowledge to justify it. When censoring is

dependent, the Nelson-Aalen estimator may yield biased results. Survival analysis with dependent

censoring is still an actively research area; for various methods to address dependent censoring, see

Tsiatis (2006). Throughout this note, we assume independent censoring, as is commonly done in

the literature.

Moreover, instead of the traditional approach that directly works with random variables, we

utilize counting processes, which offer a more elegant, flexible, and theoretically robust framework

for survival analysis and event-time modeling. Their deep connection to martingales, stochastic

integrals, and intensity functions makes them a powerful tool for both theoretical and applied

research.

Definition 1.1. Define the at-risk process for subject i, Yi(t), as Yi(t) = I(Xi ≥ t), where I(·) is

the indicator function.

The at-risk process seamlessly integrates censoring mechanisms and keeps track of whether an

individual is still at risk of experiencing the event at time t; see Figure 2.

Definition 1.2. Define N∗
i (t) = I(Ti ≤ t), indicating whether death occurs prior to or at t.

This notion uses counting processes to conceptualize event occurrence. However, with censoring,

Ti is not always observable, thus one cannot directly analyze N∗
i (t). Instead, a counting process is

defined to handle censored observations, accounting for censoring in the process. In particular, we

introduce a modified counting process such that an event (e.g., death) is observed to occur only

when the individual is still at risk.

Definition 1.3. Define the observable increment as

dNi(s) = Yi(s)dN
∗
i (s), (1.1)

where dN∗
i (s) = N∗

i ((s+ ds)−)−N∗
i (s

−).

The inclusion of Yi(s) in (1.1) ensures that event counting is restricted to an individual who is

still at risk at time s. As N∗
i is right-continuous, it follows that N∗

i ((s+ ds)−) = N∗
i (s

+) = N∗
i (s),

which implies that dN∗
i (s) = N∗

i (s) − N∗
i (s

−), corresponding to the conventional definition of

an increment. However, more broadly, for a stochastic process X, we define the jump size at t

as X((t + dt)−) − X(t−) rather than X(t) − X(t−) to account for a subtle distinction discussed

immediately before Proposition 2.5.

Definition 1.4. Define the observable counting process Ni(t) by

Ni(t) =

∫ t

0
dNi(s) =

∫ t

0
Yi(s)dN

∗
i (s).

Here (and hereafter) the Stieltjes integral (Carter et al. 2000) of the type of
∫ t
u k(s)dNi(s),

where Ni is right continuous, is the sum of the values of k at the jump times of Ni(·) in the
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interval (u, t]; see Figure 2. Later on, we will also frequently use the notion of
∫ t
u k(s)dMi(s), where

Mi(s) = Ni(s)−
∫ s
0 Yi(u)dΛ(u) is a (local) martingale (defined later). Then,∫ t

u
k(s)dMi(s)

def
=

∫ t

u
k(s)dNi(s)−

∫ t

u
k(s)Yi(s)dΛ(s)

where the second integral is indeed a Stieltjes integral with respect to the deterministic process Λ(·),
inheriting well-defined properties from integrals of random processes with respect to nondecreasing

and deterministic functions.

Obviously, Ni(t) is the observable version of N∗
i (t). It can be shown that Ni(t) = I(Xi ≤ t,∆i =

1), indicating whether patient i is observed to die by time t, while dNi(s) is whether patient i is

observed to die at time s. In the following, we summarize the properties and interpretations for

Ni(t), dNi(t) and Yi(t).

Time t

Yi(t)

Xi

(a) Yi(t)

Time t

Ni(t)

Xi

(Δi = 1)

(b) Ni(t)

Figure 2: Example figures for Yi(t) and Ni(t).

1.2 Summary of counting processes and the important results

1. Yi(t) = Yi(t
−) = I(Xi ≥ t) is left continuous, flagging whether patient i is at risk at time t.

2.
∑n

i=1 Yi(t)
def
= Y (t) is also left continuous, counting the number of patients at risk at t among

these n patients.

3. Ni(t) = Ni(t
+) = I(Xi ≤ t,∆i = 1) is right continuous, flagging whether patient i is observed

to die at and before time t.

4.
∑n

i=1Ni(t)
def
= N(t) is right continuous, counting how many patients observed to die at and

before time t among the n patients.

5. dNi(t) = ∆i · I(Xi = t), indicating whether patient i is observed to die at time t.

6.
∑n

i=1 dNi(t)
def
= dN(t) denotes the number of patients die at time t among these n patients.

Looking ahead, we enumerate important results which will be detailed later. We first define the

expectation. Let G : Ω → R be a random variable defined on (Ω,F , P ). The expectation of G is

defined as E[G] =
∫
ΩG(ω) dP (ω). In particular, if G has a probability density function fG on R,

then E[G] =
∫
R x fG(x) dx.
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1. Define dMi(t) = dNi(t)− Yi(t)dΛ(t), where Mi(t) is a martingale process (defined later).

Then EdMi(t) = 0. So dMi(t) is like the residual term in regression models.

2. Cov(dMi(t), dMi(s)) = 0, s ̸= t.

3. EMi(t) = 0, where Mi(t) = Ni(t)−
∫ t

0
Yi(s)dΛ(s).

4. ENi(t) = EAi(t), where Ai(t) =

∫ t

0
Yi(s)dΛ(s) = Λ(t ∧Xi).

5. Var(Mi(t)) = EAi(t).

1.3 Nelson-Aalen estimator: representation and derivation via counting pro-
cesses

Given the data (Xi,∆i), i = 1, . . . , n, we extract a total of nd (≤ n) distinct observed failure time

points, t1 < t2 . . . < tnd
. Let Dj , Yj denote the number of observed deaths and subjects at risk at

tj respectively. The Nelson-Aalen estimator of the cumulative hazard can be expressed as

Λ̂(t) =
∑
tj≤t

Dj

Yj

which can be succinctly expressed in terms of counting process as well

Λ̂(t) =
∑
tj≤t

dN(tj)

Y (tj)
=

∫ t

0

dN(s)

Y (s)
.

This follows from the definition of the Stieltjes integral, noting that

Dj = dN(tj) and Yj = Y (tj),

with N(t) only exhibiting jumps at t1, t2, . . ..

We can also derive the Nelson-Aalen estimator (Aalen 1978) using the fact of EdMi(t) = 0; see

Section 1.2. Indeed, the first moment estimation gives

n∑
i=1

dMi(t) =

n∑
i=1

dNi(t)−
n∑

i=1

Yi(t)dΛ(t) = 0,

which gives

dΛ̂(t) =

∑n
i=1 dNi(t)∑n
i=1 Yi(t)

=
dN(t)

Y (t)
,

implying the Nelson-Aalen estimator of Λ(t) with 0 < t < ∞:

Λ̂(t) =

∫ t

0

dN(s)

Y (s)
. (1.2)
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The Nelson-Aalen estimator yields a right continuous step function; see Figure 3. In the following,

0 1 2 3 4 5 6 7 8
Time
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Figure 3: Example plot of the Nelson-Aalen estimator: the left-hand limits are marked using empty
green circles, while the cumulative hazard at event times is marked with solid red dots. The plot
shows right-continuous nature of the estimated function.

we will derive the variance of Λ̂(t) and other statistical properties of Λ̂(t), such as ubiasedness,

consistency and asymptotic normality, using the notion of counting processes and martingales.

We will first introduce the concept of a martingale, a modern probability tool that can signifi-

cantly simplify theoretical analysis. In stochastic processes, martingales represent systems with the

‘fair game’ property, where there is no net gain or loss on average over time. They model random-

ness in a way that future values depend only on the present and not the past history. We will show

that counting processes can be decomposed into a martingale component (capturing randomness)

and a predictable compensator component (representing deterministic trends). This decomposition,

as illustrated below, plays a crucial role in deriving estimators and testing hypotheses in survival

analysis.

2 Martingales and the Properties

We present the definition of martingales and their properties and discuss how to construct martin-

gales.

Definition 2.1 (Definition of Martingale). M(t) is a martingale with respect to Ft if

1. Adaptedness: M(t) is adapted to Ft. More precisely, we should say {M(t)}t≥0 is adapted or

measurable to a filtration {Ft}t≥0; we use measurable and adapted interchangeably later.

2. Integrability: E|M(t)| < ∞ for all 0 < t < ∞.

3. Martingale (‘fair game’) property: E
(
M(t)|Fs

)
= M(s) for any 0 ≤ s ≤ t, where the con-

ditional expectation with respect to a filtration is given in Chung (1974). Notationwise, here

and all “=” below should be interpreted as “=” holds almost surely.

Measurability with respect to a filtration ensures the process depends only on current and past

information, aligning with the flow of time. Integrability maintains mathematical consistency by
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avoiding infinite values. The martingale property, which is central to the definition of martingales,

reflects their ‘fair game’ nature, where future values, given present knowledge, are not systemati-

cally predictable. This property is critical for various applications, including stochastic processes,

financial (stock price) modeling, and survival analysis Also, whenever we mention a martingale,

the underlying filtration, e.g., Ft, should be specified, in which case we may say M(t) is an “Ft-

martingale.”

Property 1 (Properties of martingale). Let M(t) be a martingale with respect to Ft.

1. If M(0) = 0, then EM(t) = 0.

Proof. EM(t) = E(E{M(t)|F0}) = E(M(0)) = 0.

2. (uncorrelated increments under disjoint intervals) If 0 ≤ v ≤ u ≤ s ≤ t, then E
(
(M(t) −

M(s))(M(u)−M(v))
)
= 0. Also, E(dM(v)dM(s)) = 0 or Cov(dM(v), dM(s)) = 0 for v ̸= s.

Proof. This follows as E
(
(M(t)−M(s))(M(u)−M(v))

)
= E{E

(
(M(t)−M(s))(M(u)−M(v))

)
|Fs}.

Definition 2.2 (Predictable). X(t) is predictable with respect to Ft if X(t) is determined by Ft−,

i.e., a predictable process is one whose behavior at t is determined by the information over [0, t).

That is, for a predictable process X(t), if given Ft−, we know the exact value of X(t).

Example 2.3 (Example). A left continuous (and measurable) process is predictable. That is, if

X(t) = X(t−), X(t) is predictable.

Example 2.4. Yi(t) is predictable as it is left continuous. But Ni(t) is not predictable. This is

because, even with the survival information up to t but not including t, Ni(t) may or may not have

a jump at t so it is not predictable.

Define the jumpsize of M(t) at t as

dM(t) = M((t+ dt)−)−M(t−), (2.1)

i.e., the jumpsize of M(·) from t to t+dt. We use M((t+dt)−) instead of M(t+dt−) or M(t+dt) or

M(t) for a subtle reason. This way, we can write, aligning with the Itô stochastic integral (Øksendal

2003), that ∫ t

s
dM(u) =

∑
s<u≤t

dM(u) =
∑

s<u≤t

M((u+ du)−)−M(u−) = M(t)−M(s).

This facilitates the proof of the following important proposition for the infinitesimal characterization

of a martingale.

Proposition 2.5. Suppose M(t) is integrable and is determined by Ft, then M(t) is a martingale

if and only if

E
(
dM(t)|Ft−

)
= 0.
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Proof. “⇒:” If M(t) is a martingale, then it holds that

E
(
M((t+ dt)−)−M(t−) | Ft−

)
= M(t−)−M(t−) = 0.

Here, the first equality is by the definition of martingale and (t + dt)− ≥ t−. By the definition in

(2.1), we have that

E
(
dM(t)|Ft−

)
= E

(
M((t+ dt)−)−M(t−) | Ft−

)
= 0.

“⇐:” We need to show that E
(
M(t)|Fs

)
= M(s) for any s ≤ t. We have

E{M(t)|Fs} = E{M(s) +M(t)−M(s)|Fs}

= M(s) + E{
∫ t

s
dM(u)|Fs}

= M(s) +

∫ t

s

[
E(dM(u)|Fs)

]
= M(s) +

∫ t

s
E
{[
E(dM(u)|Fu−)

]∣∣Fs)
}

= M(s).

Here, as noted before,
∫ t
s dM(u) =

∑
s<u≤tM((u + du)−) − M(u−) = M(t) − M(s). Also, the

second equality is by that M(s) is measurable with respect to Fs, the third equality is by Fubini’s

Theorem and the fourth equality is by the iterated expectation theorem (Chung 1974):

E {E (G | Fs) | Ft} = E {E (G | Ft) | Fs} = E (G | Fs)

if Fs ⊂ Ft, where G denotes a generic random variable. The last equality comes from the condition

that E(dM(u)|Fu−) = 0.

Then, if M(t) is a martingale, immediately

E
(
dM(t)) = E(E

(
dM(t)|Ft−

)
) = 0.

This local characterization of martingales is valuable as it provides an explicit method for computing

the compensator of a right-continuous but non-predictable process, which we will utilize in our

subsequent development.

An example of a continuous Martingale is the Brownian motion (Mörters & Peres 2010), often

denoted as B(t), t ≥ 0, satisfying (i) B(0) = 0; (ii) Independent increments: The changes in B(t)

over non-overlapping time intervals are independent; (iii) Gaussian increments: For any 0 ≤ s < t,

the increment B(t) − B(s) ∼ N(0, t − s); (iv) Continuous paths: B(t) is continuous in t; (v)

Martingale property: E[B(t)|B(u), 0 ≤ u ≤ s] = B(s), for s ≤ t. Figure 4 shows sample paths of

a Brownian motion. Brownian motion has been widely applied across various fields: in physics, it

describes the movement of particles suspended in a fluid, as first observed by Robert Brown (Brown

1828); in finance, it serves as the foundation for modeling stock prices and option pricing within the

Black-Scholes framework (Black & Scholes 1973); in engineering, it is utilized for signal processing,
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noise modeling, and control systems (Franklin et al. 2023); and in biology, it helps explain the

random motion of molecules and cellular processes (Berg 2023).

0.0 0.2 0.4 0.6 0.8 1.0
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Zero Drift

Figure 4: Sample paths of a Brownian motion: the plot highlights the unpredictable nature of the
paths while maintaining no overall trend (zero drift); 5 sample paths are shown, with each being a
realized trajectory of the process over time.

Now we apply the martingale theory to the survival process. First, for subject i, define Fi,t =

σ{Ni(s), Yi(s), 0 ≤ s ≤ t} the σ-algebra generated by the events in the bracket. Basically, this is the

survival information for subject i up to (including) t; see a formal definition regarding a σ-algebra

generated by events in Chung (1974). We will show

Mi(t) = Ni(t)−
∫ t

0
Yi(s)dΛ(s)

is a martingale process with respect to Fi,t. Here, Ai(t)
def
=
∫ t
0 Yi(s)dΛ(s) is called the compensator

of Ni(t), i.e., the “predictable” part of Ni(t). While it is natural to think that many predictable

processes are left-continuous, not all predictable processes have this property. In fact, Ai(t) is right

continuous because Λ is right continuous by definition. On the other hand, if Λ has a discontinuity

at t, Ai(t) will not be left continuous at t. In this case, Ai(t) is still predictable. However, if Λ(t) is

continuous or even differentiable with a derivative λ(t) (as we will assume in the following), Ai(t)

is continuous everywhere and we can simply write Ai(t) =
∫ t
0 Yi(s)λ(s)ds.

Proposition 2.6. Assume Ti, Ci are independent and Ti is continuous. If P (Xi ≥ t) > 0, then

lim
dt→0+

1

dt
P (t ≤ Xi < t+ dt, ∆i = 1 | Xi ≥ t) = λ(t).

Proof. We consider

P (t ≤ Xi < t+ dt,∆i = 1 | Xi ≥ t) =
P (t ≤ Xi < t+ dt,∆i = 1)

P (Xi ≥ t)
,
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while expanding the numerator,

P (t ≤ Xi < t+ dt,∆i = 1) = P (t ≤ Ti < t+ dt, Ti ≤ Ci)

= P (t ≤ Ti < t+ dt)P (Ti ≤ Ci | Ti ∈ [t, t+ dt]).

Since Ti is continuous, its density function gives:

lim
dt→0+

1

dt
P (t ≤ Ti < t+ dt) = f(t).

Then we consider

P (Ti ≤ Ci | Ti ∈ [t, t+ dt))

=
P (Ti ≤ Ci, Ti ∈ [t, t+ dt))

P (Ti ∈ [t, t+ dt))

=

∫ t+dt
t f(s)P (Ci ≥ s)ds∫ t+dt

t f(s)ds
,

where the last equality comes from the independence of Ci with Ti. Let dt → 0+ and apply

L’Hôpital’s rule, we have

lim
dt→0+

P (Ti ≤ Ci | Ti ∈ [t, t+ dt)) =
f(t)P (Ci ≥ t)

f(t)
= P (Ci ≥ t) = SC(t

−),

where SC(t) is the survival function of Ci or SC(t) = P (Ci > t). Thus, the numerator (after

dividing by dt and taking the limit) becomes:

lim
dt→0+

1

dt
P (t ≤ Ti < t+ dt, Ti ≤ Ci)

= lim
dt→0+

1

dt
P (t ≤ Ti < t+ dt) lim

dt→0+
P (Ti ≤ Ci | Ti ∈ [t, t+ dt))

= f(t)SC(t−).

For the denominator:

P (Xi ≥ t) = P (Ti ≥ t)P (Ci ≥ t) = S(t)SC(t−).

Hence,

lim
dt→0+

1

dt
P (t ≤ Xi < t+ dt, ∆i = 1 | Xi ≥ t) =

f(t)SC(t−)

S(t)SC(t−)
=

f(t)

S(t)
= λ(t).

The result indicates that under independent censoring, the observed data can be used to estimate

the hazard function, so methods like the Nelson-Aalen or Kaplan-Meier estimators can be applied.

Moreover, the result serves as a key step in developing the martingale framework for survival

analysis, as shown below.

Proposition 2.7. Mi(t) = Ni(t)−
∫ t
0 Yi(s)dΛ(s) is a martingale process with respect to Fi,t.
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Proof. First, we show Mi(t) is measurable with respect to Fi,t. In fact, Ni(t) is measurable with

respect to Fi,t. Also, Yi(s), when s ≤ t, is measurable with respect to Fi,s and hence Fi,t. This

follows because of the increasing property of filtrations, i.e., Fi,s ⊂ Fi,t when s ≤ t. Therefore,∫ t
0 Yi(s)λ(s)ds is measurable with respect to Fi,t, leading to Ni(t) −

∫ t
0 Yi(s)dΛ(s) is measurable

with respect to Fi,t as the countable summation of measurable functions is measurable.

Second, we note that Mi(t) is integrable for any t < ∞. This follows as

E|Mi(t)| < ENi(t) +

∫ t

0
P (Xi ≥ s)dΛ(s)

≤ 1 +

∫ t

0
P (Ti ≥ s)dΛ(s)

= 1 +

∫ t

0
e−Λ(s)dΛ(s)

= 1 + 1− S(t) < 2. (2.2)

Now with Proposition 2.5, it only remains for us to prove

E
(
dMi(t)|Fi,t−

)
= 0.

In fact, it holds that

E
(
dMi(t)|Fi,t−

)
= E

(
dNi(t)− Yi(t)dΛ(t)|Fi,t−

)
(2.1)
= E

(
Ni((t+ dt)−)−Ni(t

−)|Fi,t−
)
− E

(
Yi(t)λ(t)dt|Fi,t−

)
= E

(
I(t ≤ Xi < t+ dt,∆i = 1)|Yi(t)

)
− Yi(t)λ(t)dt.

Here, E
(
Yi(t)dΛ(t)|Fi,t−

)
= Yi(t)dΛ(t) because Yi(t) is predictable. Also, the third equality follows

because events of Xi ≥ t and Xi < t are measurable with respect to Fi,t− , and you can compute the

conditional expectation conditional on Yi(t) = I(Xi ≥ t). More rigorous justifications can be found

in Theorem 1.3.1 of Fleming & Harrington (2013). We can separately compute the expectation for

the two cases depending on the value of Yi(t).

• Case 1: If Yi(t) = 0 (the patient has already experienced an event or been censored before

time t), then:

E
[
I(t ≤ Xi < t+ dt, ∆i = 1) | Yi(t) = 0

]
= P (t ≤ Xi < t+ dt, ∆i = 1 | Xi < t) = 0

This follows because patient who is no longer at risk at t− will have no chance to be observed

to die later.

• Case 2: If Yi(t) = 1 (the patient is still at risk just before time t), then:

E
[
I(t ≤ Xi < t+ dt,∆i = 1)|Xi ≥ t

]
= P (t ≤ Xi < t+ dt, ∆i = 1 | Xi ≥ t) = λ(t)dt

which holds with independent censoring (Proposition 2.6).
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Combining these two cases, we have:

E
[
I(t ≤ Xi < t+ dt,∆i = 1)|Yi(t)

]
= Yi(t)λ(t)dt.

We hence have

E
(
dMi(t)|Fi,t−

)
= E

(
I(t ≤ Xi < t+ dt,∆i = 1)|Fi,t−

)
− Yi(t)λ(t)dt = 0.

That is, we have shown that Mi(t) = Ni(t)−
∫ t
0 Yi(s)λ(s)ds is a martingale process with respect

to Fi,t or, succinctly, Mi is an Fi,t-martingale.

Recalling the definition of Λ̂(t) in (1.2), we observe that

Λ̂(t)− Λ(t) =

∫ t

0

dN(s)− Y (s)dΛ(s)

Y (s)
=

∫ t

0

dM(t)

Y (s)
, (2.3)

where we ignore the small possibility of Y (s) = 0. More rigorous treatment can be found in

Theorem 3.2.1 of Fleming & Harrington (2013), which noted that
∫ t
0

dN(s)
Y (s) =

∫ t
0

I(Y (s)>0)
Y (s) dN(s)

with 0/0
def
= 0. Here, dM(s) =

∑n
i=1 dMi(t). With i.i.d. data, M(t) =

∑n
i=1Mi(t) can be shown to

be a martingale with respect to a richer σ-algebra Ft = σ{Ni(s), Yi(s), i = 1, ..., n, 0 ≤ s ≤ t}, the
survival information of the whole population up to (including) t; see Exercise 1.11(a) of Fleming &

Harrington (2013). Recall

N(t) =
n∑

i=1

Ni(t), Y (t) =
n∑

i=1

Yi(t),

the martingale M(t) can be written as

M(t) = N(t)−
∫ t

0
Y (s)dΛ(s).

We define the compensator A(t) of N(t) as

A(t) =
n∑

i=1

Ai(t) =

∫ t

0
Y (s)dΛ(s).

The mean and variance for the martingale M(t) can be written as

EM(t) = E{EM(t)|F0} = EM(0) = 0;

VarM(t) = EM2(t)− (EM(t))2 = EM2(t).

To compute EM2(t) (if it exists or the second moment of the process exists), we introduce the

variation process of M(t), denoted as ⟨M⟩(t), which helps understand the behavior and character-

istics of M(t), particularly in terms of sample paths and changes over time.
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2.1 Variation process and covariation process

Square integrable processes are important for analyzing predictable variation and martingale dy-

namics, and square integrability provides a framework to manage and quantify the variability of

stochastic processes.

Definition 2.8. A stochastic process X(t) is said to be square integrable if for all t,

E[X2(t)] < ∞.

This means that the second moment of X(t) exists and is finite, which ensures the process does

not exhibit unbounded variance over time. Square integrability is particularly important when

studying martingales and their associated properties. A key concept related to square integrable

martingales is the variation process, which quantifies the accumulation of variability in a martingale.

This is formalized in the following definition.

Definition 2.9. Suppose that M(t) is a square integrable martingale with respect to Ft, ⟨M⟩(t) is
called the variation process of M(t) if

M2(t)− ⟨M⟩(t) is a martingale with respect to Ft.

Here, ⟨M⟩(t) is the unique predictable and non-decreasing process with ⟨M⟩(0) = 0.

In fact, the existence and uniqueness of such ⟨M⟩(t) is the result of the famous Doob-Meyer

decomposition theorem (Meyer 1963).

Theorem 2.10. (Doob-Meyer decomposition) Let X (t) be a right continuous (with left hand limits)

and integrable process, and is measurable with respect to Ft, satisfying E{X (t)|Fs} ≥ X (s) whenever

s ≤ t. Then, there exists a unique, increasing, predictable process A(t) with respect to Ft, and a

right continuous (with left hand limits) martingale process M(t) with respect to Ft such that:

X (t) = M(t) +A(t), for all t ≥ 0,

Such defined X (t) in the theorem is called submartingale in the literature (Meyer 1963). It is

easy to verify that the counting process N(t) and also M2(t) = (N(t)−A(t))2 are submartingales.

As opposed to martingales which represent a “fair game,” submartingale represent a “favorable

game,” meaning there is an expected upward tendency over time, given the current information.

Readers may refer to a probability text book for the proof of Doob-Meyer decomposition. With

the uniquely defined ⟨M⟩(t) when M(t) = N(t)−A(t) is a martingale, it is easy to see that

VarM(t) = EM2(t) = E⟨M⟩(t). (2.4)

Hence, (2.4) implies that ⟨M⟩(t) is an unbiased estimator for VarM(t).

To compute ⟨M⟩(t), we resort to the infinitesimal characterization of a martingale. We first

compute the expectation E(dM2(t)|Ft−) for a general martingale.
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Lemma 2.11. Suppose that M(t) is a square integrable martingale with respect to Ft, then

E
{
dM2(t)|Ft−

}
= E

{
[dM(t)]2|Ft−

}
= Var

(
dM(t)|Ft−

)
.

Proof. Recall the definition of dM2(t) we have

dM2(t) = M2((t+ dt)−)−M2(t−).

By separating M((t+ dt)−) into M((t+ dt)−)−M(t−) +M(t−), we write dM2(t) as

dM2(t) = M2((t+ dt)−)−M2(t−)

=
[
M((t+ dt)−)−M(t−) +M(t−)

]2 −M2(t−)

=
[
dM(t) +M(t−)

]2 −M2(t−)

=
[
dM(t)

]2
+ 2M(t−)dM(t).

Here, the third equality comes from the definition dM(t) = M((t+ dt)−)−M(t−). Given Ft− , we

have

E
{
dM2(t)|Ft−

}
= E

{[
dM(t)

]2
+ 2M(t−)dM(t)|Ft−

}
= E

{[
dM(t)

]2|Ft−
}
+ 2M(t−)E

{
dM(t)|Ft−

}
= E

{[
dM(t)

]2|Ft−
}
.

Here, the second equality is by M(t−) is deterministic given Ft− and the last equality applies

Proposition 2.5 that when M(t) is a martingale with respect to Ft, then E
(
dM(t)|Ft−

)
= 0.

E
{
[dM(t)]2|Ft−

}
= Var

(
dM(t)|Ft−

)
directly comes from E

(
dM(t)|Ft−

)
= 0.

By Lemma 2.11, we calculate the value of E
{
dM2(t)|Ft−

}
when M(t) = N(t)−

∫ t
0 Y (s)dΛ(s).

Before applying the lemma, we note that

M2(t) ≤ 2N(t) + 2

{∫ t

0
Y (s)dΛ(s)

}2

≤ 2 + Λ2(t) < ∞,

and hence M2(t) is integrable and the Doob-Meyer decomposition would apply. Now recall A(t) =∫ t
0 Y (s)dΛ(s). Note that if we condition on Ft− , Y (t) is constant, therefore we have

E
{
dM2(t)|Ft−

}
= Var

{
dM(t)|Ft−

}
= Var

{
dN(t)− Y (t)dΛ(t)|Ft−

}
= Var

{
dN(t)|Ft−

}
= E

{
dN(t)|Ft−

}(
1− E

{
dN(t)|Ft−

})
= Y (t)λ(t)dt · (1− Y (t)λ(t)dt)

= Y (t)λ(t)dt = dA(t).

Here, the third equality comes from the statement above that Y (t) is a constant conditional on

Ft− , the fourth equality comes from the property of Bernoulli distribution and the second-to-last
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equality is by the property that (dt)2 = 0 (Refer to the property of exterior derivative). We hence

have

E
{
dM2(t)− dA(t)|Ft−

}
= 0.

Again by Proposition 2.5, we have M2(t)−A(t) is a martingale with respect to Ft; refer to Doob-

Meyer Decomposition for the uniqueness of A(t). We have that ⟨M⟩(t) = A(t). As a remark, with

respect to Ft, we have A(t) is a compensator for both N(t) and M2(t). That is, M(t) = N(t)−A(t)

and M2(t)−A(t) are both martingales. We have the following properties.

Property 2. Suppose that M(t) is a square integrable martingale and K(t) is a bounded predictable

process with respect to Ft, then

1.
∫ t
0 K(s)dM(s) is also a square integrable martingale with respect to Ft.

Proof. Homework. Hint: Let Z(t) =
∫ t
0 K(s)dM(s). We apply the Ito isometry to obtain

EZ2(t) =
∫ t
0 K

2(s)d⟨M⟩(s) < ∞. We then apply the local charaterization proposition to

Z(t).

2. ⟨
∫ t
0 K(s)dM(s)⟩ =

∫ t
0 K

2(s)d⟨M⟩(s).

Proof. Homework. Hint: Compute E(dZ2(t)|Ft−).

We can also define the covariation process of two martingales.

Definition 2.12. Suppose that M1(t) and M2(t) are two square integrable martingales with respect

to Ft, ⟨M1,M2⟩(t) is called the variation process of M1(t) and M1(t) if

M1(t)M2(t)− ⟨M1,M2⟩(t) is a martingale with respect to Ft.

Here, ⟨M1,M2⟩(t) is the unique predictable and right continuous process with ⟨M1,M2⟩(0) = 0.

The covariation process generalizes the notion of quadratic variation to two different martin-

gales, describing their joint variability over time. If M1 = M2, then

⟨M1,M2⟩(t) = ⟨M1⟩(t) = ⟨M2⟩(t),

which recovers the standard quadratic variation. In addition, it can be shown that

⟨M1,M2⟩(t) =
1

4
{⟨M1 +M2⟩(t)− ⟨M1 −M2⟩(t)}.

Hence, the existence and uniqueness of the covariation process come from the Doob-Meyer decom-

position as both M1 +M2 and M1 −M2 are square integrable martingales.

Property 3. Suppose that M1(t),M2(t) are two square integrable martingales and K1(t),K2(t) are

two bounded predictable processes with respect to Ft, then

⟨
∫ t

0
K1(s)dM1(s),

∫ t

0
K2(s)dM2(s)⟩ =

∫ t

0
K1(s)K2(s)d⟨M1,M2⟩(s)
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Proof. Homework.

2.2 Local martingales

As we have seen and shall see, martingales play a central role in the theory of survival analysis.

However, many stochastic processes of interest fail to satisfy the strict requirements of martingales

over their entire domain. Local martingales become useful, allowing us to generalize martingale

properties while retaining their local behavior. The term “local” refers to behavior restricted

to a finite interval or under certain conditions. By relaxing global constraints, local properties

allow processes to exhibit martingale-like behavior locally, even if they fail to do so globally due to

integrability or boundedness constraints. Local properties enhance scalability, enabling the analysis

of a process in manageable segments that can be pieced together for a global understanding.

Specifically, local martingales enable the study of processes that locally satisfy martingale prop-

erties without requiring global adherence to strict conditions. They generalize martingales, captur-

ing processes that behave like martingales on a local level and thereby broadening the applicability.

As many of our applications require boundedness or integrability only on a local scale, the introduc-

tion of local martingales allows theorems to be applicable in more general contexts or in a broader

range of situations.

To define local martingales, we first define a stopping time is a random variable τ such that the

occurrence of the event “time τ” depends only on the information available up to time τ . Formally,

Definition 2.13. τ is a stopping time with respect to a filtration {Ft}t≥0 if {τ ≤ t} ∈ Ft for all

t ≥ 0.

Stopping times are used to “stop” a process at a random time, preserving its adaptedness to

the filtration; see Figure 5 where a process is stopped at two stopping times.

Definition 2.14. A sequence of stopping times {τn}n≥1 is called a localizing sequence if τn ↑ ∞ as

n → ∞ almost surely, and τn ≤ τn+1 for all n.

Localizing sequences allow us to break a process into intervals where it exhibits desirable prop-

erties, such as boundedness or integrability; again see Figure 5.

Definition 2.15. A process X(t) is locally bounded if there exists a localizing sequence {τn} such

that the stopped process Xτn(t) = X(t ∧ τn) is bounded for each n.

For a non-random function, it is locally bounded if it is bounded on each finite interval [0, s], s <

∞. For example, f(t) = t is locally bounded in [0,∞), but not bounded in the usual sense. For a

stochastic process, local boundedness means that the boundedness would hold on intervals whose

right end point is a random time determined by each sample path, which may be easier to satisfy

than the original stochastic process.

Definition 2.16. A process X(t) is locally integrable if there exists a localizing sequence {τn} such

that E[|X(t ∧ τn)|] < ∞ for all t and n. A process X(t) is locally square integrable if there exists a

localizing sequence {τn} such that E[X2(t ∧ τn)] < ∞ for all t and n.
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Figure 5: A sample path of Brownian Motion stopped at two stopping times.

Definition 2.17. A stochastic process M(t) is a local martingale with respect to a filtration {Ft}t≥0

if it is adapted and continuous with left limits, and if there exists a localizing sequence {τn} such

that for each n, the stopped process Mτn(t) = M(t ∧ τn) is a martingale respect to {Ft}t≥0.

Local martingales generalize martingales by allowing the martingale property to hold on inter-

vals defined by stopping times. Every martingale is a local martingale because the martingale

property holds globally, and we can trivially choose τn = n. However, not every local mar-

tingale is a martingale, as a local martingale may fail to satisfy the integrability condition re-

quired for martingales over the entire time domain. For example, Brownian motion B(t) is a

martingale with respect to Fs = σ{B(u), 0 ≤ u ≤ s}, because E[B(t)|Fs] = Bs for all s ≤ t.

On the other hand, the process X(t) = B3(t) is not a martingale, because E{dB3(s)|Fs−} =

E{B2(s−)dB(s) + B(s−)ds|Fs−} = B(s−)ds, which has a nonzero drift. However, it is a local

martingale by taking τn = sup{s : |B(s)| ≤ n}; the stopped process B3(t ∧ τn), for any n < ∞,

eliminates issues from the unbounded growth of B(t), making the process a martingale within finite

intervals. The following generalizes variation and covariation processes to local (square integrable)

martingales.

Definition 2.18. Suppose that M(t) is a local square integrable martingale with respect to Ft,

⟨M⟩(t) is called the variation process of M(t) if

M2(t)− ⟨M⟩(t) is a local martingale with respect to Ft.

Here, ⟨M⟩(t) is the unique predictable and non-decreasing process with ⟨M⟩(0) = 0.
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If {τn}∞n=1 is the localizing sequence such that the stopped process Mτn(t) = M(t ∧ τn) is a

square integrable martingale with respect to Ft for each n, then it follows that, for any t

⟨M⟩(t) = lim
n→∞

⟨Mτn⟩(t),

where the limit is taken pointwise. The uniqueness of ⟨M⟩(t) is established by Theorem 2.2.3

in Fleming & Harrington (2013). Similarly, we can define the covariation process for two local

martingales.

Definition 2.19. Suppose that M1(t) and M2(t) are two local square integrable martingales with

respect to Ft, ⟨M1,M2⟩(t) is called the variation process of M1(t) and M1(t) if

M1(t)M2(t)− ⟨M1,M2⟩(t) is a local martingale with respect to Ft.

Here, ⟨M1,M2⟩(t) is the unique predictable and right continuous process with ⟨M1,M2⟩(0) = 0.

We can extend Properties 2 and 3 to local square integrable martingales.

Property 4. Let M(t) be a local square integrable martingale and K(t) be a locally bounded pre-

dictable process with respect to Ft, then

1.
∫ t
0 K(s)dM(s) is also a local square integrable martingale with respect to Ft.

2. ⟨
∫ t
0 K(s)dM(s)⟩ =

∫ t
0 K

2(s)d⟨M⟩(s).
3. Suppose that M1(t),M2(t) are two local square integrable martingales and K1(t),K2(t) are

two locally bounded predictable processes with respect to Ft, then

⟨
∫ t

0
K1(s)dM1(s),

∫ t

0
K2(s)dM2(s)⟩ =

∫ t

0
K1(s)K2(s)d⟨M1,M2⟩(s).

3 Properties of the Nelson-Aalen Estimator: a Martingale Ap-

proach

We applyProperty 2 of a martingale to obtain the following results for the Nelson-Aalen estimator.

3.1 Unbiasedness

First, we have that Λ̂(t)−Λ(t) =
∫ t
0

dM(s)
Y (s) is a martingale with respect to Ft, because Y (t) in (2.3)

is left continuous and hence is predictable with respect to Ft. In addition, it is bounded above

from 1. (Again we ignore the small possibility of Y (t) = 0.) Therefore EΛ̂(t)− Λ(t) = 0. That is,

EΛ̂(t) = Λ(t).
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3.2 Variance of the Nelson-Aalen estimate

From (2.4),

Var Λ̂(t) = E⟨Λ̂− Λ⟩(t) = E
∫ t

0

d⟨M⟩(s)
Y 2(s)

= E
∫ t

0

dA(s)

Y 2(s)
= E

∫ t

0

dΛ(s)

Y (s)

This follows by taking K(s) = 1/Y (s) in Property 2 and also using the fact that ⟨M⟩(t) = A(t).

This means that
∫ t
0

dΛ(s)
Y (s) is an unbiased “estimator” of Var Λ̂(t). However, because Λ(s) is

unknown we replace it by its estimate and assess∫ t

0

dΛ̂(s)

Y (s)
−
∫ t

0

dΛ(s)

Y (s)
=

∫ t

0

dN(s)

Y 2(s)
−
∫ t

0

dΛ(s)

Y (s)
=

∫ t

0

dM(s)

Y 2(s)
,

which is a martingale with respect to Ft by taking K(s) = 1/Y 2(s) in Property 2 and ignoring

the small possibility of Y (t) = 0. Hence,

E

{∫ t

0

dΛ̂(s)

Y (s)
−
∫ t

0

dΛ(s)

Y (s)

}
= E

∫ t

0

dM(s)

Y 2(s)
= 0,

leading to ∫ t

0

dN(s)

Y 2(s)
=
∑
tj≤t

Dj

Y 2
j

is an unbiased estimator of Var Λ̂(t). Hence, we have justified the empirical variance formula for

the Nelson-Aalen estimator.

3.3 Consistency

As n → ∞, heuristically, we expect E
∫ t
0

dΛ(s)
Y (s) → 0 under appropriate conditions (e.g., at the tail of

t), which implies Var(Λ̂(t)) → 0. This suggests that the Markov inequality can be applied to show

that, for any ε > 0,

P
(
|Λ̂(t)− Λ(t)| ≥ ε

)
≤ E|Λ̂(t)− Λ(t)|2

ε2

=
Var(Λ̂(t))

ε2
→ 0.

Hence, Λ̂(t)
p→ Λ(t).

Moreover, by using a valuable tool in the context of stochastic processes, the Lenglart inequality

(introduced later as Lemma 4.3), we can rigorously demonstrate that within an interval where

subjects have a non-zero probability of being at risk at the end of the interval, uniform consistency

holds at every time point within the interval; see Proposition 4.5.
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3.4 Asymptotic normality

We show that
√
n(Λ̂(t)−Λ(t)) asymptotically follows a normal distribution. To establish this result,

we employ the Martingale Central Limit Theorem (MCLT) (Brown 1971). For simplicity and to

avoid introducing unnecessary new concepts, we present a simplified version of the theorem.

Theorem 3.1. (Martingale Central Limit Theorem) Let {Mi(t)}ni=1 be independent martingales

with respect to Ft, each with a predictable quadratic variation process ⟨Mi⟩(t). Consider

Un(t) =
n∑

i=1

∫ t

0
Hn

i (s)dMi(s).

Suppose:

1. The integrands Hn
i (t) are locally bounded and predictable.

2. Quadratic variation: there exists α(t) > 0 such that ⟨Un⟩(t) → α(t) in probability.

3. Big jump tightness: for any ϵ > 0, ⟨Un
ϵ ⟩(t) → 0 in probability, where

Un
ϵ (t) =

n∑
i=1

∫ t

0
Hn

i (s)I(H
n
i (s) ≥ ϵ)dMi(s).

Then

Un(t)
d→ N(0, α(t)).

The condition of “big jump tightness”, similar to the Lindeberg condition in the classical CLT,

is a stability condition ensuring that when n gets large, there cannot be too many big size jumps.

The local boundedness as mentioned in the theorem is as defined in Definition 2.15. In particular,

recall that H(t) is locally bounded if there exists a localizing sequence of {τn}∞n=1, such that the

stopped process Hτn(t) = H(t ∧ τn) is bounded for every n.

We are ready to present the asymptotic normality of the Nelson-Aalen estimator and prove it

by showing that it satisfies every condition of MCLT.

Proposition 3.2. Suppose at a t > 0 with S(t)Sc(t) > 0, i.e. P (Xi > t) > 0 or there is nonzero

probability for subjects to be at risk at t. Then

√
n(Λ̂(t)− Λ(t))

d→ N (0, σ2(t)),

where σ2(t) =
∫ t
0

dΛ(s)
S(s)Sc(s)

, with S(s) = P (Ti ≥ s) and Sc(s) = P (Ci ≥ s).

Proof. Define

Un(t) =
√
n(Λ̂(t)− Λ(t)) =

√
n

∫ t

0

1

Y (s)
dM(s) =

n∑
i=1

∫ t

0

√
n

Y (s)
dMi(s),

24



where Mi(t), i = 1, . . . , n are independent martingales. First it is obvious that

Hn
i (s)

def
=

√
n

Y (s)
, i = 1, . . . , n

is predicable. Take τn = sups>0{Y (s) ≥ 1} ∧ n, which leads to {τn ≤ t} ∈ Ft for any t > 0 and n,

and hence they are stopping times. This follows as (i) when t ≥ n, {τn ≤ t} = Ω ∈ Ft; (ii) when

t < n, {τn ≤ t} = {Y (t) = 0} ∈ Ft. Also, τn → ∞ as n → ∞, because the support of each Xi is

(0,∞). Then the stopped process Hn
i (τn ∧ t) ≤

√
n, and is hence locally bounded.

We next consider the quadratic variation. It follows

⟨Un⟩(t) =
∫ t

0

n

Y 2(s)
d⟨M⟩(s) =

∫ t

0

λ(s)

Y (s)/n
ds.

We may show
Y (s)

n
→ S(s)Sc(s)

in probability uniformly over [0, t] by using empirical process arguments (Shorack & Wellner 1986,

van der Vaart & Wellner 1996). Also, because, 1
S(s)Sc(s)

≤ 1
S(t)Sc(t)

< ∞ when s ≤ t,

n

Y (s)
→ 1

S(s)Sc(s)

in probability uniformly over [0, t] as well. Hence,∫ t

0

λ(s)

Y (s)/n
ds−

∫ t

0

λ(s)

S(s)Sc(s)
ds =

∫ t

0

(
n

Y (s)
− 1

S(s)Sc(s)

)
λ(s)ds → 0

in probability. Hence,

⟨Un⟩(t) =
∫ t

0

n

Y 2(s)
d⟨M⟩(s) → σ2(t) =

∫ t

0

λ(s)ds

S(s)Sc(s)

in probability. Here, σ2(t) corresponds to α(t) in the statement of MCLT.

We then study the big jump control by considering

⟨Un
ϵ ⟩(t) =

∫ t

0

n

Y 2(s)
I

( √
n

Y (s)
≥ ϵ

)
d⟨M⟩(s) =

∫ t

0

n

Y (s)
I

( √
n

Y (s)
≥ ϵ

)
λ(s)ds

As Y (s) is non-increasing,

I

( √
n

Y (s)
≥ ϵ

)
≤ I

( √
n

Y (t)
≥ ϵ

)
when s ≤ t. Hence,

⟨Un
ϵ ⟩(t) ≤

n

Y (t)
I

( √
n

Y (t)
≥ ϵ

)
Λ(t).
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We first show n
Y (t)I

( √
n

Y (t) ≥ ϵ
)

p→ 0. To see this, we need to prove for any ϵ′ > 0

P

{
n

Y (t)
I

( √
n

Y (t)
≥ ϵ

)
> ϵ′

}
→ 0. (3.1)

As the event of { n
Y (t)I

( √
n

Y (t) ≥ ϵ
)
≥ ϵ′} is equal to { n

Y (t) ≥ ϵ′} ∩ {
√
n

Y (t) ≥ ϵ}, it leads to

P

{
n

Y (t)
I

( √
n

Y (t)
≥ ϵ

)
≥ ϵ′

}
< P

{ √
n

Y (t)
≥ ϵ

}
= P{Y (t) ≤

√
n/ϵ}

With the Law of Large Numbers, Y (t)/n
p→ S(t)Sc(t) > 0. So for any δ > 0, P (|Y (t)/n −

S(t)Sc(t)| > δ) → 0. In particular, taking δ = S(t)Sc(t)/2, we have P (Y (t) < nS(t)Sc(t)/2) → 0.

Now for a given ϵ, when n is sufficiently large, i.e. when n > 4
ϵ2S2(t)S2

c (t)
, it follows that

√
n/ϵ ≤ nS(t)Sc(t)/2,

implying

P (Y (t) ≤
√
n/ϵ) < P (Y (t) ≤ nS(t)Sc(t)/2) → 0.

Hence (3.1) holds. As Λ(t) < ∞ when t < ∞, it follows ⟨Un
ϵ ⟩(t)

p→ 0.

With all the conditions satisfied for the Martingale CLT, we thus obtain

√
n(Λ̂(t)− Λ(t))

d→ N(0, σ2(t)).

The normality results justify the use of confidence intervals based on the normal distribution.

To implement it, we first recall that P (Xi ≥ s) = P (Ti ≥ s, Ci ≥ s) = S(s)Sc(s) given Ti and Ci

are independent, and hence Y (s)/n = 1
n

∑n
i=1 Yi(s) ≈ S(s)Sc(s) by the Law of Large Numbers. So,

an estimator for σ2(t) is ∫ t

0

dΛ̂(s)

Y (s)/n
= n

∫ t

0

dN(s)

Y 2(s)
= n

∑
tj≤t

Dj

Y 2
j

.

3.5 Numerical example: Nelson-Aalen estimator

Consider a toy study with 3 individuals, with the observed survival times (Xi) and event indicators

(∆i):

Individual Xi (Time) ∆i (Event)

1 2 1

2 3 0

3 4 1
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We estimate Λ(t) at 4 and give the variance of the estimate. Distinct event times are t1 = 2 and

t2 = 4. At each event time, we calculate the number of individuals at risk (Y (tj)) and the number

of observed events (dN(tj)):

tj Y (tj) dN(tj)

2 3 1

4 1 1

The Nelson-Aalen estimator is calculated as:

Λ̂(t) =
∑
tj≤t

dN(tj)

Y (tj)
.

In particular, at t = 4:

Λ̂(4) =
1

3
+

1

1
≈ 1.333.

The variance of the Nelson-Aalen estimator is given by:

Var(Λ̂(t)) =
∑
tj≤t

dN(tj)

Y (tj)2
.

Using the data:

Var(Λ̂(4)) =
1

32
+

1

12
≈ 1.111.

Thus, the estimated variance at t = 4 is approximately 1.111.

4 The Kaplan-Meier Estimator

The Kaplan-Meier estimator, or product-limit estimator, is a non-parametric method for

estimating the survival function from time-to-event data, commonly used in medical research,

reliability engineering, and social sciences. Introduced by Edward Kaplan and Paul Meier in 1958,

it provides a stepwise survival curve that adjusts at observed event times, effectively handling

censored data without assuming a specific probability distribution.

Let T be a non-negative random variable representing the survival time, and recall the survival

function is defined as:

S(t) = P (T > t),

which gives the probability that the event has not occurred by time t. The derivation of the

estimate of S(t) is best understood when T only takes discrete values. Specifically, assume we

observe survival times from n individuals. Define:

• t1 < t2 < · · · < tm: ordered, distinct event times.

• Dj : number of individuals experiencing the event at time tj .
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• Yj : number of individuals at risk just before time tj .

Given a t such that tj−1 ≤ t < tj , we use the conditional probability rule:

S(t) = P (T > t) = P (T > t, T > tj−1, . . . , T > t1) = P (T > t|T > tj−1)P (T > tj−1|T > tj−2) · · ·P (T > t1)

(4.1)

Each conditional probability can be estimated as:

P (T > tj |T > tj−1) = 1−P (T ≤ tj |T ≥ tj) = 1−P (T = tj |T ≥ tj) = 1−P (X = tj ,∆ = 1|X ≥ tj)

where X = T ∧ C,∆ = I(T ≤ C), the last equality comes from the independence of T and C, and

the last probability can be estimated by

P̂ (X = tj ,∆ = 1|X ≥ tj) =
Dj

Yj
.

Thus, based on (4.1), the Kaplan-Meier estimator is given by:

Ŝ(t) =
∏
tj≤t

(
1− Dj

Yj

)
=
∏
s≤t

(
1− dN(s)

Y (s)

)
.

Figure 6 illustrates that the Kaplan-Meier estimator is a step function that is right-continuous

with left-hand limits. The survival probability remains constant until the next failure time point,

at which it drops.
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Figure 6: Illustration of the Kaplan-Meier estimator; the plot demonstrates the step-function nature
of the estimator, where each step corresponds to an event (death), and censored observations do not
lower the steps. Right-continuous survival probabilities are marked with filled blue circles, while
left-discontinuities at the end of each step are indicated by open red circles.
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Consider the differential

dŜ(t) = Ŝ((t+ dt)−)− Ŝ(t−)

=
∏

s≤(t+dt)−

(
1− dN(s)

Y (s)

)
−
∏
s≤t−

(
1− dN(s)

Y (s)

)

=
∏

t≤s≤(t+dt)−

(
1− dN(s)

Y (s)

)∏
s<t

(
1− dN(s)

Y (s)

)
−
∏
s<t

(
1− dN(s)

Y (s)

)

=

(
1− dN(t)

Y (t)

)∏
s<t

(
1− dN(s)

Y (s)

)
−
∏
s<t

(
1− dN(s)

Y (s)

)
=

(
−dN(t)

Y (t)

)
Ŝ(t−)

where the second to last equality holds as dt → 0. Integrating from 0 to t:

Ŝ(t) = Ŝ(0)−
∫ t

0
Ŝ(s−)

dN(s)

Y (s)
= 1−

∫ t

0
Ŝ(s−)dΛ̂(s) (4.2)

as Ŝ(0) = 1 and dN(s)
Y (s) = dΛ̂(s).

Lemma 4.1. Let U, V be right-continuous functions of locally bounded variation on (0, t]. Then

U(t)V (t) = U(0)V (0) +

∫ t

0
U(s−)dV (s) +

∫ t

0
V (s)dU(s). (4.3)

Proof. When s ≤ t,

U(s)− U(0) =

∫ s

0
dU(x) =

∫ t

0
I(x ≤ s)dU(x),

while

U(s−)− U(0) =

∫ t

0
I(x < s)dU(x).

Then

(U(t)− U(0))(V (t)− V (0))

=

∫ t

0

∫ t

0
dU(x)dV (y)

=

∫ t

0

∫ t

0
I(x < y)dU(x)dV (y) +

∫ t

0

∫ t

0
I(y ≤ x)dV (y)dU(x)

=

∫ t

0
(U(y−)− U(0))dV (y) +

∫ t

0
(V (x)− V (0))dU(x).

The results follow immediately.
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Proposition 4.2. If S(t) > 0, then

Ŝ(t)

S(t)
= 1−

∫ t

0

Ŝ(s−)

S(s)

(
dN(s)

Y (s)
− dΛ(s)

)
.

Proof. For a right continuous function W (s),

d(W (s)−1) = W ((s+ ds)−)−1 −W (s−)−1

= −W ((s+ ds)−)−W (s−)

W ((s+ ds)−)W (s−)

= − dW (s)

W (s)W (s−)
,

where the last equality holds because of the right continuity. Setting U(s) = Ŝ(s), W (s) = S(s),

and V (s) = S(s)−1, and using (4.3) we obtain:

Ŝ(t)S(t)−1 = Ŝ(0)S(0)−1 +

∫ t

0
Ŝ(s−)dV (s) +

∫ t

0
S−1(s)dU(s). (4.4)

Then the results follow by using (4.2).

4.1 Unbiasedness

The proposition established that, when S(t) > 0,

Ŝ(t)− S(t) = −S(t)

∫ t

0

Ŝ(s−)

S(s)

dM(s)

Y (s)
. (4.5)

Immediately, because Ŝ(s−)
Y (s) is measurable with respect to Fs and bounded, hence

∫ t
0

Ŝ(s−)
S(s)

dM(s)
Y (s) is

a martingale with respect to Ft by Property 2, and has expectation 0. We therefore have

EŜ(t) = S(t).

For simplicity, we have ignored the small possibility (which goes to 0 as n → ∞) that Y(s) = 0

for some s ∈ [0, t], in which case, Fleming & Harrington (2013) shows the bias goes to 0 at an

exponential rate as n → ∞.

4.2 Uniform consistency

We state a version of the Lenglart inequality which will be useful for showing the consistency of

the Kaplan-Meier estimator.

Lemma 4.3. (The Lenglart inequality) Let N be a counting process, and M = N − A the corre-

sponding local square-integrable martingale. Suppose H is an adapted left-continuous process with

right-hand limits or, more generally, a predictable and locally bounded process. Then for any finite
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stopping time τ , and any ε, η > 0,

P

(
sup

0≤s≤τ

∣∣∣∣∫ s

0
H(u)dM(u)

∣∣∣∣ > ε

)
≤ η

ε2
+ P

(∫ τ

0
H2(s)d⟨M⟩(s) > η

)
.

Proof. See the proof of Corollary 3.4.1 in Fleming & Harrington (2013).

Proposition 4.4. Let T be a failure time random variable with continuous survival function S(s) =

P (T > s) and cumulative hazard function Λ(s) = −
∫ s
0

dS(v)
S(v) . If u ∈ (0,∞] is such that

Y (s) → ∞ in probability as n → ∞,

for any s ≤ u, then

sup
0≤s≤u

|Ŝ(s)− S(s)| → 0 as n → ∞,

where Ŝ is the Kaplan-Meier estimator.

Proof. Denote by

Z(t) =

∫ t

0

Ŝ(s−)

S(s)

dM(s)

Y (s)
.

As |Ŝ(t)− S(t)| ≤ |Z(t)|, for any ϵ > 0, we only need to quantify P
{
sup0≤s≤u Z

2(s) > ε
}
. In fact,

by the Lenglart inequality, for any η > 0, it holds that

P

{
sup

0≤s≤u
|Ŝ(t)− S(t)| >

√
ε

}
≤ P

{
sup

0≤s≤u
Z2(s) > ε

}
<

η

ε
+ P

{∫ u

0

Ŝ2(s−)

S2(s)

dΛ(s)

Y (s)
> η

}

<
η

ε
+ P

{
Λ(u)

S2(u)Y (u)
> η

}
.

Since Y (u) → ∞ in probability as n → ∞, the second term on the right-hand side above

converges to zero as n → ∞ for any η > 0. Since η and ϵ are arbitrary, the uniformly convergence

holds.

The empirical distribution function is a consistent estimator of an underlying arbitrary cumu-

lative distribution function, uniformly over the entire real line by Theorem 5.5.1 of Chung (1974).

The Kaplan-Meier estimator coincides with the empirical cumulative distribution function in the

absence of censoring. However, it is unreasonable to expect uniform consistency over the entire

real line, regardless of censoring or failure time distributions. For instance, if P (Ci > t) = 0 but

S(t) > 0 for some time t, then there will never be items at risk at or after t, making the sur-

vival probability unestimable beyond t. Nevertheless, the theorem guarantees that if there is a

nonzero probability of subjects being at risk at a given time, the Kaplan-Meier estimator provides

a uniformly consistent estimate of the survival curve up to that point as the sample size increases.

Finally, as we noted before, we can easily prove the uniform consistency of the Nelson-Aalen

estimator by using the Lenglart inequality as well.
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Proposition 4.5. Let Λ̂(t) be the Nelson-Aalen estimator, as defined in (1.2), for the cumulative

hazard function Λ(t). If u ∈ (0,∞] is such that

Y (s) → ∞ in probability as n → ∞,

for any s ≤ u, then

sup
0≤s≤u

|Λ̂(s)− Λ(s)| → 0 as n → ∞.

Proof. Denote by

Z(t) = Λ̂(t)− Λ(t) =

∫ t

0

dM(s)

Y (s)
.

For any ϵ > 0, we bound P
{
sup0≤s≤u Z

2(s) > ε
}
. In fact, by the Lenglart inequality, for any η > 0,

it holds that

P

{
sup

0≤s≤u
|Λ̂(s)− Λ(s)| >

√
ε

}
≤ P

{
sup

0≤s≤u
Z2(s) > ε

}
<

η

ε
+ P

{∫ u

0

dΛ(s)

Y (s)
> η

}

<
η

ε
+ P

{
Λ(u)

Y (u)
> η

}
.

Since Y (u) → ∞ in probability as n → ∞, the second term on the right-hand side above

converges to zero as n → ∞ for any η > 0. As η and ϵ are arbitrary, the uniformly convergence

holds.

4.3 Weak convergence over a time interval

We now establish the weak convergence of Ŝ on a time interval. We state a lemma without proof.

Lemma 4.6. Denote by I = {t : π(t) = P (Xi > t) > 0}. Over I, define a process

U (n)(·) =
∫ ·

0
H(n)(s)dM(s),

where H(n) is a locally bounded predictable process and M(t) = N(t)−
∫ t
0 Y (s)dΛ(s). If there exists

a nonnegative function h such that, for any t ∈ I,

sup
0≤s≤t

∣∣{H(n)(s)}2Y (s)− h(s)
∣∣→ 0 as n → ∞,

then

U (n)(·) d−→ Z(·) in D[0, t], t ∈ I,

as n → ∞, where Z(·) is a zero-mean Gaussian process with independent increments and variance

function of v(t) =
∫ t
0 h(s)dΛ(s), i.e., Z(t) = B(v(t)) with B(·) being the Brownian motion, and

D[0, t] is the space of functions on [0, t] which are right-continuous with finite left-hand limits.

Proof. See Anderson & Gill (1982) and Fleming & Harrington (2013).
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Proposition 4.7. Suppose

sup
t∈[0,∞)

∣∣∣∣Y (t)

n
− π(t)

∣∣∣∣→ 0 (4.6)

and that B is Brownian Motion. Then, as n → ∞, for any t ∈ I:

1.
√
n(Ŝ(·)− S(·)) d−→ S(·)B(v(·)) on D[0, t], where v(t) =

∫ t
0 π

−1(s)dΛ(s), and

Cov
[
S(s)B(v(s)), S(t)B(v(t))

]
= S(s)S(t)v(s ∧ t).

2. Let

v̂(t) = n

∫ t

0

dN(s)

Y 2(s)
.

Then

sup
0≤s≤t

|v̂(s)− v(s)| → 0

in probability.

3.
√
n
Ŝ(·)− S(·)

Ŝ(·)
d−→ B(v(·))

on D[0, t].

4. Uniform bounds for the above convergence apply, e.g.,

sup
0≤s≤t

(
n

v̂(s)

)1/2
∣∣∣∣∣ Ŝ(s)− S(s)

Ŝ(s)

∣∣∣∣∣ d−→ sup
0≤s≤1

|B(s)| (4.7)

Proof. With the notion of (4.5), we can obtain the asymptotic distribution of the process{∫ s

0
Hn(u)dM(u) : 0 < s < t

}
,

where

H(n)(s) =
√
n

Ŝ(s−)

S(s)Y (s)
,

and

M(s) = N(s)−
∫ s

0
Y (u)dΛ(u).

To apply Lemma 4.6, we set h(t) = π−1(t), and show

sup
0≤s≤t

∣∣∣∣n S2(s−)

S2(s)Y (s)
− π−1(t)

∣∣∣∣→ 0
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in probability. In fact,

sup
0≤s≤t

∣∣∣∣∣n Ŝ2(s−)

S2(s)Y (s)
− π−1(t)

∣∣∣∣∣
= sup

0≤s≤t

∣∣∣∣∣n Ŝ2(s−)

S2(s)Y (s)
− 1

π(s)

Ŝ2(s−)

S2(s)
+

1

π(s)

Ŝ2(s−)

S2(s)
− π−1(s)

∣∣∣∣∣
≤ sup

0≤s≤t

Ŝ2(s−)

S2(s)

∣∣∣∣ n

Y (s)
− 1

π(s)

∣∣∣∣+ sup
0≤s≤t

1

π(s)S2(s)
|Ŝ2(s−)− S2(s)|

≤ 1

S2(t)
sup
0≤s≤t

∣∣∣∣ n

Y (s)
− 1

π(s)

∣∣∣∣+ 2

π(t)S2(t)
sup
0≤s≤t

|Ŝ(s−)− S(s)|

Hence, the claim is satisfied by the assumption of (4.6) and the uniform consistency of the Kaplan-

Meier estimator as established in Proposition 4.4.

We then study

v̂(s)− v(s) =

∫ s

0
n
dN(u)

Y 2(u)
−
∫ s

0

dΛ(u)

π(u)

=

∫ s

0
n
dN(u)

Y 2(u)
−
∫ s

0
n
dΛ(u)

Y (u)
+

∫ s

0
n
dΛ(u)

Y (u)
−
∫ s

0

dΛ(u)

π(u)

=

∫ s

0
n
dM(u)

Y 2(u)
+

∫ s

0

(
n

Y (u)
− 1

π(u)

)
dΛ(u) (4.8)

Consider the uniform convergence of the first term of (4.8). For any ϵ, η > 0, the Lenglart inequality

gives

P

(
sup
0≤s≤t

∣∣∣∣∫ s

0
n
dM(u)

Y 2(u)

∣∣∣∣2 > ϵ

)
<

η

ϵ
+ P

(∫ t

0

n2

Y 4(s)
d⟨M⟩(s) > η

)

<
η

ϵ
+ P

(∫ t

0

n2

Y 3(s)
dΛ(s) > η

)
<

η

ϵ
+ P

(
n2Λ(t)

Y 2(t)

1

Y (t)
> η

)
As Y (t)/n → π(t) > 0 in probability and, hence, Y (t) → ∞ and n2

Y 2(t)
→ 1

π2(t)
> 0 in probability

as n → ∞, therefore, the probability of the event of

n2Λ(t)

Y 2(t)

1

Y (t)
> η

goes to 0. Because η is arbitrary, hence,

P

(
sup
0≤s≤t

∣∣∣∣∫ s

0
n
dM(u)

Y 2(u)

∣∣∣∣2 > ϵ

)
→ 0.
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On the other hand, the uniform convergence of

n

Y (u)
− 1

π(u)

over [0, t] implies the uniform convergence to 0 of the second term of (4.8).

Part 3 of the theorem comes from Part 1 and the uniform convergence of Ŝ. Part 4 comes from

the Continuous Mapping Theorem.

4.4 Confidence intervals versus confidence bands

The weak convergence results allow the construction of confidence intervals and bands for S. For

large n, point-wise (1−α)×100/% approximate confidence intervals for survival estimates at s can

be given by: [
Ŝ(s)± z1−α/2Ŝ(s)

√
v̂(s)

n

]
,

where z1−α/2 is the (1−α/2)×100 percentile of the standard normal distribution, e.g. z0.975 ≈ 1.96.

On the other hand, the confidence band, for s ∈ [0, t], can be obtained as:[
Ŝ(s)± cŜ(s)

√
v̂(s)

n

]
, (4.9)

where c is a constant chosen to ensure the desired simultaneous coverage probability (e.g., 95%)

using the weak convergence result of (4.7). Specifically, c is chosen based on the distribution of the

supremum of B(t)) over [0, 1] to ensure the simultaneous coverage probability meets the desired

level.

To see why (4.9) is the desired confidence band, we aim to show that (4.9) covers S(s) over [0, t]

with probability (approximately) at least 1− α, or more explicitly,

P

(
S(s) ∈

[
Ŝ(s)

(
1− c1−α

(
v̂(s)

n

)1/2
)
, Ŝ(s)

(
1 + c1−α

(
v̂(s)

n

)1/2
)]

, ∀s ∈ [0, t]

)
≥ 1− α.

(4.10)

From Proposition 4.7 (Part 4), we have:

P

(
sup
0≤s≤t

(
n

v̂(s)

)1/2
∣∣∣∣∣ Ŝ(s)− S(s)

Ŝ(s)

∣∣∣∣∣ ≤ c1−α

)
→ P

(
sup

0≤s≤1
|B(s)| ≤ c1−α

)
= 1− α. (4.11)

Or, when n is sufficiently large,

P

(
sup
0≤s≤t

(
n

v̂(s)

)1/2
∣∣∣∣∣ Ŝ(s)− S(s)

Ŝ(s)

∣∣∣∣∣ ≤ c1−α

)
≈ 1− α.
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This means

P

((
n

v̂(s)

)1/2
∣∣∣∣∣ Ŝ(s)− S(s)

Ŝ(s)

∣∣∣∣∣ ≤ c1−α, ∀s ∈ [0, t]

)
≥ P

(
sup
0≤s≤t

(
n

v̂(s)

)1/2
∣∣∣∣∣ Ŝ(s)− S(s)

Ŝ(s)

∣∣∣∣∣ ≤ c1−α

)
≈ 1−α,

meaning that with probability (approximately) at least 1− α,∣∣∣∣∣ Ŝ(s)− S(s)

Ŝ(s)

∣∣∣∣∣ ≤ c1−α

(
v̂(s)

n

)1/2

, ∀s ∈ [0, t].

Rearranging the bound, this means (4.10) holds or (4.9) covers S(s) for all s ∈ [0, t] with probability

(approximately) at least 1− α.

To select c1−α, one can apply the formula derived by Billingsley (2013):

P

(
sup

0≤s≤1
|B(s)| ≤ y

)
= 4

∞∑
k=0

(−1)k

π(2k + 1)
exp

(
−π2(2k + 1)2

8y2

)
.

Now, if we set

4
∞∑
k=0

(−1)k

π(2k + 1)
exp

(
−π2(2k + 1)2

8c2

)
= 0.95

and solve for c numerically, we find the c satisfying

P

(
sup

0≤s≤1
|B(s)| ≤ c0.95

)
= 0.95

is c0.95 ≈ 2.241. Note that c0.95 > z0.975 ≈ 1.96, meaning that confidence bands are wider than

pointwise confidence intervals. This makes sense because confidence bands account for simulta-

neous uncertainty across an entire range of values, whereas pointwise confidence intervals only

provide coverage at individual points. In particular, when estimating a survival function S(t), a

pointwise 95% confidence interval means that at a fixed t, the true S(t) will fall within the interval

95% of the time if we repeat the procedure. However, a confidence band at the same confidence

level ensures that the entire survival function lies within the band with 95% probability. Since

this requires controlling the error across all t values, the resulting confidence bands are necessarily

wider than the pointwise confidence intervals; see, for example, Figure 7.

Finally, perhaps a more straightforward approach to identify c1−α is to determine the distribu-

tion of the supremum of B(t) via simulations:

1. (simulate Brownian motion): We simulate n independent realizations of a Brownian motion

process B(t) over the interval [0, 1].

2. (calculate the supremum): For each simulated path, compute the supremum (maximum value)

of the Brownian motion over the interval [0, 1].

3. (quantile selection): Based on the desired simultaneous coverage probability 1−α (e.g., 95%),

we determine the quantile from the distribution of the supremum values. This quantile will

be our constant c1−α.

36



0 10 20 30 40
Time

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 P
ro

ba
bi

lit
y

KM Estimate
Confidence Interval
Confidence Band

Figure 7: Kaplan-Meier survival curve with confidence intervals and confidence bands. The confi-
dence intervals (shaded darker) are narrower, compared to confidence bands (lighter shading) which
account for greater uncertainty across all time points.

We typically run simulations with a large number of sample paths (e.g., 100,000 simulations,

each with 10,000 equally spaced time points over the interval [0, 1]), and compute the supremum

of the absolute values for each path. The 95% quantile of the supremum values gives us the value

of c0.95. Our simulation returned a value of 2.243, which closely matches the theoretical value of

2.241. The following R code simulates Brownian motion paths, calculates the supremum for each

path, and computes the 95% quantile (or any other desired quantile) of the supremum distribution.

# Set parameters

n_simulations <- 100000 # Number of Brownian motion paths

n_points <- 10000 # Number of time points in each path (for interval [0,1])

alpha <- 0.05 # Significance level for 95% quantile

# Function to simulate one Brownian motion path

simulate_brownian_motion <- function(n_points) {

dt <- 1 / (n_points - 1)

# Simulate Brownian motion increments (increment is normally distributed)

increments <- sqrt(dt) * rnorm(n_points - 1)

B_t <- c(0, cumsum(increments)) # Brownian motion with starting value 0

return(B_t)

}

# Simulate multiple Brownian motion paths and calculate supremums

supremums <- numeric(n_simulations) # Pre -allocate memory for supremum values

for (i in 1:n_simulations) {

B_t <- simulate_brownian_motion(n_points)
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supremums[i] <- max(abs(B_t)) # Calculate the supremum (max absolute value)

}

# Calculate the quantile for the supremum distribution

c <- quantile(supremums , 1 - alpha)

# Output the result

cat("The␣value␣of␣c␣for␣the␣95%␣quantile␣is:", c, "\n")

5 Nonparametric Comparison of Hazard Functions

It is often necessary to compare the effectiveness of two treatment arms—typically an experimental

treatment group and a control (placebo) group. The comparisons help assess whether a new

treatment significantly improves survival outcomes compared to standard care or no treatment.

More specifically, we aim to evaluate differences in survival distributions and determine whether

the treatment has a statistically significant impact on the time to event (e.g., death or disease

progression). For independent individuals i = 1, . . . , n, we introduce a binary indicator Zi, where

Zi = 0 if individual i belongs to the placebo arm and Zi = 1 if they are in the treatment arm.

We extract the distinct observed failure time points, t1 < t2 < . . . < tnd
, from these n subjects.

Let Dkj and Ykj denote, respectively, the number of observed deaths and the number of subjects

at risk at time tj for group k = 0 (placebo group) and 1 (treatment group). The total number of

observed deaths and the total number of subjects at risk at time tj across both groups are given

by Dj = D0j +D1j , Yj = Y0j + Y1j . Since Zi indicates treatment assignment, we can express the

number of deaths and subjects at risk in the treatment group as

D1j =

n∑
i=1

ZidNi(tj), Y1j =

n∑
i=1

ZiYi(tj),

where dNi(tj) represents the increment in the counting process for individual i at time tj , and

Yi(tj) is the at-risk indicator for individual i at time tj .

5.1 The log-rank test

The log-rank test (Mantel 1966) is to test the null hypothesis, H0 : λ0(t) = λ1(t) for all t > 0,

where λk(t) is the hazard function for patients in group k = 0, 1, or plainly, both treatment arms

have the same hazard function. That is, under H0, the true survival time Ti, regardless of the value

of Zi, has a hazard of λ0(t) = λ1(t)
def
= λ(t).

We have shown that the numerator of the log-rank test statistic is

UL =

nd∑
j=1

(D1j −DjY1j/Yj)
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which can be expressed, by using the counting process notation, as

UL =

nd∑
j=1

n∑
i=1

(Zi − Z̄(tj))dNi(tj) =
n∑

i=1

∫ ∞

0
(Zi − Z̄(s))dNi(s)

where Z̄(s) =
∑n

i=1 ZiYi(s)∑n
i=1 Yi(s)

, or the proportion of the at-risk population at s from group 1. We now

derive the variance of UL under the null hypothesis of H0. Indeed, if H0 holds, some algebra will

yield

UL =

n∑
i=1

∫ ∞

0
(Zi − Z̄(s))dMi(s),

where Mi(t) = Ni(t)−
∫ t
0 Yi(s)λ(s)ds is a martingale with respect to

Ft = σ{Ni(s), Yi(s), Zi, i = 1, ..., n, 0 ≤ s ≤ t}.

Compared to the filtration defined in Section 2, this updated filtration is enriched by incorporating

the treatment assignment information, Zi.

Now consider the process

U(t) =

n∑
i=1

∫ t

0
(Zi − Z̄(s))dMi(s).

We note UL = U(∞) or UL = limt→∞ U(t), where the limit is defined for each sample point in the

sample space. We first establish the property of U(t) before studying UL.

Proposition 5.1. U(t) is a martingale with respect to Ft.

Proof. To prove that U(t) is a martingale, we proceed in three steps: (1) show that U(t) is adapted,

(2) demonstrate that U(t) is integrable, and (3) verify that it satisfies the martingale property using

the infinitesimal characterization.

Step 1: we first show that U(t) is adapted. Recall Mi(t) = Ni(t)−
∫ t
0 Yi(s)λ(s)ds. We then consider

the adaptness of∫ t

0
(Zi − Z̄(s)) dMi(s) =

∑
s≤t

(Zi − Z̄(s)) (Ni((s+ ds)−)−Ni(s
−))−

∫ t

0
(Zi − Z̄(s))Yi(s)dΛ(s).

For any s ≤ t, the term Zi is adapted to Ft, while the term Z̄(s) =
∑n

i=1 ZiYi(s)∑n
i=1 Yi(s)

depends on

Yi(s), which is measurable with respect to Fs and therefore with respect to Ft. Hence,
∫ t
0 (Zi −

Z̄(s))Yi(s)dΛ(s) is measurable with respect to Ft. This is natural as the trajectory of the integrand

is deterministic given Ft. Moreover, Z̄(s−), Ni((s + ds)−), Ni(s
−) are all measurable with respect

to to F(s+ds)− and hence with respect to Ft. Therefore, so is the countable summation,
∑

s≤t(Zi−
Z̄(s)) (Ni((s + ds)−) −Ni(s

−)), with respect to to Ft. In this case as Ni can jump at most once,

the sum is either 0 or one term. As each stochastic integral
∫ t
0 (Zi − Z̄(s)) dMi(s) is adapted to Ft,

their sum U(t) is also adapted, i.e., U(t) is Ft-adapted. Here we have repeatedly used the fact that

the countable summation of measurable functions is also measurable.
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Step 2: we show that U(t) is integrable by showing E[|U(t)|] < ∞ for any t < ∞. Indeed, as

|Zi − Z̄(s)| < 2, it follows

|
∫ t

0
(Zi − Z̄(s))dMi(s)| ≤ 2

∫ t

0
|dMi(s)| ≤ 2Ni(t) + 2

∫ t

0
Yi(s)dΛ(s)

whose expectation is less than 4 by (2.2). Hence, E[|U(t)|] < 4n < ∞ for any t < ∞, concluding

that U(t) is integrable.

Step 3: we verify the “fair game” property by using the infinitesimal characterization and showing

E[dU(t) | Ft− ] = 0,

where Ft− is the filtration just before time t.

In fact, by definition,

dU(t) =

n∑
i=1

(Zi − Z̄(t)) dMi(t).

Since Zi − Z̄(t) is predictable and Mi(t) is a martingale, the increments dMi(t) satisfy E[dMi(t) |
Ft− ] = 0. Substituting dU(t) into the conditional expectation:

E[dU(t) | Ft− ] = E

[
n∑

i=1

(Zi − Z̄(t)) dMi(t) | Ft−

]
.

Since Zi − Z̄(t) is predictable with respect to Ft and therefore adapted to Ft− , it follows that:

E[dU(t) | Ft− ] =
n∑

i=1

(Zi − Z̄(t)) · E[dMi(t) | Ft− ] = 0.

Thus, U(t) satisfies the martingale property. Combining this with its adaptedness and integra-

bility, we conclude that U(t) is a martingale.

Immediately, we can conclude EU(t) = 0 for all t because U(0) = 0 and U(t) is a martingale. We

then prove the log-rank test statistic has mean 0 under the null by using the dominated convergence

theorem (DCT) stated below.

Theorem 5.2. (Dominated convergence theorem) Let (Xk)k≥1 be a sequence of random variables

such that (i) Xk
a.s.−−→ X (almost surely) as k → ∞; (ii) there exists an integrable random variable

Y (i.e., E[|Y |] < ∞) such that |Xk| ≤ Y for all k ≥ 1 almost surely. Then, X is integrable (i.e.,

E[|X|] < ∞), and

lim
k→∞

E[Xk] = E[X].

The proof can be found in the probability text books. Applying DCT, we have the result of the

unbiasedness of the log-rank test.
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Proposition 5.3. EUL = 0. That is, the expectation of the log-rank test statistic is 0 under the

null hypothesis.

Proof. Consider any sequence of tk → ∞ as k → ∞ and the sequence of random variables,

{U(tk)}k≥1. To apply DCT, we verify its required conditions:

(i) (pointwise convergence) By definition, U(tk) → UL pointwise and hence almost surely.

(ii)(integrable dominance) For each i = {1, . . . , n} and any tk < ∞, it follows that∣∣∣∣∫ tk

0
(Zi − Z̄(s)) dMi(s)

∣∣∣∣ ≤ 2

∫ ∞

0
|dMi(s)|

def
= Gi.

Similar to what we have shown in (2.2), we can show E
∫∞
0 |dMi(s)| < 4 and hence EGi ≤ 8.

Therefore, we have identified a dominating random variable G
def
=
∑n

i=1Gi such that EG ≤ 8n is

uniformly bounded (with respect to k) and

|U(tk)| =

∣∣∣∣∣
n∑

i=1

∫ tk

0
(Zi − Z̄(s)) dMi(s)

∣∣∣∣∣ ≤
n∑

i=1

∣∣∣∣∫ tk

0
(Zi − Z̄(s)) dMi(s)

∣∣∣∣ ≤ n∑
i=1

Gi = G

for any k. Then DCT implies that

E[UL] = E
[
lim
k→∞

U(tk)

]
= lim

k→∞
E[U(tk)] = 0.

We now study the variance of U(t). Because |Zi − Z̄(s)| ≤ 2,
∫ t
0 (Zi − Z̄(s))dMi(s) is square

integrable by Property 2. So U(t) is square integrable as

U2(t) ≤ 2

n∑
i=1

{∫ t

0
(Zi − Z̄(s))dMi(s)

}2

.

Further, as subjects are independent, we have the following result.

Lemma 5.4. E(dMi(s)dMj(s)|Fs−) = 0 when i ̸= j.

Proof. Exercise.

With this, the following gives the variation process of U(t).

Proposition 5.5. ⟨U⟩(t) =
∑n

i=1

∫ t
0 (Zi − Z̄(s))2Yi(s)dΛ(s),

Proof. Applying Lemmas 2.11 and 8.6, we can show

E(dU2(t)|Ft−) =
n∑

i=1

(Zi − Z̄(t))2d⟨Mi⟩(t),
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where d⟨Mi⟩(t) = Yi(t)dΛ(t).

With ⟨U⟩(t) =
∑n

i=1

∫ t
0 (Zi − Z̄(s))2Yi(s)dΛ(s), it follows

Var(U(t)) = E
n∑

i=1

∫ t

0
(Zi − Z̄(s))2Yi(s)dΛ(s)

which can be estimated by

n∑
i=1

∫ t

0
(Zi − Z̄(s))2Yi(s)dΛ̂(s) =

∫ t

0

n∑
i=1

(Zi − Z̄(s))2Yi(s)
dN(s)

Y (s)
.

This can be shown to be equal to ∑
j:tj≤t

Y1jY0j
Y 2
j

Dj ,

which follows because
∑n

i=1(Zi − Z̄(s))2Yi(s) =
∑n

i=1 ZiYi(s) − (
∑n

i=1 ZiYi(s))
2/Y (s), which is

equal to
Y1jY0j

Yj
when evaluated at tj .

Considering t → ∞ in U(t), applying DCT may give

Proposition 5.6. Suppose EΛ2(Xi) < ∞, i = 1, . . . , n. Then

VarUL =
n∑

i=1

E
∫ ∞

0
(Zi − Z̄(s))2Yi(s)dΛ(s).

Proof. As EU(t) = EUL = 0, we only need to consider any sequence of tk → ∞ as k → ∞ and the

sequence of random variables, {U(tk)}k≥1, and show

EU2
L = lim

k→∞
EU2(tk).

This follows by applying DCT. In particular, we note

|U(tk)| =

∣∣∣∣∣
n∑

i=1

∫ tk

0
(Zi − Z̄(s)) dMi(s)

∣∣∣∣∣
≤

n∑
i=1

∣∣∣∣∫ tk

0
(Zi − Z̄(s)) (dNi(s)− Yi(s)dΛ(s))

∣∣∣∣
< 2

n∑
i=1

(Ni(tk) + Λ(Xi)) < 2
n∑

i=1

(1 + Λ(Xi)).

Therefore, U2(tk) ≤ 16
∑n

i=1(1+Λ2(Xi))
def
= G. Given the condition of EΛ2(Xi) < ∞, i = 1, . . . , n,

it follows that G is integrable. Hence we can apply DCT and conclude

VarUL = EU2
L = lim

k→∞
EU2(tk) = lim

k→∞
VarU(tk) =

n∑
i=1

E
∫ ∞

0
(Zi − Z̄(s))2Yi(s)dΛ(s).
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We impose a sufficient condition EΛ2(Xi) < ∞, i.e., the transformed observed survival time

Λ(Xi) has finite variability, to prevent excessively heavy tails in the distribution of Xi.

Thus, we may estimate Var(UL) with

nd∑
j=1

Y1jY0j
Y 2
j

Dj ,

which justifies the use of the variance formula for the log-rank test. Note in the counting process,

we do not allow ties, and hence Dj = 1 for all j.

5.2 The weighted log-rank test

The log-rank test is most powerful under the proportional hazards assumption, which assumes a

constant hazard ratio. When this assumption fails, the weighted log-rank test extends the method

by emphasizing early, middle, or late differences with tailored weight functions, enhancing sensi-

tivity to time-specific survival differences. We consider the weighted log-rank test (Harrington &

Fleming 1982), in the form of

UW =

nd∑
j=1

Wj(D1j −DjY1j/Yj).

Suppose W (s) is predictable and W (tj) = Wj . Then we can express UW , by using the counting

process notation, as

UW =

nd∑
j=1

n∑
i=1

Wj(Zi − Z̄(tj))dNi(tj)

=
n∑

i=1

∫ ∞

0
W (s)(Zi − Z̄(s))dNi(s)

=
n∑

i=1

∫ ∞

0
W (s)(Zi − Z̄(s))dMi(s).

Then similarly, under the null, we can show
∑n

i=1

∫ t
0 W (s)(Zi − Z̄(s))dMi(s) is a martingale

with respect to Ft as both W (s) and Z̄(s) are predictable. Further, under the null, it follows that

EUW = 0 and

VarUW = E
n∑

i=1

∫ ∞

0
W 2(s)(Zi − Z̄(s))2Yi(s)dΛ(s),

which can be estimated by
nd∑
j=1

W 2
j Y1jY0j

Y 2
j

Dj .
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In particular, for the Wilcoxon test (Peto & Peto 1972), where W (s) = Y (s), and hence Wj = Yj ,

the variance can be estimated by
∑nd

j=1 Y1jY0jDj .

While similar in nature, the log-rank and Wilcoxon tests are suited to different application

scenarios. The log-rank test is most sensitive to differences in hazard functions that are proportional

over time, performing well when the hazard ratio remains constant and the proportional hazards

assumption holds. The Wilcoxon test, as a special case of the weighted log-rank test, applies weights

based on the number of individuals at risk, placing greater emphasis on earlier time periods. This

makes it more sensitive to survival differences that occur early in the study and potentially more

effective in detecting deviations from proportional hazards, such as when treatment effects diminish

or intensify over time. More broadly, by selecting different weights, the weighted log-rank test can

be adapted to emphasize specific time periods, allowing it to detect survival differences that align

with particular patterns, including early effects, late effects, or proportional hazards throughout the

follow-up period. This makes them particularly valuable in clinical trials where treatment effects

vary over time, such as delayed benefits in immunotherapy.

5.3 Numerical example: Log-Rank and Wilcoxon tests

Consider a study with two groups, Group 0 (placebo) and Group 1 (treatment). The observed

survival times (Xi) and event indicators (∆i) are as follows (with no ties in failure times):

Individual Group Xi (Time) ∆i (Event)

1 0 2 1

2 0 5 1

3 1 3 1

4 1 6 1

As the first step, we extract failure times. Here, the distinct observed failure times are t1 = 2,

t2 = 3, t3 = 5, and t4 = 6. For each tj , calculate the number of subjects at risk (Ykj) and the

number of events (Dkj) for each group (k = 0, 1):

tj Y0j D0j Y1j D1j Yj = Y0j + Y1j Dj = D0j +D1j

2 2 1 2 0 4 1

3 1 0 2 1 3 1

5 1 1 1 0 2 1

6 0 0 1 1 1 1

We then calculate the log-rank test statistic. The numerator of the log-rank test is:

UL =

nd∑
j=1

(
D1j −Dj

Y1j
Yj

)
.
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For each tj :

tj D1j Dj
Y1j

Yj
D1j −Dj

Y1j

Yj

2 0 1 · 2
4 = 0.5 0− 0.5 = −0.5

3 1 1 · 2
3 ≈ 0.67 1− 0.67 ≈ 0.33

5 0 1 · 1
2 = 0.5 0− 0.5 = −0.5

6 1 1 · 1
1 = 1 1− 1 = 0

Hence, the numerator is:

UL = (−0.5) + 0.33 + (−0.5) + 0 = −0.67

and the estimate of its variance is:

V̂ar(UL) =

nd∑
j=1

Y1jY0j
Y 2
j

Dj ,

where for each tj :

tj
Y1jY0j

Y 2
j

Dj
Y1jY0j

Y 2
j

Dj

2 2·2
42

= 0.25 1 0.25

3 2·1
32

≈ 0.22 1 0.22

5 1·1
22

= 0.25 1 0.25

6 1·0
12

= 0 1 0

So

V̂ar(UL) = 0.25 + 0.22 + 0.25 + 0 = 0.72.

The test statistic is:

Z =
UL√

V̂ar(UL)

=
−0.67√
0.72

≈ −0.79.

Finally, we calculate the Wilcoxon test statistic by noting the Wilcoxon test weights events by

the number of individuals at risk (Wj = Yj). That is, the numerator is:

UW =

nd∑
j=1

Wj

(
D1j −Dj

Y1j
Yj

)
,

where for each tj :

tj Wj Wj ·Dj
Y1j

Yj
Wj ·

(
D1j −Dj

Y1j

Yj

)
2 4 4 · 0.5 = 2 4 · (−0.5) = −2

3 3 3 · 0.67 = 2.0 3 · 0.33 = 1.0

5 2 2 · 0.5 = 1 2 · (−0.5) = −1

6 1 1 · 1 = 1 1 · 0 = 0

So the numerator is:

UW = (−2) + 1 + (−1) + 0 = −2.
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On the other hand, the variance of the Wilcoxon test is:

V̂ar(UW ) =

nd∑
j=1

Y1jY0jDj ,

where at each tj :

tj Y1jY0j Dj Y1jY0jDj

2 16 · 0.25 = 4 1 4

3 9 · 0.22 = 2 1 2

5 4 · 0.25 = 1 1 1

6 1 · 0 = 0 1 0

Using this table gives

V̂ar(UW ) = 4 + 2 + 1 + 0 = 7,

and, therefore, the test statistic is:

Z =
UW√

V̂ar(UW )

=
−2√
7
≈ −0.76.

6 Kernel-Smoothed Hazard Estimator

Estimating the hazard function provides valuable insights into the instantaneous rate of failure (or

event rate) over time, which is essential for understanding and predicting survival outcomes. The

shape of the hazard function can reveal important information about the underlying dynamics of

the event, such as whether the risk of failure increases or decreases as time progresses. In contrast to

the Nelson-Aalen estimate, which produces a stepwise hazard estimate with spikes at the observed

failure times and zero elsewhere, smooth estimates of the hazard function help reduce variance and

noise. This leads to a more stable, continuous, and interpretable representation of the event risk

over time. We consider the kernel-smoothed hazard estimator defined by

λ̃(t) =

nd∑
j=1

Kh(t− tj)
Dj

Yj
=

∫ ∞

0
Kh(t− s)

dN(s)

Y (s)
,

where Kh(u) = 1
h K

(
u
h

)
, and we recall that N(s) and Y (s) are the aggregated counting and at-

risk processes, respectively. The kernel function K is central to the smoothing process with these

properties (Wand & Jones 1995):

• Normalization: K(u) ≥ 0 for all u and
∫∞
−∞K(u) du = 1.

• Symmetry: K(u) = K(−u) so that the weighting is balanced around zero.

• Choice of Kernel: Typical kernels include:

– Gaussian: K(u) = 1√
2π
e−u2/2.

– Epanechnikov: K(u) = 3
4(1− u2)I(|u| ≤ 1).

– Uniform: K(u) = 1
2I(|u| ≤ 1).
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• Effect of Bandwidth: The bandwidth h determines the window (see Figure 8) over which the

data are smoothed, controlling the trade-off between bias and variance; a smaller h leads to

less smoothing (lower bias, higher variance), while a larger h leads to more smoothing (higher

bias, lower variance).

−4 −2 0 2 4
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0.2

0.4

0.6

0.8

u

K
h
(u
)

h = 0.5
h = 1
h = 2

Figure 8: The effect of the bandwidth h on the kernel function. A larger h yields a wider, flatter
kernel.

We next discuss how to estimate the variance of λ̃(t). Recall we use the Doob–Meyer decom-

position for the counting process, obtaining

dN(s) = Y (s)λ(s) ds+ dM(s),

where λ(s) is the true hazard function and dM(s) is a martingale increment satisfying

E
[
dM(s) | Fs−

]
= 0.

Thus, we can write

λ̃(t) =

∫ ∞

0
Kh(t− s)

Y (s)λ(s) ds

Y (s)
+

∫ ∞

0
Kh(t− s)

dM(s)

Y (s)
.

That is,

λ̃(t) =

∫ ∞

0
Kh(t− s)λ(s) ds+ ϵ(t),

where ϵ(t) =
∫∞
0 Kh(t − s) dM(s)

Y (s) . Hence, λ̃(t) is decomposed into two terms. The first one is

deterministic, while the second term, ϵ(t), is a stochastic integral with respect to the martingale

M(s) and captures the variance of λ̃(t), which is given by

Var
(
ϵ(t)
)
=

∫ ∞

0
K2

h(t− s)
d⟨M⟩(s)
Y 2(s)

.

Under the Doob–Meyer decomposition, the predictable variation process of M(s) is

⟨M⟩(s) =
∫ s

0
Y (u)λ(u) du,
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so that

d⟨M⟩(s) = Y (s)λ(s) ds.

Substituting, we obtain

Var
(
ϵ(t)
)
= E

∫ ∞

0
K2

h(t− s)
Y (s)λ(s) ds

Y 2(s)
= E

∫ ∞

0
K2

h(t− s)
dΛ(s)

Y (s)
.

Using the Nelson-Aalen estimator, we can estimate the variance with∫ ∞

0
K2

h(t− s)
dN(s)

Y 2(s)
=

nd∑
j=1

K2
h(t− tj)

Dj

Y 2
j

Figure 9 illustrates how the hazard estimate depends on the bandwidth of the kernel function:

For h = 0.1, the estimated hazard function is highly variable, showing sharp fluctuations due to

overfitting; for moderate bandwidths (h = 0.5, 1.0), the estimate smooths out, providing a more

stable representation of the hazard; for a large bandwidth (h = 2.0), the hazard function is overly

smoothed, losing important details. Thus, it is critical to find an h that strikes a balance between

bias and variation.

0 2 4 6 8
Time

0.0

0.2

0.4

0.6

0.8

1.0

Ha
za

rd

Hazard Estimate (bw=0.1)
Bandwidth = 0.1

0 2 4 6 8
Time

0.0

0.2

0.4

0.6

0.8

1.0

Ha
za

rd

Hazard Estimate (bw=0.5)
Bandwidth = 0.5

0 2 4 6 8
Time

0.0

0.2

0.4

0.6

0.8

1.0

Ha
za

rd

Hazard Estimate (bw=1.0)
Bandwidth = 1.0

0 2 4 6 8
Time

0.0

0.2

0.4

0.6

0.8

1.0

Ha
za

rd

Hazard Estimate (bw=2.0)
Bandwidth = 2.0

Figure 9: Kernel hazard function estimates for different bandwidths.

6.1 Derivation of the optimal bandwidth

Recall that we assume (Ti, Ci) are i.i.d. for i = 1, . . . , n and so are (Xi,∆i). For simplicity, we

consider points t away from 0 (in particular, t > h). To facilitate the later development, we extend
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the integration limits to (−∞,∞) as λ(s) = 0 when s < 0:

E
[
λ̃(t)

]
=

∫ ∞

0
Kh(t− s)λ(s) ds =

∫ ∞

−∞
Kh(t− s)λ(s) ds.

Substitute Kh(t− s) = 1
hK
(
t−s
h

)
and change variables by letting

u =
t− s

h
=⇒ s = t− hu, ds = −h du.

Then,

E
[
λ̃(t)

]
=

∫ ∞

−∞

1

h
K(u)λ(t− hu) (h du)

=

∫ ∞

−∞
K(u)λ(t− hu) du.

Assume that λ(t) is twice continuously differentiable and expand λ(t − hu) in a Taylor series

about t:

λ(t− hu) = λ(t)− huλ′(t) +
h2u2

2
λ′′(t) + o(h2).

Thus,

E
[
λ̃(t)

]
=

∫ ∞

−∞
K(u)

[
λ(t)− huλ′(t) +

h2u2

2
λ′′(t) + o(h2)

]
du

= λ(t)

∫ ∞

−∞
K(u) du− hλ′(t)

∫ ∞

−∞
uK(u) du+

h2λ′′(t)

2

∫ ∞

−∞
u2K(u) du+ o(h2).

Since K satisfies normalization and is symmetric about zero, we have∫ ∞

−∞
K(u) du = 1 and

∫ ∞

−∞
uK(u) du = 0.

So K can be regarded as a probability density function. Define the second moment of K as

µ2(K) =

∫ ∞

−∞
u2K(u) du.

Thus,

E
[
λ̃(t)

]
= λ(t) +

h2λ′′(t)

2
µ2(K) + o(h2).

The bias of the estimator is

Bias
[
λ̃(t)

]
= E

[
λ̃(t)

]
− λ(t) =

h2

2
µ2(K)λ′′(t) + o(h2).

Neglecting the o(h2) term, the leading term in the bias is given by

Bias
[
λ̃(t)

]
≈ h2

2
µ2(K)λ′′(t),
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and the squared bias is

Bias2[λ̃(t)] ≈ h4

4
µ2(K)2

(
λ′′(t)

)2
.

Next, we recall the variance of λ̃(t) can be approximated by

Var
(
λ̃(t)

)
≈
∫ ∞

0
K2

h(t− s)
λ(s)

Y (s)
ds =

∫ ∞

−∞
K2

h(t− s)
λ(s)

Y (s)
ds,

where the last equality holds because λ(s) = 0 when s < 0. Changing variables with u = (t− s)/h

so that ds = −h du and using

Kh(t− s) =
1

h
K

(
t− s

h

)
=

1

h
K(u),

we have

Var
(
λ̃(t)

)
≈ 1

h

∫ ∞

−∞
K2(u)

λ(t− hu)

Y (t− hu)
du.

With h small, we approximate

λ(t− hu) ≈ λ(t), Y (t− hu) ≈ Y (t),

because of the smoothness of λ(t) and the left continuity of Y (t). Thus,

Var
(
λ̃(t)

)
≈ λ(t)

hY (t)

∫ ∞

−∞
K2(u) du,

and defining

R(K) =

∫ ∞

−∞
K2(u) du,

we obtain

Var
(
λ̃(t)

)
≈ λ(t)R(K)

hY (t)
.

When the sample size n is large, one may approximate Y (t) ≈ nSX(t), where SX(t) = P (Xi > t)

is the survival function of the observed survival time.

We choose h to minimize the integrated mean squared error (IMSE), defined as

IMSE(h) =

∫ ∞

0
E
[
(λ̃(t)− λ(t))2

]
dt.

Neglecting higher-order terms, this decomposes into the integrated squared bias and integrated

variance:

IMSE(h) ≈
∫ ∞

0

h4

4
µ2(K)2

(
λ′′(t)

)2
dt+

∫ ∞

0

λ(t)R(K)

hY (t)
dt.

For simplicity, denote

A =
1

4
µ2(K)2

∫ ∞

0

(
λ′′(t)

)2
dt,
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and, assuming Y (t) ≈ nSX(t),

B =
R(K)

n

∫ ∞

0

λ(t)

SX(t)
dt.

Then, we can write

IMSE(h) ≈ Ah4 +
B

h
.

To find the optimal h, we minimize IMSE(h) by differentiating it with respect to h and setting

the derivative to 0: d
dh

[
Ah4 + B

h

]
= 4Ah3 − B

h2 = 0. Solving it for h yields: hopt =
(

B
4A

)1/5
.

Substituting back the definitions of A and B, we have

hopt =

 R(K)
∫∞
0

λ(t)
SX(t)dt

nµ2(K)2
∫∞
0

(
λ′′(t)

)2
dt

1/5

= O(n−1/5).

Below Figure 10 shows bias, variance and IMSE and how optimal h can be obtained (with

constants chosen as 1 for illustrative purposes).
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Figure 10: Squared bias, variance, and MSE versus the bandwidth h.

7 Cox Proportional Hazards Models

The Cox proportional hazards model (Cox 1972) is a widely used survival analysis method that

estimates covariate effects on the hazard function without assuming a parametric baseline hazard,

ensuring flexibility across fields like medicine and epidemiology. Its key innovation, partial likeli-

hood, enables efficient estimation of regression coefficients without modeling the baseline hazard,

focusing on relative hazard ratios (Tsiatis 2006).

51



We define the hazard function for individual i with a vector of covariates Zi ∈ Rp, at time t, as

λi(t) = lim
dt→0+

1

dt
P (t ≤ Ti < t+ dt | Ti ≥ t, Zi).

The Cox proportional hazards model stipulates that

λi(t) = λ0(t)e
Z⊤
i β (7.1)

where λ0(t) represents the baseline hazard and β is the vector of regression coefficients which is to

be estimated based on the observed (Xi,∆i, Zi), for i = 1, . . . , n. The term “proportional hazards”

indicates that covariates have a multiplicative effect on the baseline hazard, e.g., if one group has

a hazard that is twice that of another group at any time point, it remains twice as high at all

times. This assumption allows the model to estimate the coefficients without specifying the exact

form of the baseline hazard function. For simplicity in theoretical derivations, we assume that Zi

belongs to a compact subset of Rp and that the true parameter value, β0, also lies within a compact

subset of Rp. Additionally, we assume Zi is time-independent, though our results can be extended

to the time-dependent case. The filtration considered hereafter has been extended to incorporate

covariate information. Specifically, for t > 0, we define

Ft = σ{Ni(s), Yi(s), Zi, 1 ≤ i ≤ n, 0 ≤ s ≤ t}.

Proposition 7.1. Suppose that Zi, i = 1, . . . , n, are bounded in Rp and so is the true parameter

value, β0. We define a right continuous process:

Mi(t) = Ni(t)−
∫ t

0
Yi(s)e

Z⊤
i β0λ0(s)ds. (7.2)

Then it is a square integrable martingale with respect to Ft, with the variation process of

⟨Mi⟩(t) = Ai(t)
def
=

∫ t

0
Yi(s)e

Z⊤
i β0λ0(s)ds.

Proof. Homework.

We estimate β0 based on the observed data. Let us extract the observed failure time points:

t1 < t2 < . . . < tnd
from the data. Assuming no ties at the failure time points, we let (k) provide

the case label for the patient failing at tk (thus T(k) = tk), so the covariates associated with the

nd failures are Z(1), . . . , Z(nd), and in particular, λ(k)(t) = λ0(t) exp(Z
⊤
(k)β). For an individual who

experiences an event at time tk, the probability of this event occurring, given that one event occurs

at this time point, is:

P (the observed failure at tk|one failure at tk among R(tk)) =
λ(k)(tk)∑

j∈R(tk)
λj(tk)

, (7.3)

where at each time t, the risk set R(t) consists of individuals who are at risk of experiencing the

event just before time t. It follows that the overall partial likelihood is the product of the individual
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likelihood contributions for all observed events:

L(β) =

nd∏
k=1

λ(k)(tk)∑
j∈R(tk)

λj(tk)
=
∏
i∈D

λi(Xi)∑
j∈R(Xi)

λj(Xi)
=
∏
i∈D

eZ
⊤
i β∑

j∈R(Xi)
eZ

⊤
j β

, (7.4)

where D is the set of the labels of individuals who were observed to have failed. We derive (7.3)

and (7.4) in detail later.

Taking the natural logarithm of the partial likelihood yields the log partial likelihood:

ℓ(β) =
∑
i∈D

Z⊤
i β − log

∑
j∈R(Xi)

exp(Z⊤
j β)


=

n∑
i=1

∆i

Z⊤
i β − log

n∑
j=1

Yj(Xi) exp(Z
⊤
j β)


=

n∑
i=1

∫ ∞

0

Z⊤
i β − log

n∑
j=1

Yj(t) exp(Z
⊤
j β)

 dNi(t).

We estimate β0, the truth, by maximizing ℓ(β), and the resulting estimator, denoted by β̂, is called

the maximum partial likelihood estimator (MPLE). This structure of the partial likelihood allows

for the estimation of regression coefficients while circumventing the need to specify the baseline

hazard function.

7.1 Derivation of partial likelihood

We consider a sequential conditioning argument as done in Fleming & Harrington (2013). Suppose

(A1, B1), (A2, B2), . . . , (AK , BK) is a collection of pairs of events. Applying the recursive formula

of conditional probability, the likelihood of all 2K events is:

P{AKBKAK−1BK−1 . . . A1B1} =
K∏
k=2

P{Ak | BkAk−1Bk−1 . . . A1B1}P (A1|B1)

×
K∏
k=2

P{Bk | Ak−1Bk−1 . . . A1B1}P{B1}.

The first two terms would form a partial likelihood for a parameter, if ignoring the last two.

Let us apply this to the observed data, (Xi,∆i, Zi), for i = 1, . . . , n. Let Bk be the event

describing (i) the observed censoring times within the intervals [tk−1, tk) for k = 1, . . . , nd+1 (with

t0 = 0 and tnd+1 = ∞), along with their associated case labels; and (ii) the fact that a failure has

been observed at tk. If Ak is the event specifying the label k of the case failing at tk, then the

observed data are equivalent to the event B1A1 . . . Bnd
And

Bnd+1 and the likelihood of the data will

be:

P (B1A1 . . . Bnd
And

Bnd+1).
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Fleming & Harrington (2013) reasoned that since the censoring times do not provide additional

information about the failure distribution, it is plausible to assume that the events Bk contain little

information about the regression parameter β. Therefore, a reasonable partial likelihood for β will

be:
nd∏
k=2

P{Ak | BkAk−1Bk−1 . . . A1B1}P (A1|B1).

We next show that

P{Ak | BkAk−1Bk−1 . . . A1B1} =
λ(k)(tk)∑

j∈R(tk)
λj(tk)

,

which corresponds to (7.3). To prove this, we note that Bk = B
(i)
k B

(ii)
k , where B

(i)
k = the observed

times of censoring in the interval [tk−1, tk) and the case labels associated with these censored times,

and Bii
k = a failure at tk. (As no death would happen at ∞, we define Bnd+1 = B

(i)
nd+1.)

P{Ak | BkAk−1Bk−1 . . . A1B1} =
P{AkB

(ii)
k | B(i)

k Ak−1Bk−1 . . . A1B1}
P{B(ii)

k | B(i)
k Ak−1Bk−1 . . . A1B1}

=
P{Ak, a failure at tk | B(i)

k Ak−1Bk−1 . . . A1B1}
P{a failure at tk | B(i)

k Ak−1Bk−1 . . . A1B1}

=
P{Ak | B(i)

k Ak−1Bk−1 . . . A1B1}
P{a failure at tk | B(i)

k Ak−1Bk−1 . . . A1B1}
.

Note that the event of B
(i)
k Ak−1Bk−1 . . . A1B1 describes the risk set at tk. Hence,

P{Ak | B(i)
k Ak−1Bk−1 . . . A1B1} = P{Ak | individual (k) is at risk at tk} = λ(k)(tk).

The first equality holds because individual (k) is independent of the other individuals, and the

second equality holds because the probability that individual (k) experiences a failure at tk, given

he/she is still at risk, is equal to his hazard function. On the other hand, the denominator of the

conditional probability consists of the sum of hazard functions over all individuals in the risk set

R(tk), as any of them could experience the failure:

P{a failure at tk | B(i)
k Ak−1Bk−1 . . . A1B1} =

∑
j∈R(tk)

λj(tk).

Thus,

P{Ak | BkAk−1Bk−1 . . . A1B1} =
λ(k)(tk)∑

j∈R(tk)
λj(tk)

.

Therefore,
nd∏
k=2

P{Ak | BkAk−1Bk−1 . . . A1B1}P (A1|B1) =

nd∏
k=1

λ(k)(tk)∑
j∈R(tk)

λj(tk)

which corresponds to (7.4).
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7.2 Maximum partial likelihood estimator (MPLE)

Introduce

S(k)(β, t) =
1

n

n∑
j=1

Yj(t)Z
⊗k
j eZ

⊤
j β, k = 0, 1, 2.

Here, Z⊗0
j = 1, Z⊗1

j = Zj , Z
⊗2
j = ZjZ

⊤
j .

To facilitate the theory, we consider the log partial likelihood as

ℓ(β, τ) =

n∑
i=1

∫ τ

0

(
Z⊤
i β − logS(0)(β, t)

)
dNi(t), (7.5)

where τ < ∞ such that Λ0(τ) < ∞. Similarly, the score function is

U(β, τ) =

n∑
i=1

∫ τ

0

(
Zi − Z̄(β, t)

)
dNi(t), (7.6)

where

Z̄(β, t) =
S(1)(β, t)

S(0)(β, t)
. (7.7)

We introduce the parameter τ in the log-likelihood and score functions to highlight their dependence

on using information up to τ . The choice of τ instead of ∞ as the upper limit of integration helps

prevent divergence and ensures that the integral is restricted to a finite observation period. This

avoids unrealistic assumptions about unobserved or censored times. In practice, τ is often chosen

as the maximum observation period in the study.

The maximum partial likelihood estimator (MPLE) of β, denoted by β̂, is obtained by maximiz-

ing (7.5) or equivalently solving the score equation U(β, τ) = 0. Under mild regularity conditions,

ℓ(β, τ) is a concave function, ensuring a unique maximizer. We analyze the Hessian matrix of (7.5):

H(β) = −
∫ τ

0

S(2)(β, t)

S(0)(β, t)
−

{
S(1)(β, t)

S(0)(β, t)

}⊗2
 dN(t)

def
= −I(β), (7.8)

where we have also defined the observed information matrix I(β). Hence, concavity holds if H(β)

is negative definite or I(β) is positive definite, which requires the integrand to be non-degenerate.

For example, if the number of individuals at risk, S(0)(β, t), is too small at any time t, the integrand

may become unstable and the Hessian may become singular. We may require the sample size to

be sufficiently large.

Furthermore, even if the log partial likelihood function ℓ(β) is concave, perfect separation by

covariates (or linear combinations of covariates) can lead to situations where ℓ(β) does not have

a finite solution. In such cases, as the parameter estimates approach infinity, the likelihood may

diverge, making it impossible to obtain meaningful estimates for the coefficients.
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7.3 Consistency of MPLE

If we can ensure that problematic scenarios are avoided, maximizing equation (7.5) can produce

a unique and finite estimate β̂. In this context, we examine the asymptotic properties of the

estimator β̂ and introduce additional sufficient regularity conditions that ensure the validity of

maximum likelihood estimation. Throughout this discussion, || · || denotes the maximum absolute

value of the elements of a vector or matrix, while | · | represents the Euclidean norm for a vector

(and, trivially, the absolute value for a scalar).

(C.1) There exists an open and convex neighborhood B of β0 ∈ Rp and, respectively, scalar, vector,

and matrix functions, s(0), s(1), s(2) such that

sup
t∈[0,τ ],β∈B

||S(k)(β, t)− s(k)(β, t)|| → 0

in probability.

(C.2) In the same B, it holds that, for any β ∈ B and t ∈ [0, τ ],

s(1)(β, t) =
∂

∂β
s(0)(β, t), s(2)(β, t) =

∂

∂β
s(1)(β, t) =

∂2

∂β∂β⊤ s(0)(β, t).

We also assume each element of s(k)(β, t), k = 0, 1, 2 is bounded, and in addition, s(0)(β, t)

is bounded away from 0 in B × [0, τ ]. In addition, for each k and t ∈ [0, τ ], s(k)(β, t) is

equicontinuou at β0. That is, for any ϵ > 0, there exists a δ > 0 such that ||β − β0|| < δ

implies ||s(k)(β, t)− s(k)(β0, t)|| < ϵ for all t ∈ [0, τ ].

(C.3) Define

v(β, t) =
s(2)(β, t)

s(0)(β, t)
−

(
s(1)(β, t)

s(0)(β, t)

)⊗2

. (7.9)

We assume

Σ(β0, τ)
def
=

∫ τ

0
v(β0, s)s

(0)(β0, s)λ0(s)ds (7.10)

is positive definite.

Condition (C.1) establishes an asymptotic stability requirement for the functions S(k). The

first part of Condition (C.2) ensures the interchangeability of differentiation and limits. The other

parts of Condition (C.2), along with Condition (2.3), specifies regularity conditions analogous to

those commonly encountered in standard asymptotic likelihood theory. These conditions can be

verified in certain specific cases and may be relaxed under alternative circumstances; see Fleming

& Harrington (2013).

We state two useful lemmas.

Lemma 7.2. Let B be an open convex subset of Rp, and let Fn, n = 1, 2, . . . be a sequence of

random concave functions on B and f a real-valued function on B such that for all β ∈ B,

lim
n→∞

Fn(β) = f(β) in probability.
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Then:

1. The function f is concave.

2. For all compact subsets A of B,

sup
β∈A

|Fn(β)− f(β)| → 0 in probability, as n → ∞.

3. If Fn has a unique maximum at βn and f has one at β, then βn → β0 in probability.

Proof. See Anderson & Gill (1982).

Proposition 7.3. Let β̂ denote the MPLE of β maximizing (7.5), and β0 the true value of β in

(7.5). Then

lim
n→∞

β̂ = β0 in probability, i.e., β̂ is consistent.

Proof. We first establish convergence of the log partial likelihood by expressing a closely related

term as a martingale. Let Xn(β, ·) denote the process which, at time t, is the difference in log

partial likelihoods over [0, t), evaluated at an arbitrary β and the true value β0.

Xn(β, t) = n−1 {ℓ(β, t)− ℓ(β0, t)} ,

where

ℓ(β, t) =
n∑

i=1

∫ t

0

Z⊤
i β − log

n∑
j=1

Yj(t) exp(Z
⊤
j β)

 dNi(t).

Hence,

Xn(β, t) = n−1
n∑

i=1

∫ t

0

[
(β − β0)

⊤Zi − log
S(0)(β, s)

S(0)(β0, s)

]
dNi(s),

Define

An(β, t) = n−1
n∑

i=1

∫ t

0

[
(β − β0)

⊤Zi − log
S(0)(β, s)

S(0)(β0, s)

]
Yi(s) exp(Z

⊤
j β0)λ0(s)ds.

Hence,

Xn(β, t)−An(β, t) = n−1
n∑

i=1

∫ t

0

[
(β − β0)

⊤Zi − log
S(0)(β, s)

S(0)(β0, s)

]
dMi(s),

where Mi(t) = Ni(t) −
∫ t
0 Yi(s)e

Z⊤
i β0λ0(s)ds is a square integrable martingale with respect to Ft,

with the variation process of d⟨Mi⟩(s) = Yi(s)e
Z⊤
i β0λ0(s)ds.

Take τn,i = n∧sup
{
s :
∣∣∣(β − β0)

⊤Zi − log S(0)(β,s)

S(0)(β0,s)

∣∣∣ ≤ n
}
, then

∫ t∧τn,i

0

[
(β − β0)

⊤Zi − log S(0)(β,s)

S(0)(β0,s)

]
dMi(s)

is a square integrable martingale by Property 2. Therefore, for any given β ∈ B, the process

Xn(β, ·)−An(β, ·) is a local square integrable martingale with the predictable variation process (by
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Property 4):

⟨Xn(β, ·)−An(β, ·)⟩(t) = n−2
n∑

i=1

∫ τ

0

[
(β − β0)

⊤Zi − log
S(0)(β, s)

S(0)(β0, s)

]2
d⟨Mi⟩(s)

= n−2
n∑

i=1

∫ τ

0

[
(β − β0)

⊤Zi − log
S(0)(β, s)

S(0)(β0, s)

]2
Yi(s)e

Z⊤
i β0λ0(s)ds

= n−1

∫ τ

0

[
(β − β0)

⊤S(2)(β0, s)(β − β0)− 2(β − β0)
⊤S(1)(β0, s) log

S(0)(β, s)

S(0)(β0, s)

+

{
log

S(0)(β, s)

S(0)(β0, s)

}2

S(0)(β0, s)

λ0(s)ds

which converges to 0 in probability as n → ∞ using Conditions (C.1) and (C.2) (so that the integral

is bounded in probability).

Applying the Lenglart inequality to the process of {(Xn(β, t)−An(β, t))
2}t∈[0,τ ], we have

Xn(β, t)−An(β, t) → 0 in probability

uniformly over [0, τ ]. In particular,

Xn(β, τ)−An(β, τ) → 0 in probability.

Since under Condition (C.1), An(β, τ) converges to A(β, τ) for all β ∈ B, where

A(β, τ) =

∫ τ

0

[
(β − β0)

⊤s(1)(β0, s)− log
s(0)(β, s)

s(0)(β0, s)
s(0)(β0, s)

]
λ0(s) ds,

it follows that Xn(β, τ) must also converge in probability to the same limit, as long as β ∈ B.

As Xn(β, τ) is a concave function of β with a unique maximum, and that A(β, τ) has a unique

maximum at β = β0 under Conditions (C.2) and (C.3), the theorem follows by Lemma 7.2.

7.4 Asymptotic normality of MPLE

To show the asymptotic normality, we add a new condition.

(C.4) There exists a δ > 0 so that

sup
1≤i≤n,t∈[0,τ ]

n−1/2|Zi|Yi(t)I(β⊤
0 Zi > −δ|Zi|) → 0

in probability.

This condition, which is important for verifying the Lindeberg condition for the martingale central
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limit theorem holds trivially if the covariates Zi are bounded. We present several useful lemmas.

Lemma 7.4. Given any real numbers a and b, and ε > 0, then

(a− b)2I(|a− b| ≥ ε) ≤ 4a2I(|a| ≥ ε/2) + 4b2I(|b| ≥ ε/2).

Proof. First, with (a − b)2 ≤ 2a2 + 2b2, multiplying both sides by I(|a − b| > ε), we obtain

(a − b)2I(|a − b| ≥ ε) ≤ (2a2 + 2b2)I(|a − b| ≥ ε). As |a − b| ≥ ε implies |a| ≥ ε/2 or |b| ≥ ε/2;

otherwise, it would lead to |a− b| < ε. Hence,

I(|a− b| ≥ ε) ≤ I(|a| ≥ ε/2) + I(|b| ≥ ε/2).

Therefore,

(a− b)2I(|a− b| ≥ ε) ≤ (2a2 + 2b2) (I(|a| ≥ ε/2) + I(|b| ≥ ε/2)) .

Expanding the right-hand side:

(a− b)2I(|a− b| > ε) ≤ 2a2I(|a| > ε/2) + 2a2I(|b| > ε/2) + 2b2I(|a| > ε/2) + 2b2I(|b| > ε/2).

Now we show

a2I(|b| ≥ ε/2) + b2I(|a| ≥ ε/2) ≤ b2I(|b| ≥ ε/2) + a2I(|a| ≥ ε/2).

Rewriting the inequality, we want to show:

a2I(|b| ≥ ε/2)− a2I(|a| ≥ ε/2) ≤ b2I(|b| ≥ ε/2)− b2I(|a| ≥ ε/2). (7.11)

For this, we consider 3 possible cases.

Case 1: I(|a| ≥ ε/2) = I(|b| ≥ ε/2), in which case, the both sides of (7.11) are equal to 0, so

the inequality holds trivially.

Case 2: I(|b| ≥ ε/2) = 1 and I(|a| ≥ ε/2) = 0, so (7.11) would simplify to: a2 ≤ b2. On the

other hand, this case means |b| ≥ ε/2 and |a| < ε/2, so a2 ≤ b2 will hold.

Case 3: I(|b| ≥ ε/2) = 0 and I(|a| ≥ ε/2) = 1, so (7.11) would simplify to: b2 ≤ a2. In fact,

this case means |b| < ε/2 and |a| ≥ ε/2, so the inequality does hold.

Hence, after exhausting the 3 possible cases, we have shown (7.11) holds. Thus the lemma

holds.

We next present a simplified version of multivariate martingale central limit theorem, which

will be used for showing the weak convergence of score functions.

Lemma 7.5. Consider a sequence of p-variate local square integrable martingales, (Un
1 , . . . , U

n
p ),

where, for l = 1, . . . , p and for 0 ≤ t ≤ τ ,

Un
l (t) =

n∑
i=1

∫ t

0
Hn

i,l(s)dMi(s)
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where Mi(s) is as defined in (7.2) and Hn
i,l(t) is locally bounded and predictable with respect to Ft.

Also define

Un
l,ϵ(t) =

n∑
i=1

∫ t

0
Hn

i,l(s)I(|Hn
i,l(s)| ≥ ϵ)dMi(s)

Suppose for each l, l′ ∈ {1, . . . , p} and for all t > 0, the covariation process

⟨Un
l , U

n
l′ ⟩(t) → Cll′(t), (7.12)

in probability and

⟨Un
l,ϵ⟩(t) → 0, (7.13)

in probability. Then {Un
1 (τ), . . . , U

n
p (τ)} converges weakly and jointly to a multivariate normal

distrbution with mean 0 and a p× p variance-covariance matrix, whose (l, l′)-th entry is Cll′(τ).

We next consider an extension of the DCT theorem.

Lemma 7.6. Suppose |Xn| ≤ Y a.s., and E(Y ) < ∞, and Xn → X in probability. Then E(Xn) →
E(X).

Proof. We prove by contradiction. Suppose E(Xn) ̸→ E(X). Then there exists an ϵ0 > 0 such that

there is a sequence nk such that

|E(Xnk
)− E(X)| ≥ ϵ0. (7.14)

As Xnk
→ X, there exists a further subsequence nkj such that Xnkj

→ X almost surely. Then

DCT leads to

E(Xnkj
) → E(X),

which however contradicts to (7.14).

We apply the multivariate martingale central limit theorem to obtain the next proposition,

which is critical for obtaining the asymptotic normality results. We will prove it in detail.

Proposition 7.7. Suppose Conditions (C.1)-(C.4) hold and the dimension of Zi is p.

(Part 1) Define the normalized vector score

n−1/2U(β0, τ) = n−1/2
n∑

i=1

∫ τ

0
{Zi − Z̄(β0, s)}dNi(s).

Then it converges weakly to a multivariate Gaussian distribution with mean 0 and a p×p variance-

covariance matrix Σ(β0, τ), whose l, l′-th entry is:∫ τ

0
v(β0, s)ll′s

(0)(β0, s)λ0(s)ds.

(Part 2) If β̂ is a consistent estimator of β0, then

||n−1I(β̂)− Σ(β0, τ)|| → 0
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in probability as n → ∞. In addition, define β̂(u) = β0 + u(β̂ − β0) for u ∈ [0, 1]. Then

||n−1I(β̂(u))− Σ(β0, τ)|| → 0

in probability uniformly with respect to u ∈ [0, 1].

Proof. (Part 1) Define

Un(β0, t) = n−1/2
n∑

i=1

∫ t

0
{Zi − Z̄(β0, s)}dNi(s),

which is equal to

Un(β0, t) = n−1/2
n∑

i=1

∫ t

0
{Zi − Z̄(β0, s)}dMi(s),

where Mi(t) = Ni(t)−
∫ t
0 Yi(s)e

β⊤
0 Ziλ0(s)ds.

Here, Un(β0, t) is a p-variate process, with the l-th component written as:

Un
l (β0, t) =

n∑
i=1

∫ t

0
n−1/2{Zi,l − Z̄l(β0, s)}dMi(s),

where Zi,l is the l-th component of Zi and

Z̄l(β0, x) =

∑n
j=1 Yj(x)Zj,le

β⊤
0 Zj∑n

i=1 Yi(x)e
β⊤
0 Zi

.

Define Hn
i,l(s) = n−1/2(Zi,l − Z̄l(β0, s)), so that

Un
l (β0, t) =

n∑
i=1

∫ t

0
Hn

i,l(s)dMi(s).

Since Hn
i,l(s) is locally bounded (considering, for example, a localizing sequence, τn = n ∧ sup{s :

|Z̄l(β0, s)| ≤ n}) and predictable, applying Property 4 yields that Un
l (β0, t) is a local square

integrable martingale, and

⟨Un
l (β0, t), U

n
l′ (β0, t)⟩ =

n∑
i=1

∫ t

0
Hn

i,l(s)H
n
i,l(s)d⟨Mi⟩(s)

=
1

n

n∑
i=1

∫ t

0
(Zi,l − Z̄l(β0, s))(Zi,l′ − Z̄l′(β0, s))Yi(s)e

Z⊤
i β0λ0(s)ds,

which converges in probability to ∫ t

0
v(β0, s)ll′s

(0)(β0, s)λ0(s)ds,
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for all t ∈ [0, τ ], under Conditions (C.1) and (C.2). Here, v(β, s) is defined in (7.9).

We next verify the Lindeberg condition. For any ϵ > 0, define, for all l and t, that

Un
l,ϵ(β0, t) =

n∑
i=1

∫ t

0
Hn

i,l(s)I(|Hn
i,l(s)| ≥ ϵ)dMi(s),

which, by Property 4, is a local square integrable martingale with the variation process given by

⟨Un
l,ϵ(β0, t)⟩ =

n∑
i=1

∫ t

0
{Hn

i,l(s)}2I(|Hn
i,l(s)| ≥ ϵ)d⟨Mi⟩(s) =

n∑
i=1

∫ t

0
{Hn

i,l(s)}2I(|Hn
i,l(s)| ≥ ϵ)Yi(s)e

β⊤
0 Ziλ0(s)ds.

Applying Lemma 7.4, the last integral is bounded by

4

n

n∑
i=1

∫ t

0
Z2
i,lI(n

−1/2|Zi,l| ≥ ϵ/2)Yi(s)e
β⊤
0 Ziλ0(s)ds

+
4

n

n∑
i=1

∫ t

0
Z̄2
l (β0, s)I(n

−1/2|Z̄l(β0, s)| ≥ ϵ/2)Yi(s)e
β⊤
0 Ziλ0(s)ds. (7.15)

The second term of (7.15) can be written as

4

∫ t

0
Z̄2
l (β0, s)I(n

−1/2|Z̄l(β0, s)| ≥ ϵ/2)S(0)(β0, s)λ0(s)ds.

With Conditions (C.1) and (C.2), it follows that when n is large, P ((n−1/2|Z̄l(β0, s)| ≥ ϵ/2) → 0

uniformly in s. That is I(n−1/2|Z̄l(β0, s)| ≥ ϵ/2) = 0 with probability going to 1 uniformly in s.

Hence, the second term of (7.15) converges to 0 in probability.

For the first term, we consider two cases: given the δ defined in (C.4), we consider the events

of {β⊤
0 Zi > −δ|Zi|} and {β⊤

0 Zi ≤ −δ|Zi|} separately. That is, we consider

4

n

n∑
i=1

∫ t

0
Z2
i,lI(n

−1/2|Zi,l| ≥ ϵ/2, β⊤
0 Zi > −δ|Zi|)Yi(s)eβ

⊤
0 Ziλ0(s)ds (7.16)

+
4

n

n∑
i=1

∫ t

0
Z2
i,lI(n

−1/2|Zi,l| ≥ ϵ/2, β⊤
0 Zi ≤ −δ|Zi|)Yi(s)eβ

⊤
0 Ziλ0(s)ds. (7.17)

On the other hand, Condition (C.4) implies that, for any ϵ′ > 0, there exists an N , such that

when n > N , the event that n−1/2|Zi,l| ≥ ϵ/2 when β⊤
0 Zi ≤ −δ|Zi| and Yi(s) = 1 for all s ∈ [0, τ ]

and i = 1, . . . , n,, will happen with probability < ϵ′. This means the probability of I(n−1/2|Zi,l| ≥
ϵ/2, β⊤

0 Zi ≤ −δ|Zi|)Yi(s) = 0 will converge to 1 uniformly for all s ∈ [0, τ ] and i = 1, . . . , n,

uniformly. Hence, (7.16) converges to 0 in probability.

Studying the integrand of (7.17), we note that

Z2
i,lI(n

−1/2|Zi,l| ≥ ϵ/2, β⊤
0 Zi ≤ −δ|Zi|)Yi(s)eβ

⊤
0 Zi ≤ I(n−1/2|Zi,l| ≥ ϵ/2)Z2

i,le
−δ|Zi|.
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We first consider the case that n−1/2|Zi,l| ≥ ϵ/2, and note Z2
i,le

−δ|Zi| ≤ Z2
i,le

−δ|Zi,l|. Because

x2e−δx → 0 when δ > 0 as x → ∞. Hence for any η > 0, there exists an N0 such that when

n > N , Z2
i,le

−δ|Zi,l| < η. On the other hand, if n−1/2|Zi,l| < ϵ/2, I(n−1/2|Zi,l| ≥ ϵ/2, β⊤
0 Zi ≤

−δ|Zi|)Yi(s)eβ
⊤
0 Zi = 0 < η holds trivially. As this N0 does not depend on i, hence when n > N0,

I(n−1/2|Zi,l| ≥ ϵ/2, β⊤
0 Zi ≤ −δ|Zi|)Yi(s)eβ

⊤
0 Zi < η

for all i. Therefore, (7.17) is bounded by η
∫ τ
0 λ0(s)ds which can be arbitrarily small, and must

converge to 0 in probability. Hence, with all conditions of the (multivariate) Martingale CLT are

satisfied, the first part of the results holds.

(Part 2) We consider ∥∥∥∥ 1nI(β̂)− Σ(β0, τ)

∥∥∥∥
≤

∥∥∥∥∫ τ

0
(V (β̂, s)− v(β̂, s))

1

n
dN(s)

∥∥∥∥ (7.18)

+

∥∥∥∥∫ τ

0
(v(β̂, s)− v(β0, s))

1

n
dN(s)

∥∥∥∥ (7.19)

+

∥∥∥∥∫ τ

0
v(β0, s)

1

n

n∑
i=1

dMi(s)

∥∥∥∥ (7.20)

+

∥∥∥∥∫ τ

0
v(β0, s)(S

(0)(β0, s)− s(0)(β0, s))λ0(s)ds

∥∥∥∥, (7.21)

where N(s) =
∑n

i=1Ni(s). First, (7.18) is bounded by

sup
s

||V (β̂, s)− v(β̂, s))||

{
1

n

n∑
i=1

Ni(τ)

}

Conditions (C.1) and (C.2) implies sups||V (β̂, s)− v(β̂, s))|| → 0 in probability. Also by the law of

large numbers
∑n

i=1Ni(τ) → ENi(τ) < 1. Hence, (7.18) converges to 0 in probability.

Using the equicontinuity of v(β, s) at β0, we have sups ||v(β̂, s)− v(β0, s))|| → 0 in probability

as β̂ → β0 in probability. As (7.19) is bounded by

sup
s

||v(β̂, s)− v(β0, s))||

{
1

n

n∑
i=1

Ni(τ)

}
,

it must converge to 0 in probability.

With the (i, j)-th entry, vij(β0, s), of v(β0, s), we consider the martingale process∫ t

0
vij(β0, s)

1

n

n∑
i=1

dMi(s)
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which has the variation process of∫ t

0
v2ij(β0, s)

1

n2
d⟨Mi⟩(s) =

1

n

∫ t

0
v2(β0, s)S

0(β0, s)λ0(s)ds.

With Conditions (C.1) and (C.2) and that S0(β0, s) is bounded for all s ∈ [0, τ ], we apply Lemma

7.6 and obtain that

nVar

{∫ τ

0
vij(β0, s)

1

n

n∑
i=1

dMi(s)

}
= E

{∫ τ

0
v2(β0, s)S

0(β0, s)λ0(s)ds

}
→
∫ τ

0
v2(β0, s)s

0(β0, s)λ0(s)ds < ∞

as n → ∞. Hence, Var
{∫ τ

0 vij(β0, s)
1
n

∑n
i=1 dMi(s)

}
→ 0. Applying the Markov inequality, we

obtain that ∫ τ

0
vij(β0, s)

1

n

n∑
i=1

dMi(s) → 0

in probability for 1 ≤ i, j ≤ p. Hence, (7.20) converges to 0 in probability.

Finally, (7.21) is bounded by∫ τ

0
||v(β0, s)|||S(0)(β0, s)− s(0)(β0, s)|λ0(s)ds.

Because |S(0)(β0, s)− s(0)(β0, s)| → 0 in probability uniformly in s ∈ [0, τ ] under Condition (C.1),

(7.21) converges to 0 in probability.

Combining the results for (7.18)-(7.21), we have∥∥∥∥ 1nI(β̂)− Σ(β0, τ)

∥∥∥∥→ 0

in probability as long as β̂ → β0 in probability.

Examining the convergence result in each step, we can also conclude that

||n−1I(β̂(u))− Σ(β0, τ)|| → 0

in probability uniformly with respect to u ∈ [0, 1].

Lemma 7.8. Let F : Rp → Rp be continuously differentiable on an open convex set containing the

points β0 and β1. Then

F (β1)− F (β0) =

(∫ 1

0
J(β0 + u(β1 − β0))du

)
(β1 − β0),

where J(β) is the Jacobian matrix of F at β.
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Proof. Define a path from β0 to β1 by the line segment:

β(t) = β0 + t(β1 − β0), u ∈ [0, 1].

Here, the endpoints correspond to β(0) = β0 and β(1) = β1. The derivative of F along this path

can be expressed using the chain rule:

d

du
F (β(u)) = J(β(u)) · dβ

du
= J(β(u)) · (β1 − β0),

where J(β(t)) is the Jacobian matrix of F evaluated at β(u), and dβ
du = β1 − β0. Integrating the

derivative from u = 0 to u = 1, we have:

F (β1)− F (β0) =

∫ 1

0

d

du
F (β(u)) du =

∫ 1

0
J(β(u)) · (β1 − β0) du.

That is,

F (β1)− F (β0) =

(∫ 1

0
J(β0 + u(β1 − β0)) du

)
(β1 − β0).

Finally, we are ready to prove the asymptotic normality for β̂.

Proposition 7.9. Under Conditions (C.1)-(C.4), n1/2(β̂−β0) converges in distribution to a mean

zero p-variate Gaussian random variable with covariance matrix {Σ(β0, τ)}−1.

Proof. Applying Lemma 7.8, we have

U(β̂, τ) = U(β0, τ)−
(∫ 1

0
I(β0 + u(β̂ − β0)) du

)
(β̂ − β0).

Recalling U(β̂, τ) = 0, we have(∫ 1

0

1

n
I(β0 + u(β̂ − β0)) du

)√
n(β̂ − β0) = n−1/2U(β0, τ).

By Proposition 7.7 (Part 1), n−1/2U(β0, τ) is asymptotically normal with covariance matrix

Σ(β0, τ).

Now consider∥∥∥∥∫ 1

0

1

n
I(β0 + u(β̂ − β0)) du− Σ(β0, τ)

∥∥∥∥ ≤
∫ 1

0

∥∥∥∥ 1nI(β̂(u))− Σ(β0, τ)

∥∥∥∥ du
Since β̂ is consistent, Proposition 7.7 (Part 2) shows the uniform convergence of 1

nI(β̂(u)) to
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the nonsingular matrix Σ(β0, τ) for u ∈ [0, 1]. Hence,∫ 1

0

1

n
I(β0 + u(β̂ − β0)) du → Σ(β0, τ)

in probability. The result follows from Slutsky’s Theorem.

The proposition justifies the use of a confidence interval based on a multivariate normal random

vector for inferring β. Also, heuristically, the variance of β̂ is approximately n−1Σ−1(β0, τ), which

can be estimated by I−1(β̂), the inverse of the observed information. This approach has been

implemented by the software.

7.5 Application to the Veterans’ Administration lung cancer dataset

We applied the proportional hazards model to the Veterans’ Administration Lung Cancer dataset, a

publicly available dataset from the survival package in R. This dataset includes 137 male patients

with advanced lung cancer who participated in a randomized trial comparing a standard treatment

to an experimental treatment. Among them, 128 deaths were recorded, indicating a high mortality

rate. The patients’ ages ranged from 39 to 82 years, with a mean age of approximately 63 years.

The dataset categorizes lung cancer into four types: squamous (reference group), small cell, ade-

nocarcinoma, and large cell. Of the 137 patients, 31 (23%) had squamous cell carcinoma, 27 (20%)

had small cell carcinoma, 14 (10%) had adenocarcinoma, and 25 (18%) had large cell carcinoma,

while 40 (29%) had unspecified or missing cancer cell type data. Baseline physical function was

assessed using the Karnofsky Performance Score (KPS), ranging from 10 (severe disability) to 90

(minimal disability), with an average score of 60. Most patients had KPS values below 70, indicat-

ing significant functional impairment. Our objectives were to evaluate the experimental treatment’s

impact on survival, analyze the effects of baseline KPS and age, and assess the influence of cancer

cell types on survival outcomes. The dataset includes the following variables:

• time: Observed survival time in days.

• status: Event indicator (1 = death, 0 = censored).

• trt: Treatment group (1 = standard treatment, 2 = test treatment).

• age: Age of the patient in years.

• celltype: Type of cancer cell (squamous, small cell, adeno, large).

• karno: Karnofsky performance score (0–100, higher scores indicate better functioning).

• diagtime: Months from diagnosis to randomization.

• prior: Indicator of prior therapy (0 = no, 1 = yes).

We fitted a Cox proportional hazards model to assess the effects of treatment group, Karnofsky

performance score, age, and cancer cell type (using squamous cell type as the reference group) on

survival:

λ(t|Z) = λ0(t) exp(β1trt + β2karno + β3age + β4small cell + β5adeno + β6large cell),
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where λ0(t) represents the baseline hazard function, and Z denotes the vector of covariates included

in the model. The table below presents the results of the Cox model. The test treatment was

associated with a hazard ratio of 0.85 (95% CI: 0.67–1.09), suggesting a 15% reduction in the

hazard of death, though this result was not statistically significant (p = 0.21); see Figure 11.

The Karnofsky performance score was a strong predictor of survival, with a hazard ratio of 0.96

(95% CI: 0.95–0.98, p < 0.001), indicating that better baseline functioning significantly reduces the

hazard of death. Age was not significantly associated with survival (HR = 1.01, p = 0.45). Among

cancer cell types, large-cell carcinoma had the worst prognosis, with a 45% higher hazard of death

compared to squamous cell carcinoma (HR = 1.45, p < 0.001), followed by small-cell carcinoma

(HR = 1.25, p = 0.04). Adenocarcinoma showed a modest but non-significant increase in hazard

(HR = 1.10, p = 0.42).

Covariate Estimate (β) SE HR 95% CI p-value

Treatment (test) −0.16 0.13 0.85 [0.67, 1.09] 0.21
Karnofsky score −0.04 0.01 0.96 [0.95, 0.98] < 0.001
Age 0.01 0.01 1.01 [0.99, 1.03] 0.45
Cell type (small cell) 0.22 0.11 1.25 [1.01, 1.54] 0.04
Cell type (adeno) 0.09 0.12 1.10 [0.87, 1.39] 0.42
Cell type (large) 0.37 0.12 1.45 [1.15, 1.83] < 0.001

Table 1: Analysis of the Veterans’ Administration Lung Cancer dataset using the Cox proportional
hazards model.
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Figure 11: The survival comparison between the two treatment arms.

Below is the R code to fit the Cox model and reproduce the results:

# Load necessary packages

library(survival)

library(dplyr)

# Load the dataset

data(veteran)
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# Fit the Cox proportional hazards model

cox_model <- coxph(Surv(time , status) ~ trt + karno + age + celltype , data =

veteran)

# Display the results

summary(cox_model)

# You can also plot the survival curves based on the treatment groups

# Survival curves for the treatment groups

surv_fit <- survfit( Surv ( time , status ) ~ trt , data = veteran)

# Plot survival curves

plot(surv_fit , main="Survival␣Curves␣by␣Treatment␣Group", xlab="Time␣(days)", ylab

="Survival␣Probability", col = c("red", "blue"))

legend("topright", legend = c("Standard␣Treatment", "Test␣Treatment"), col = c("

red", "blue"), lty = 1)

7.6 Cox models with time-dependent covariates

Time-dependent covariates are variables that change over time and can influence the hazard function

dynamically. Unlike standard Cox proportional hazards models, which assume fixed covariates,

models with time-dependent covariates allow for a more flexible and realistic representation of

evolving risk factors. Time-dependent covariates can be categorized into two broad types:

• (External time-dependent covariates) These vary over time but are not influenced by the sub-

ject’s survival status. Examples include: Temperature fluctuations affecting patient health;

Changes in air pollution levels influencing respiratory conditions; Economic indicators affect-

ing the risk of financial distress.

• (Internal time-dependent covariates) These depend on the subject’s own history and poten-

tially their survival status. Examples include: Blood pressure levels measured at different

times in a cardiac study; Tumor size progression in an oncology study; CD4 cell count for

HIV patients monitored over time.

For i = 1, . . . , n, let Zi(t) be a p-dimensional time-dependent covariate vector for individual i.

We also introduce

Z̃i(t) = {Zi(s) : 0 ≤ s ≤ t},

which represents the trajectory of the covariate process from time 0 to t, i.e., the history of Zi(s) up

to time t. We define the hazard function for individual i at t, given the trajectory of the covariate

process up to t, as

λi(t) = lim
dt→0+

1

dt
P (t ≤ Ti < t+ dt | Ti ≥ t, Z̃i(t)).

If there is no ambiguity, we write

λi(t) = λ(t | Z̃i(t)),

emphasizing the dependence of the hazard on the covariate path. The conditional hazard function

68



for the Cox model with time-dependent covariates is specified by:

λ(t | Z̃i(t)) = λ0(t) exp(Zi(t)
⊤β), (7.22)

which states that, in this model, the hazard at time t depends only on the current covariate value

Zi(t), given the past trajectory of covariates, reflecting a Markov-like assumption.

Define

Ft = σ{Ni(s), Yi(s), Zi(s), 1 ≤ i ≤ n, 0 ≤ s ≤ t}.

It follows that Mi(t) = Ni(t) −
∫ t
0 Yi(s)λ(s | Z̃i(s))ds = Ni(t) −

∫ t
0 Yi(s)λ0(s) exp(Zi(s)

⊤β0)ds is a

martingale with respect to Ft. Here, we assume that (7.22) holds and β0 is the true value of β.

As in the case of Cox models with time-independent covariates, the estimation of β0 can be

performed using partial likelihood. Suppose we observe n independent individuals, each observed

with (Xi,∆i, Z̃(Xi)). Define the risk set at time t is defined as: R(t) = {j : Xj ≥ t}. Then similar

to the derivation in Section , the partial likelihood function for time-dependent covariates is

L(β) =
n∏

i=1

[
exp(Zi(Xi)

⊤β)∑
j∈R(Xi)

exp(Zj(Xi)⊤β)

]∆i

.

Taking the log of L(β), we obtain

ℓ(β) =

n∑
i=1

∆i

Zi(Xi)
⊤β − log

∑
j∈R(Xi)

exp(Zj(Xi)
⊤β)


=

n∑
i=1

∫ ∞

0

Zi(t)
⊤β − log

n∑
j=1

Yj(t) exp(Zj(t)
⊤β)

 dNi(t).

This formulation accounts for the time-varying nature of Zi(·) at the observed event times and

properly handles censoring. To facilitate the theory, instead of using ∞ as the upper limit of the

integral range, we consider the log partial likelihood with an upper integral limit of τ satisfying

τ < ∞ and Λ0(τ) < ∞ (normally, τ is taken to be the maximal followup time in the data):

ℓ(β, τ) =

n∑
i=1

∫ τ

0

Zi(t)
⊤β − log

n∑
j=1

Yj(t) exp(Zj(t)
⊤β)

 dNi(t). (7.23)

Denote the maximum partial likelihood estimator as β̂. Under that Zi(·) are bounded processes,

we can show that β̂ is a consistent estimator of β. In addition, the MPLE satisfies:

√
n(β̂ − β)

d−→ N(0,Σ−1(β0, τ)),

where Σ(β0, τ) is as defined in (7.10) after modifying

S(k)(β, t) =
1

n

n∑
j=1

Yj(t)Zj(t)
⊗keZj(t)

⊤β, k = 0, 1, 2.
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Here, Zj(t)
⊗0 = 1, Zj(t)

⊗1 = Zj(t), Zj(t)
⊗2(t) = Zj(t)Zj(t)

⊤. The proofs of the consistency and

normality results follow those of Propositions 7.3 and 7.9, respectively.

7.7 Setting up data for analysis with time-dependent covariates

Careful data preparation is crucial and we give some practical steps for structuring the dataset

for proper modeling of the time-dependent nature of the covariate.. Briefly, unlike traditional Cox

models, which assume fixed covariates, time-dependent covariates require a longitudinal (start-stop)

format, where each individual may have multiple records corresponding to different time intervals.

Each row in the dataset represents an interval [tstart, tend] during which the covariate values are

constant.

Consider a simple dataset with two subjects. For Subject 1, the covariate is 2.1 from time 0 to

5 (event = 0), and it increases to 3.5 between times 5 and 8, when the subject fails at time 8 (event

= 1). Subject 2 experiences the event at time 7 (event = 1), with a constant covariate value of 1.8

throughout the entire observation period. To conduct the analysis, the data must be formatted as

follows:

ID Entry Time (tstart) Exit Time (tend) Event Covariate (Z(t))

1 0 5 0 2.1

1 5 8 1 3.5

2 0 7 1 1.8

Therefore, the first step for structuring the data is to develop a “start-stop” format. When

covariates change over time, we break each individual’s record into multiple rows, with each row

representing a period where the covariate remains constant. The second step involves handling

time-dependent covariates. It is crucial to ensure that covariate values are recorded at observed

failure time points; if the data are collected intermittently, such as during medical checkups, it

may be necessary to use interpolation or carry-forward methods to fill in the missing values. These

methods help maintain the integrity of the data when covariate values are not observed at every

time point.

The following is the R code for the example.

library(survival)

# Example dataset: Start -Stop format

data <- data.frame(

ID = c(1, 1, 2),

start = c(0, 5, 0),

stop = c(5, 8, 7),

event = c(0, 1, 1),

Z = c(2.1, 3.5, 1.8) # Time -dependent covariate

)

# Fit Cox model with time -dependent covariates

cox_model <- coxph(Surv(start , stop , event) ~ Z, data = data)

summary(cox_model)
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The “start-stop” format implies that, at any given time t, only individuals who are still at risk

of experiencing the event should be included in the analysis. The risk set at time t includes all

individuals for whom the start time of the observation interval is less than or equal to t, and the

end time is greater than t (i.e., tstart ≤ t < tend). We note that the partial likelihood based on the

table or constructed by treating the three records as independent individuals remains the same,

i.e.,
exp(1.8β)

exp(1.8β) + exp(3.5β)
. (7.24)

Splitting the data does not change the risk set composition at each failure time. The start-stop

format simply restructures the data to reflect periods of constant covariate values without alter-

ing the hazard function or an individual’s contribution to the likelihood. Furthermore, the two

sub-records for Subject 1 cannot experience an event simultaneously, so if treated as separate indi-

viduals, their corresponding counting processes would be orthogonal (see Section 8.1). As a result,

these sub-records can be considered as coming from independent individuals without affecting the

likelihood calculation. Therefore, even with multiple records originated from the same individuals,

clustering does not need to be accounted for.

Finally, corresponding to (7.24), the maximum partial likelihood estimate of β is −∞. This

is due to perfect separation in the example data; larger values of the covariate Z correspond to

lower hazards, meaning subjects with higher Z are less likely to fail earlier. We may add a penalty

term (Ridge or Firth Correction) to the likelihood function to shrink the estimates and prevent

divergence.

When incorporating time-dependent covariates in Cox models, we often consider these aspects.

First, it is crucial to ensure that these covariates do not change in response to the outcome itself,

as this could introduce time-dependent confounding. Such confounding arises when a covariate is

associated with both the outcome and other variables in the model, potentially distorting the true

relationships. Second, it is important to assess the proportional hazards assumption even when

using time-dependent covariates. The Cox model assumes that the hazard ratio remains constant

over time, but this assumption must be carefully validated. If the hazard ratio varies over time,

alternative modeling approaches or stratification may be necessary. Finally, incorporating baseline

covariates enhances the comprehensiveness of the model by accounting for factors that influence

the hazard both at specific time points and over the study’s duration. This improves the model’s

ability to capture the full complexity of survival data.

8 Competing Risks

Competing risks arise when an individual is subject to multiple potential failure types, meaning

that an event can occur due to different causes. This is a common situation in medical studies,

reliability engineering, and risk assessment. Unlike classical survival models, which assume a single

failure type and treat all failures as the same event, competing risks explicitly account for the fact

that different failure causes prevent the occurrence of others. In the following, we use T to denote

the failure time (the time until the first occurrence of any failure) and J to denote the failure type,

where J ∈ {1, 2, . . . ,K}. Thus, the observable data for each subject is a pair of (T, J), or the time
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of failure and its cause.

Classical survival analysis methods, particularly the Kaplan-Meier estimator, face two major

limitations in the presence of competing risks. First, they typically assume non-informative cen-

soring; however, in many clinical settings, competing events introduce dependent (informative)

censoring, violating this assumption and leading to biased estimates. For example, in studies of

lung cancer–specific mortality, deaths from cardiovascular disease or infection may reflect underlying

health status and therefore cannot be treated as non-informative censoring. Second, these methods

estimate survival under a hypothetical scenario in which all other causes of failure are removed. In

hematopoietic stem cell transplantation, for instance, applying Kaplan-Meier to estimate mortality

due to hematologic relapse may underestimate the true risk by ignoring transplant-related deaths,

such as those due to graft-versus-host disease. To overcome these limitations, a competing risks

framework should be adopted. It models each cause of failure using either cause-specific hazards

or cumulative incidence functions, while properly accounting for the presence of other competing

events. To illustrate, consider a study of patients undergoing heart surgery, where the outcome of

interest is death. Patients may die from various causes, such as cardiac-related deaths (e.g., heart

failure or stroke) or non-cardiac-related deaths (e.g., infection or cancer). Competing risks analysis

allows researchers to estimate the probability of each type of event over time and address questions

such as

1. What is the probability of dying from a specific cause by a given time?

• This is captured by the cumulative incidence function (CIF) (defined later), which esti-

mates the probability that a patient dies from a specific cause before time t, accounting

for other competing causes.

• Example: “What is the probability that a patient dies from a cardiac-related cause

within five years of surgery?”

2. How do different factors influence the cause-specific failure rates?

• Using cause-specific hazard models (defined later), we can study how risk factors (e.g.,

age, pre-existing conditions, lifestyle) affect the likelihood of different types of death.

• Example: “Does smoking increase the risk of cardiac-related death more than non-

cardiac-related death?”

3. What is the relative contribution of each failure type to overall mortality?

• The CIF can be used to compare the relative proportion of deaths due to each cause

over time.

• Example: “Among patients who die within five years, what percentage die due to cardiac-

related versus non-cardiac-related causes?”

4. How do treatments affect the risk of different types of death?

• A competing risks framework helps evaluate whether a treatment reduces mortality for

all causes or just for specific ones.

• Example: “Does a new heart surgery technique reduce cardiac-related mortality without

increasing the risk of non-cardiac-related death?”

5. What is the expected time to failure for each failure type?
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• Instead of treating time-to-event as a single outcome, competing risks models can esti-

mate time-to-failure distributions separately for each cause.

• Example: “On average, how long after surgery do cardiac-related versus non-cardiac-

related deaths occur?”

These questions center on the following two concepts in competing risks.

• Cause-specific hazard function, which represents the instantaneous rate of failure from a cause,

say cause k, as

αk(t) = lim
dt→0

P (T ∈ [t, t+ dt), J = k | T ≥ t)

dt
. (8.1)

Obviously, it connects with the overall hazard function via λ(t) =
∑K

k=1 αk(t).

• Cumulative incidence function (CIF) (also referred to as the subdistribution function), which

gives the probability of failing from a cause, say, cause k, by time t, as

Fk(t) = P (T ≤ t, J = k). (8.2)

Corresponding to (8.3), we also define the CIF density function (commonly known as subdis-

tribution density) as

fk(t) = lim
dt→0+

1

dt
P (t ≤ Ti < t+ dt, Ji = k). (8.3)

8.1 Multivariate counting processes

For each independent individual i = 1, . . . , n, we use the notion of counting process to represent

the number of events of type k = 1, . . . ,K, occurring by time t, which is a step function with at

most one jump from 0 to 1. In the absence of censoring, we would define:

• Nk,i(t) as the counting process for failure type k, where k = 1, . . . ,K, for subject i = 1, . . . , n.

• Define Ni(t) = (N1,i(t), . . . , NK,i(t)), a multivariate counting process for subject i with all K

types of failure, that is, each component tracks the occurrence of a specific type of failure,

ensuring only one can happen per subject.

Each Nk,i(t) is a right-continuous, increasing process that takes values in {0, 1} for each individual,

where Nk,i(t) = 1 if failure type k has occurred by time t and 0 otherwise. That Ni(t) is a

multivariate counting process follows from Definition 2.5.1 of Fleming & Harrington (2013) as no

two component processes jump at the same time.

To incorporate censoring, we introduce the censoring time Ci, and define the observed time as

Xi = min(Ti, Ci) and censoring indicator ∆i = I(Ti ≤ Ci). We observe (Xi,∆i, J
∗
i = Ji∆i), where

J∗
i ensures that we only observe the failure type Ji for subject i when ∆i = 1. The counting process

is then modified to:

Nk,i(t) = I(Xi ≤ t,∆i = 1, J∗
i = k). (8.4)

Additionally, we define the at-risk process for subject i, as Yi(t) = I(Xi ≥ t), which indicates
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whether an individual is still under observation at time t. With the modified definition of Nk,i,

Ni(t) = (N1,i(t), . . . , NK,i(t)) is still a multivariate counting process as each Nk,i(t) is a counting

process, with no two processes, e.g., Nk,i(t) and Nk′,i(t), k ̸= k′, jump at the same time.

Proposition 8.1. Assume Ti, Ji are independent of Ci and Ti is continuous. If P (Xi ≥ t) > 0,

then

lim
dt→0+

1

dt
P (t ≤ Xi < t+ dt, ∆i = 1, J∗

i = k | Xi ≥ t) = αk(t).

Proof. We consider

P (t ≤ Xi < t+ dt,∆i = 1, J∗
i = k | Xi ≥ t) =

P (t ≤ Xi < t+ dt,∆i = 1, Ji = k)

P (Xi ≥ t)
,

while expanding the numerator,

P (t ≤ Xi < t+ dt,∆i = 1, Ji = k) = P (t ≤ Ti < t+ dt, Ji = k, Ti ≤ Ci)

= P (t ≤ Ti < t+ dt, Ji = k)P (Ti ≤ Ci | Ti ∈ [t, t+ dt], Ji = k).

Since Ti is continuous, we have

lim
dt→0+

1

dt

P (t ≤ Ti < t+ dt, Ji = k)

P (Ti ≥ t)
= αk(t).

With fk(s) defined in (8.8), we consider

P (Ti ≤ Ci | Ti ∈ [t, t+ dt), Ji = k)

=
P (Ti ≤ Ci, Ti ∈ [t, t+ dt), Ji = k)

P (Ti ∈ [t, t+ dt), Ji = k)

=

∫ t+dt
t fk(s)P (Ci ≥ s)ds∫ t+dt

t fk(s)ds
,

where the last equality comes from the independence of Ci with Ti and Ji. Let dt → 0+ and apply

L’Hôpital’s rule, we have

lim
dt→0+

P (Ti ≤ Ci | Ti ∈ [t, t+ dt), Ji = k) =
fk(t)P (Ci ≥ t)

fk(t)
= P (Ci ≥ t).

Putting all pieces together, we have

lim
dt→0+

1

dt
P (t ≤ Xi < t+ dt, ∆i = 1 | Xi ≥ t)

= lim
dt→0+

1

dt

P (t ≤ Ti < t+ dt, Ji = k, Ti ≤ Ci)

P (Xi ≥ t)

= lim
dt→0+

1

dt

P (t ≤ Ti < t+ dt, Ji = k)

P (Ti ≥ t)
× P (Ti ≥ t)

P (Xi ≥ t)
lim

dt→0+
P (Ti ≤ Ci | Ti ∈ [t, t+ dt), Ji = k)

= αk(t)×
P (Ti ≥ t)P (Ci ≥ t)

P (Xi ≥ t)
= αk(t).
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The result indicates that under independent censoring, the observed data can be used to estimate

the cause-specific hazard function, for example, by using the Nelson-Aalen. Moreover, it can help

develop the martingale framework for competing risks, as shown below.

8.2 Martingale representation

Proposition 8.2. Define

Ft = σ{Nk,i(s), Yi(s) : 0 ≤ s ≤ t, k = 1, . . . ,K, i = 1, . . . , n}.

Under the independent censoring assumption, the compensated process:

Mk,i(t) = Nk,i(t)−
∫ t

0
Yi(s)αk(s)ds, (8.5)

is a martingale with respect to Ft.

Proof. To prove that Mk,i(t) is a martingale with respect to Ft, we need to show

(i) the process Mk,i(t) is adapted to Ft;

(ii)

E[|Mk,i(t)|] < ∞ for all t;

(iii)

E[dMk,i(t) | Ft− ] = 0.

First, the processMk,i(t) involvesNk,i(t), which is adapted to Ft, and the integral
∫ t
0 Yi(s)αk(s) ds,

where Yi(s) is adapted to Fs and αk(s) is non-random. Hence, the integral is predictable and

adapted to Ft. Therefore, Mk,i(t) is adapted to Ft.

Second, as Nk,i(t) ≤ 1 , we have that E[Nk,i(t)] ≤ 1. With
∫ t
0 Yi(s)αk(s)ds ≤

∫ t
0 Yi(s)λ(s)ds, it

follows that

E
∫ t

0
Yi(s)λ(s)ds ≤ 1

as shown in the proof of Proposition 2.7. Therefore, Mk,i(t) is integrable as E[|Mk,i(t)|] ≤ 2.

Finally, with

dMk,i(t) = dNk,i(t)− Yi(t)αk(t) dt,

we compute conditional expectation of dMk,i(t) given Ft− by considering the conditional expecta-

tion of each term. In particular, using Proposition 8.1 and following the proof of Proposition 2.7,

we have

E[dNk,i(t) | Ft−] = Yi(t)αk(t) dt.

75



The term Yi(t)αk(t) dt is predictable and hence measurable with respect to Ft− , implying

E[Yi(t)αk(t) dt | Ft−] = Yi(t)αk(t) dt.

Therefore,

E[dMk,i(t) | Ft−] = Yi(t)αk(t) dt− Yi(t)αk(t) dt = 0.

Further, define Nk(t) =
∑n

i=1Nk,i(t), Y (t) =
∑n

i=1 Yi(t) and Mk(t) =
∑n

i=1Mk,i(t), then

Mk(t) = Nk(t)−
∫ t
0 Y (s)αk(s)ds is a martingale with respect to Ft. This follows because each Mk,i

is a martingale with respect to Ft. Immediately, we have

⟨Mk⟩(t) =
∫ t

0
Y (s)αk(s)ds

and

⟨Mk,Mk′⟩(t) = 0 (8.6)

which follow from Theorem 2.5.2 of Fleming & Harrington (2013). This means, under the com-

peting risk framework, any two cause-specific martingale process of Mk,Mk′ are orthogonal (or

uncorrelated) as the corresponding counting processes cannot jump at the same time.

8.3 The Nelson-Aalen estimator of the cause-specific hazard

Define the cumulative cause-specific hazard function as

Ak(t) =

∫ t

0
αk(s)ds.

It does not represent a probability, but rather a measure of the expected number of failures (per

unit population) from cause k by time t in the presence of competing risks. We are interested in

estimating it because CIF depends on it while accounting for the risk of failure from other causes.

In the following, we use the Nelson-Aalen estimator to nonparametrically estimate Ak(t) and

then discuss its property.

Âk(t) =

∫ t

0

dNk(s)

Y (s)
. (8.7)

Proposition 8.3. If u ∈ (0,∞] is such that

Y (s) → ∞ in probability as n → ∞,

for any s ≤ u, then

sup
0≤s≤u

|Âk(s)−Ak(s)| → 0 as n → ∞.
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Proof. Note that

Âk(s)−Ak(s) =

∫ t

0

dMk(s)

Y (s)
,

and follow the proof of Proposition 8.3.

8.4 The estimator of cumulative incidence function

The cumulative incidence function (CIF) as defined in (8.3) gives the probability of failing from

cause k by time t and it can be shown that it is related to the cause-specific hazard via

Fk(t) =

∫ t

0
S(s−)αk(s)ds =

∫ t

0
S(s−)dAk(s), (8.8)

where the overall survival function S(t) = P (T > t) and S(t−) = P (T ≥ t). Obviously, S(t) =

S(t−) when T is continuous. With (8.8), it is natural to estimate the CIF with

F̂k(t) =

∫ t

0
Ŝ(s−)dÂk(s),

where Ŝ is the Kaplan-Meier estimate of S(t) and Âk(s) is as defined in (8.7). We now prove the

uniform consistency of F̂k(t).

Proposition 8.4. If u ∈ (0,∞] is such that

Y (s) → ∞ in probability as n → ∞,

for any s ≤ u, then

sup
t≤u

|F̂k(t)− Fk(t)| → 0

in probability.

Proof. We first consider

F̂k(t)− Fk(t)

=

∫ t

0
Ŝ(s−)d(Âk(s)−Ak(s)) +

∫ t

0
(Ŝ(s−)− S(s−))dAk(s)

=

∫ t

0

Ŝ(s−)

Y (s)
dMk(s) +

∫ t

0
(Ŝ(s−)− S(s−))dAk(s).

We apply the Lenglart inequality for the first item. Specifically, we let Zk(t) =
∫ t
0

Ŝ(s−)
Y (s) dMk(s).

As Ŝ(s−) and Y (s) are measurable with respect to Ft− , it follows that Zk(t) is a locally square

integrable martingale with respect to Ft. In addition, its quadratic varition process is

⟨Zk⟩(t) =
∫ t

0

Ŝ2(s−)

Y 2(s)
d⟨Mk⟩(s) =

∫ t

0

Ŝ2(s−)

Y (s)
dAk(s).
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So, for any ϵ > 0, we are ready to use the Lenglart inequality to quantify P
{
sup0≤s≤u Z

2
k(s) > ε

}
.

In fact, by the Lenglart inequality, for any η > 0, it holds that

P

{
sup

0≤s≤u
|Zk(s)| >

√
ε

}
= P

{
sup

0≤s≤u
Z2
k(s) > ε

}
<

η

ε
+ P

{∫ u

0

Ŝ2(s−)

Y (s)
dAk(s) > η

}

<
η

ε
+ P

{
Ak(u)

Y (u)
> η

}
<

η

ε
+ P

{
Λ(u)

Y (u)
> η

}
as Ak(u) < Λ(u) < ∞, the overall cumulative hazard. Since Y (u) → ∞ in probability as n → ∞,

the second term on the right-hand side above converges to zero as n → ∞ for any η > 0. Since η

and ϵ are arbitrary, the uniformly convergence holds.

Finally, because

sup
t≤u

∣∣∣∣∫ t

0
(Ŝ(s−)− S(s−))dAk(s)

∣∣∣∣ ≤ sup
t≤u

|Ŝ(t)− S(t)|Ak(u)

≤ sup
t≤u

|Ŝ(t)− S(t)|Λ(u),

it converges to 0 in probability because Λ(u) < ∞ and by the uniform consistency of Ŝ(t) for t ≤ u

(Proposition 4.4).

8.5 Cause-specific proportional hazards models

To model the impact of covariates on the cause-specific hazard function, say, αk(t) for failure type

k, we may use a Cox-type proportional hazards framework, which evaluates how covariates influence

the instantaneous risk of experiencing a specific type of failure. This modeling approach is useful

in competing risks settings, where subjects are at risk of multiple mutually exclusive failure types.

Let Zi denote the vector of covariates associated with subject i. The cause-specific hazard for

failure type k, conditional on Zi, is specified as:

αk(t | Zi) = αk,0(t) exp
(
β⊤
k Zi

)
,

where αk,0(t) is the baseline hazard function for cause k, representing the hazard function when

all covariates set to zero; and βk is a vector of regression coefficients specific to failure type k,

quantifying the log-relative effect of covariates on the cause-specific hazard. This formulation

assumes proportional hazards for each cause: the hazard for failure type k is proportional across

individuals with different covariate profiles, and the proportionality factor is given by exp(β⊤
k Zi).

The coefficients βk describe the effect of covariates on the hazard of failing from cause k, in the

presence of competing risks. A positive coefficient βkj > 0 implies that the j-th covariate increases

the risk of failure from cause k. In the following, we use β0
k ∈ Rp to denote the true value of β0

k

and our main goal is to estimate β0
k using the observed data.

The cause-specific proportional hazards model can be estimated using the partial likelihood

method from Cox regression, treating failures from other causes as censored at their failure times.
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For each cause k, define the risk set R(t) = {i : Xi ≥ t}, and consider only the individuals who

fail from cause k as events, while others (including failures from different causes and censored

observations) contribute to the risk set. The partial likelihood for cause k is given by:

Lk(βk) =
∏

i:Ji=k,∆i=1

exp(β⊤
k Zi)∑

j∈R(Ti)
exp(β⊤

k Zj)
. (8.9)

The log partial likelihood is:

ℓk(βk) =
∑

i:Ji=k,∆i=1

β⊤
k Zi − log

 ∑
j∈R(Ti)

exp(β⊤
k Zj)

 . (8.10)

Maximizing ℓk(βk) provides estimates of βk for each cause. As shown later, we can fit separate Cox

models for each failure type as the estimates for each failure type are asymptotically independent.

8.6 Large Sample Theory for the Cause-Specific Proportional Hazards Estima-
tor

Suppose we observe n independent and identically distributed survival data with competing risks:

{(Xi,∆i, Ji, Zi), i = 1, . . . , n},

where Xi = min(Ti, Ci) is the observed time, ∆i = I(Ti ≤ Ci) is the event indicator, and Ji ∈
{1, . . . ,K} is the cause of failure (if ∆i = 1), Zi ∈ Rp is the covariate vector.

Recalling Nk,i(t) = I (Xi ≤ t,∆i = 1, J∗
i = k) where J∗

i = Ji∆i and Yi(t) = I(Xi ≥ t), we can

rewrite (8.10) as

lk(βk) =

n∑
i=1

∫ ∞

0
[β⊤

k Zi − log(

n∑
j=1

Yj(s)e
β⊤
k Zj )]dNk,i(s).

To facilitate the theory, instead of using ∞ as the upper limit of the integral range, we consider

the log partial likelihood with an upper integral limit of τ satisfying τ < ∞ and maxk
∫ τ
0 αk,0(s)ds <

∞. The choice of τ instead of ∞ as the upper limit of integration helps prevent divergence and

ensures that the integral is restricted to a finite observation period. This avoids unrealistic as-

sumptions about unobserved or censored times. In practice, τ is often chosen as the maximum

observation period in the study.

Then the MPLE β̂k is obtained by maximizing

lk(βk, τ) =

n∑
i=1

∫ τ

0
[β⊤

k Zi − log(

n∑
j=1

Yj(s)e
β⊤
k Zj )]dNk,i(s). (8.11)

The added τ (or t in later development) in the likelihood emphasizes the time-dependent nature of

the information, specifically the use of data available up to time τ (or time t), which will be critical
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in the theoretical development. We study the large sample results for β̂k, k = 1, . . . ,K.

As in Section 7.2, we first introduce notation adapted to the competing risk setting. For

k = 1, . . . ,K, we introduce

S
(0)
k (β, t) =

1

n

n∑
j=1

Yj(t)e
Z⊤
j βk , S

(1)
k (β, t) =

1

n

n∑
j=1

Yj(t)Zje
Z⊤
j βk , S

(2)
k (β, t) =

1

n

n∑
j=1

Yj(t)Z
⊗2
j eZ

⊤
j βk .

Here, Z⊗2
j = ZjZ

⊤
j . Then the score function associated with (8.11) is

U (k)(βk, τ) =
n∑

i=1

∫ τ

0

(
Zi − Z̄k(βk, t)

)
dNk,i(t), (8.12)

where

Z̄k(βk, t) =
S
(1)
k (βk, t)

S
(0)
k (βk, t)

, (8.13)

and the Hessian matrix of (8.11) is

Hk(βk) = −
∫ τ

0

S(2)
k (βk, t)

S
(0)
k (β, t)

−

{
S
(1)
k (βk, t)

S
(0)
k (βk, t)

}⊗2
 dNk(t)

def
= −Ik(βk), (8.14)

where Nk(t) =
∑n

i=1Nk,i(t), and Ik(βk) is the observed information matrix. Moreover, following

the convention used in the univariate Cox model asymptotics, we use ∥ · ∥ to denote the maximum

absolute value (sup-norm) of the elements of a vector or matrix, and | · | to indicate the Euclidean

norm for vectors or the absolute value for scalars.

We then introduce the regularity conditions adapted to the competing risk setting. For k =

1, . . . ,K, we assume

(C.1’) there exists an open and convex neighborhood Bk of β0
k ∈ Rp and, respectively, scalar, vector,

and matrix functions, s
(0)
k , s

(1)
k , s

(2)
k such that

sup
t∈[0,τ ],βk∈Bk

||S(0)
k (βk, t)− s

(0)
k (βk, t)|| → 0,

sup
t∈[0,τ ],βk∈Bk

||S(1)
k (βk, t)− s

(1)
k (βk, t)|| → 0,

sup
t∈[0,τ ],βk∈Bk

||S(2)
k (βk, t)− s

(2)
k (βk, t)|| → 0

in probability.

(C.2’) In the same Bk, it holds that, for any βk ∈ Bk and t ∈ [0, τ ],

s
(1)
k (βk, t) =

∂

∂βk
s(0)(βk, t), s

(2)
k (βk, t) =

∂

∂βk
s
(1)
k (βk, t) =

∂2

∂βk∂β
⊤
k

s
(0)
k (βk, t).

We also assume each element of s
(0)
k (βk, t), s

(1)
k (βk, t), s

(2)
k (βk, t) is bounded, and in addi-
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tion, s
(0)
k (βk, t) is bounded away from 0 in Bk × [0, τ ]. In addition, for any t ∈ [0, τ ],

s
(0)
k (βk, t), s

(1)
k (βk, t), s

(2)
k (βk, t) are equicontinuous at β0

k.

(C.3’) Define

vk(βk, t) =
s
(2)
k (βk, t)

s
(0)
k (βk, t)

−

(
s
(1)
k (βk, t)

s
(0)
k (βk, t)

)⊗2

. (8.15)

We assume

Σk(β
0
k, τ)

def
=

∫ τ

0
vk(β

0
k, s)s

(0)
k (β0

k, s)αk,0(s)ds (8.16)

is positive definite.

(C.4’) There exists a δ > 0 so that

sup
1≤i≤n,t∈[0,τ ]

n−1/2|Zi|Yi(t)I(Z⊤
i β0

k > −δ|Zi|) → 0

in probability.

Under these conditions, we establish the consistency and asymptotic normality of the MPLE β̂k as

follows.

Asymptotic Consistency

Proposition 8.5. Under Assumptions (C.1’)-(C.3’), the MPLE β̂k where 1 ≤ k ≤ K, is consis-

tent, i.e.,

β̂k
P−→ β0

k,

as n → ∞, where β0
k is the true value of the parameter vector for cause k.

Proof. Let us introduce S
(m)
k (βk, t) = 1

n

∑n
j=1 Yj(t)Z

⊗m
j eβ

⊤
k Zj ,m = 0, 1, 2, where S

(m)
k (·, ·) be a

functions on Bk × [0, τ ], where Bk be the open neighborhood for β0
k from (C.1). Now we define

the MPLE estimate β̂k for β0
k as the solution by maximizing the partial likelihood over [0, τ ]

which is lk(βk, τ) where lk(βk, τ) =
∑n

i=1

∫ τ
0 [β

⊤
k Zi − log(

∑n
j=1 Yj(s)e

β⊤
k Zj )dNk,i(s)]. We introduce

nXk,n(βk, .) as the process which, at time t, is the difference in log partial likelihoods over [0, t]

evaluated at an arbitrary βk and the true value β0
k, i.e.,

Xk,n(βk, t) = n−1{lk(βk, t)− lk(β
0
k, t)} = n−1

n∑
i=1

∫ t

0

[
(βk − β0

k)
⊤Zi − log

S
(0)
k (βk, s)

S
(0)
k (β0

k, s)

]
dNk,i(s).

Also define,

Ak,n(βk, t) = n−1
n∑

i=1

∫ t

0

[
(βk − β0

k)
⊤Zi − log

S
(0)
k (βk, s)

S
(0)
k (β0

k, s)

]
Yi(s)e

β⊤
k Ziαk,0(s)ds.
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Next we define the right continuous squared-integrable Martingale w.r.t Ft,

Mk,i(t) = Nk,i(t)−
∫ t

0
Yi(s)e

β⊤
k Ziαk,0(s)ds

with ⟨Mk,i⟩(t) =
∫ t
0 Yi(s)e

β⊤
k Ziαk,0(s)ds. Thus,

Xk,n(βk, t)−Ak,n(βk, t) = n−1
n∑

i=1

∫ t

0

[
(βk − β0

k)
⊤Zi − log

S
(0)
k (βk, s)

S
(0)
k (β0

k, s)

]
dMk,i(s).

Now, choose τn,i,k = n ∧ sup{s :
∣∣(βk − β0

k)
⊤Zi − log

S
(0)
k (βk,s)

S
(0)
k (β0

k,s)

∣∣ ≤ n}, then

∫ t∧τn,i,k

0

[
(βk − β0

k)
⊤Zi − log

S
(0)
k (βk, s)

S
(0)
k (β0

k, s)

]
dMk,i(s)

is a square integrable martingale by Property 2 since the integrand is bounded over t ∧ τn,i,k .

Therefore, for any given βk ∈ Bk (convex neighbourhood of β0
k), the process Xk,n(βk, ·)−Ak,n(βk, ·)

is a local square integrable martingale with the predictable variation process at t,

⟨Xk,n(βk, ·)−Ak,n(βk, ·)⟩(t)

=n−2
n∑

i=1

∫ t

0

[
(βk − β0

k)
⊤Zi − log

S
(0)
k (βk, s)

S
(0)
k (β0

k, s)

]2
d⟨Mk,i⟩(s)

=n−2
n∑

i=1

∫ t

0

[
(βk − β0

k)
⊤Zi − log

S
(0)
k (βk, s)

S
(0)
k (β0

k, s)

]2
Yi(s)e

β0
k
⊤
Ziαk,0(s)ds

=n−1

∫ t

0

[
(βk − β0

k)
⊤S

(2)
k (β0

k, s)(βk − β0
k)

⊤ − 2(βk − β0
k)

⊤S
(1)
k (β0

k, s) log
S
(0)
k (βk, s)

S
(0)
k (β0

k, s)

+
{
log

S
(0)
k (βk, s)

S
(0)
k (β0

k, s)

}2
S
(0)
k (β0

k, s)
]
αk,0(s)ds

p→ 0.

The last step is due to (C.1’) and (C.2’) being valid for any βk ∈ Bk, k = 1, . . . ,K. Now choosing

Hk,n(βk, t) = Xk,n(βk, t) − Ak,n(βk, t) for t ∈ [0, τ ] we apply the Lenglart inequality (Lemma 7.2

for fixed k to conclude Xk,n(βk, t)−Ak,n(βk, t)
P→ 0 uniformly over the range of t ∈ [0, τ ], since the

RHS in the Lenglart equation (Lemma 7.2) can be made arbitrarily small for given ϵ > 0. Under

Condition (C.1’) for all βk ∈ Bk, k = 1, . . . ,K, with s
(0)
k (·, ·), s(1)k (·, ·) and s

(2)
k (·, ·) being respective

dominant functions, we have

Ak,n(βk, τ) → Ak(βk, τ) =

∫ τ

0

[
(βk − β0

k)
⊤s

(1)
k (β0

k, s)− log
s
(0)
k (βk, s)

s
(0)
k (β0

k, s)
s
(0)
k (β0

k, s)
]
αk,0(s)ds.
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It follows that Xk,n(βk, τ) must converge in probability to the same limit, as long as βk ∈ Bk.

Clearly, Xn(, τ) is a concave function of βk ∈ Bk with unique maxima and under conditions (C.2’)

and (C.3’) (positive definity)(for each k) Ak(βk, τ) has unique maxima at β0
k. Thus applying lemma

(7.2) of notes, we claim β̂k which is the solution of maximizing partial likelihood over [0, τ ] converges

in probability to β0
k i.e. β̂k is consistent estimator for β0

k.

Asymptotic Normality

Proposition 8.6. Under Conditions (C.1’)-(C.4’), n1/2(β̂k − β0
k) converges in distribution to a

mean zero p-variate Gaussian random variable with covariance matrix {Σk(β
0
k, τ)}−1.

Proof. Recall that U (k)(β0
k, τ) =

∑n
i=1

∫ τ
0

{
Zi − Z̄k(β

0
k, t)

}
dNk,i(t), where Z̄k(β

0
k, t) =

S
(1)
k (βk,t)

S
(0)
k (β0

k,t)
.

Since,
n∑

i=1

{
Zi − Z̄k(β

0
k, t)

}
Yi(t)e

β0
k
⊤
Ziαk,0(t) = 0,

we can alternatively write

U (k)(β0
k, τ) =

n∑
i=1

∫ τ

0

{
Zi − Z̄k(β

0
k, t)

}
dMk,i(t)

and introduce its normalized version

U (k)
n (β0

k, τ) = n−1/2U (k)(β0
k, τ). (8.17)

Applying Lemma 7.8 choosing F (·) = U (k)(·, τ) we get

U (k)(β̂k, τ)− U (k)(β0
k, τ) =

{
−
∫ 1

0
Ik(β0

k + s(β̂k − β0
k))ds

}
(β̂k − β0

k). (8.18)

where Ik(βk) is as defined in (8.16) and Nk(s) =
∑

iNk,i(s). For later developments, we recall

vk(βk, s) =
[
S
(2)
k (βk,s)

S
(0)
k (βk,s)

−
{S

(1)
k (βk,s)

S
(0)
k (βk,s)

}⊗2
]
. Since β̂k satisfies U (k)(β̂k, τ) = 0 and because of (8.17),

(8.18) becomes

U (k)
n (β0

k, τ) =
{∫ 1

0

1

n
Ik(β0

k + s(β̂k − β0
k))ds

}√
n(β̂k − β0

k). (8.19)

With all these, we will show the theorem by two steps.

Step 1: We show the asymptotic normality of U
(k)
n (β0

k, τ). Let us introduce Un
k,l(β

0
k, t) as the

lth component of U
(k)
n (β0

k, τ), or U
n
k,l(β

0
k, t) = n−1/2

∑n
i=1

∫ τ
0

{
Zi,l − Z̄k,l(β

0
k, t)

}
dMk,i(t). Defining

Hn
k,i,l = n−1/2(Zi,l − Z̄l(β

0
k, s)),
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we can express

Un
k,l(β

0
k, t) =

n∑
i=1

∫ t

o
Hn

k,i,ldMk,i(s)

as the terms similar to Lemma 7.5. Since we can verify the above term is locally bounded and

predictable, by Property 4 Un
k,l(β

0
k, t) is a local square integrable martingale, and,

〈
Un
k,l

(
β0
k, t
)
, Un

k,l′
(
β0
k, t
)〉

=

n∑
i=1

∫ t

0
Hn

k,i,l(s)H
n
k,i,l(s)d ⟨Mk,i⟩ (s)

=
1

n

n∑
i=1

∫ t

0

(
Zi,l − Z̄l

(
β0
k, s
)) (

Zi,l′ − Z̄l′
(
β0
k, s
))

Yi(s)e
β0
k
⊤
Ziαk,0(s)ds.

Now directly from (C.1’) and (C.2’) we claim the right hand side (RHS) converges in probability

to ∫ t

0
vk(β

0
k, s)ll′s

(0)
k

(
β0
k, s
)
αk,0(s)ds

for t ∈ [0, τ ].

We next look at the Lindeberg condition. For any ϵ > 0, define, for all l and t, that

Un
k,l,ϵ

(
β0
k, t
)
=

n∑
i=1

∫ t

0
Hn

k,i,l(s)I
(
n−1/2 |Hk,i,l(s)| ≥ ϵ

)
dMk,i(s).

Again by Property 4, the above term is a square integrable martingale with,

〈
Un
k,l,ϵ

(
β0
k, t
)〉

=

n∑
i=1

∫ t

0

{
Hn

k,i,l(s)
}2

I
(∣∣Hn

k,i,l(s)
∣∣ ≥ ϵ

)
d ⟨Mk,i⟩ (s)

=n−1
n∑

i=1

∫ t

0
{Hk,i,l(s)}2 I

(∣∣Hn
k,i,l(s)

∣∣ ≥ ϵ
)
Yi(s)e

β0
k
⊤
Ziαk,0(s)ds.

By Lemma 7.4, the RHS of the above expression is bounded by

4

n

n∑
i=1

∫ t

0
Z2
i,lI
(
n−1/2 |Zi,l| ≥ ϵ/2

)
Yi(s)e

β0
k
⊤
Ziαk,0(s)ds

+
4

n

n∑
i=1

∫ t

0
Z̄2
l

(
β0
k, s
)
I
(
n−1/2

∣∣Z̄l

(
β0
k, s
)∣∣ ≥ ϵ/2

)
Yi(s)e

β0
k
⊤
Ziαk,0(s)ds

=I + II.

Now II can be expressed as

4

n∑
i=1

∫ t

0
Z̄2
l

(
β0
k, s
)
I
(
n−1/2

∣∣Z̄l

(
β0
k, s
)∣∣ ≥ ϵ/2

)
S
(0)
k (β0

k, s)ds.

By Conditions (C.1’) and (C.2’) for βk ∈ Bk, we can verify I
(
n−1/2

∣∣Z̄l

(
β0
k, s
)∣∣ ≥ ϵ/2

)
= 0 with

probability going to 1 uniformly in s, resulting II
P→ 0. Now looking at (C.4’), we split I as I1 and
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I2, where

I1 =
4

n

n∑
i=1

∫ t

0
Z2
i,lI
(
n−1/2 |Zi,l| ≥ ϵ/2, β0

k
⊤
Zi > −δ |Zi|

)
Yi(s)e

β0
k
⊤
Ziαk,0(s)ds,

I2 =
4

n

n∑
i=1

∫ t

0
Z2
i,lI
(
n−1/2 |Zi,l| ≥ ϵ/2, β0

k
⊤
Zi ≤ −δ |Zi|

)
Yi(s)e

β0
k
⊤
Ziαk,0(s)ds.

A direct consequence of (C.4’) implies that there is at least one δ > 0 such that, for a fixed c′ > 0

and for large n, there again exists a set A with P (A) > 1 − ϵ and on which I
(
n−1/2 |Zi,l| ≥

ϵ/2, β0
k
⊤
Zi ≤ −δ |Zi|

)
Yi(s) = 0 uniformly for all s ∈ [0, τ ], resulting in I1

P→ 0. Note that,

Z2
i,lI
(
n−1/2 |Zi,l| ≥ ϵ/2, β0

k
⊤
Zi ≤ −δ |Zi|

)
Yi(s)e

β0
k
⊤
Zi ≤ I

(
n−1/2 |Zi,l| ≥ ϵ/2

)
Z2
i,le

−δ|Zi|.

Now when n−1/2 |Zi,l| < ϵ/2 the results holds trivially since LHS becomes 0. When n−1/2 |Zi,l| ≥
ϵ/2, also Z2

i,le
−δ|Zi| ≤ Z2

i,le
−δ|Zi,l|. Because x2e−δx → 0 when δ > 0 as x → ∞, for any η > 0, there

exists an n0 such that when n > n0, Z
2
i,le

−δ|Zi,l| < η. This implies I2 is bounded by 4η
∫ τ
0 αk,0(s)ds

making it arbitrarily small resulting in I2
P→ 0. Hence by Lemma 7.5 we claim that

n−1/2Uk(β
0
k, τ)

d→ N(0,Σk(β
0
k, τ).

Here, the (l, l′)th entry of Σk(β
0
k, τ) is

∫ t
0 vk(β

0
k, s)ll′s

(0)
k

(
β0
k, s
)
αk,0(s)ds.

Step 2: By the definition of
∥∥ · ∥∥, it follows that

∥∥∫ 1

0

1

n
Ik(β0

k + s(β̂k − β0
k))ds− Σ(β0

k, τ)
∥∥ ≤

∫ 1

0

∥∥ 1
n
Ik(β̂k(s))− Σ(β0

k, τ)
∥∥ds (8.20)

where β̂k(s) = β0
k + s(β̂k − β0

k). We next consider∥∥∥∥ 1nI(β̂k)− Σ
(
β0
k, τ
)∥∥∥∥

≤
∥∥∥∥∫ τ

0
(Vk(β̂k, s)− vk(β̂k, s))

1

n
dNk(s)

∥∥∥∥
+

∥∥∥∥∫ τ

0

(
vk(β̂k, s)− vk

(
β0
k, s
)) 1

n
dNk(s)

∥∥∥∥
+

∥∥∥∥∥
∫ τ

0
vk
(
β0
k, s
) 1
n

n∑
i=1

dMk,i(s)

∥∥∥∥∥
+

∥∥∥∥∫ τ

0
vk
(
β0
k, s
) (

S
(0)
k

(
β0
k, s
)
− s

(0)
k

(
β0
k, s
))

αk,0(s)ds

∥∥∥∥
=Ĩ + ĨI + ĨII + ĨV,

where Vk(βk, t) =
S
(2)
k (βk,t)

S
(0)
k (βk,t)

−
(

S
(1)
k (βk,t)

S
(0)
k (βk,t)

)⊗2

.
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Now by the law of large number, we can see 1
n

∑
iNk,i(τ) → E(Nk,i(τ)) < 1. Also (C.1’) and

(C.2’) imply sups ∥Vk(β̂k, s)− vk(β̂k, s)∥
P→ 0. Note that we can also verify, by Lenglart inequality

that for c > 0 arbitrary δ > 0,

P(n−1Nk(τ) > c) ≤ δ

c
+ P(

∫ τ

0
S
(0)
k (β0

k, s)αk,0(s)ds > δ)

and by (C.2’) we can claim for large c > 0 there exists n0 such that for n ≥ n0 we have P(n−1Nk(τ) >

c) < δ. This all together along with the fact Ĩ ≤ sups
∥∥Vk(β̂k, s) − vk(β̂k, s))

∥∥{ 1
n

∑n
i=1Nk,i(τ)

}
implies that Ĩ

P→ 0.

Similarly the equicontinuity through (C.2’) on vk(βk, s) at β0
k and β̂k

P→ β0
k along with the

result established before on n−1Nk(τ) yields ĨI
P→ 0. Similarly direct consequence of (C.1’) results

in ĨV
P→ 0.

We are only left with the third term. We can prove the result by using Lenglart inequality

and thereby controlling the term by the conditions. Otherwise we can control using simple Markov

inequality. We consider (i, j)th element, vk,i,j
(
β0
k, s
)
, of vk

(
β0
k, s
)
, and consider the martingale

process
∫ t
0 vk,i,j

(
β0
k, s
)

1
n

∑n
i=1 dMk,i(s) with variation∫ t

0
v2k,i,j

(
β0
k, s
) 1

n2
d ⟨Mk,i⟩ (s) =

1

n

∫ t

0
v2k
(
β0
k, s
)
S
(0)
k

(
β0
k, s
)
αk,0(s)ds.

With Conditions (C.1’) and (C.2’) , boundedness of S
(0)
k

(
β0
k, s
)
is bounded for s ∈ [0, τ ] and weak

DCT, we get,

nVar

{∫ τ

0
vk,i,j

(
β0
k, s
) 1
n

n∑
i=1

dMk,i(s)

}
=E

{∫ τ

0
v2
(
β0
k, s
)
S0
k

(
β0
k, s
)
αk,0(s)ds

}
→
∫ τ

0
v2k
(
β0
k, s
)
s0k
(
β0
k, s
)
αk,0(s)ds

<∞.

By simple application of Markov inequality we proved ĨII
P→ 0. These all together shows,∥∥∥∥ 1nIk(β̂k)− Σk

(
β0
k, τ
)∥∥∥∥ P→ 0.

And thereafter examining the convergence result in each step, we can also conclude that∥∥∥n−1Ik(β̂k(s))− Σk(β
0
k, τ)

∥∥∥→ 0

in probability uniformly with respect to s ∈ [0, 1]. With (8.20), this implies∥∥∥∥∫ 1

0

1

n
Ik(β0

k + s(β̂k − β0
k))ds− Σk(β

0
k, τ)

∥∥∥∥→ 0

in probability. Combining Step 1, Step 2, and (8.19) and applying Slutsky’s theorem, we claim
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that √
n(β̂k − β0

k)
d→ N(0,Σ−1

k (β0
k, τ)).

The proposition establishes that inference for β0
k can be conducted using an approximate mul-

tivariate normal distribution. Moreover, based on the proof in “Step 2,” the variance of β̂k is

approximately n−1Σ−1(β0
k, τ), which can be consistently estimated by I−1

k (β̂k), the inverse of the

observed information matrix evaluated at β̂k. Confidence intervals for the components of βk are

typically constructed using the normal approximation. For the jth component, the confidence

interval is given by

β̂kj ± z1−α/2 · SE(β̂kj),

where SE(β̂kj) denotes the estimated standard error of β̂kj . Additionally, hypothesis testing for the

regression coefficients, such as using the Wald test, score test, or likelihood ratio test, is based on

the same asymptotic theory. These tests assess whether specific covariate effects are statistically

significant within the cause-specific hazard framework.

We next consider the joint distribution of (β̂1, . . . , β̂K) to understand their collective behavior

across failure types. The results may inform potential dependence, and support valid simultaneous

inference and multivariate testing. We have the following results.

Proposition 8.7. Denote by β̂ = (β̂⊤
1 , . . . , β̂

⊤
K)⊤ and β0 = ((β0

1)
⊤, . . . , (β0

K)⊤)⊤. Under (C.1’)–

(C.4’),
√
n(β̂ − β0)

d→ N
(
0, diag

{
Σ−1
1 (β0

1 , τ),Σ
−1
2 (β0

2 , τ) . . .Σ
−1
K (β0

K , τ)
})

.

Proof. We stack the the normalized score vectors, established in Proposition 8.6, for each cause as

Un

(
β0, t

)
=
(
U (1)
n

(
β0
1 , t
)⊤

, U (2)
n

(
β0
2 , t
)⊤

. . . , U (K)
n

(
β0
K , t
)⊤ )⊤

,

where, for each cause l = 1, . . . ,K,

U (l)
n

(
β0, t

)
=
(
Un
1,l

(
β0
1 , t
)
, Un

2,l

(
β0
2 , t
)
. . . , Un

K,l

(
β0
K , t
) )⊤

.

We apply Lemma 7.5. Clearly,

〈
Un
k,l

(
β0
k, t
)
, Un

k′,l′
(
β0
k′ , t
)〉

=

n∑
i=1

∫ t

0
Hn

k,i,l(s)H
n
k′,i,l′(s)d

〈
Mk,i,Mk′,i

〉
(s).

Therefore,

〈
Un
k,l

(
β0
k, t
)
, Un

k′,l′
(
β0
k′ , t
)〉

=

{
1
n

∑n
i=1

∫ t
0

(
Zi,l − Z̄l(β

0
k, s)

)(
Zi,l′ − Z̄l′(β

0
k, s)

)
Yi(s)e

β0
k
⊤
Ziαk,0(s)ds k = k′

0 k ̸= k′

because ⟨Mk,i⟩ (t) =
∫ t
0 Yi(s)e

β0
k
⊤
Ziαk,0(s)ds as well as due to the orthogonality under the competing

risk setting, i.e.,
〈
Mk,i,Mk′,i

〉
(s) = 0 for k ̸= k′; see (8.6).
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Let Bk = {(k − 1)p+ 1, . . . , kp}, for k = 1, 2 . . . ,K, be the kth block. Then,

〈
U (l)
n

(
β0, t

)
, U (l′)

n

(
β0, t

)〉
=



〈
Un
1,l

(
β0
1 , t
)
, Un

1,l′
(
β0
1 , t
)〉

(l, l′) ∈ B1〈
Un
2,l

(
β0
2 , t
)
, Un

2,l′
(
β0
2 , t
)〉

(l, l′) ∈ B2

...〈
Un
K,l

(
β0
K , t
)
, Un

K,l′
(
β0
K , t
)〉

(l, l′) ∈ BK

0 otherwise

which converges in probability to
∫ t
0 vk(β

0
k, s)ll′s

(0)
k

(
β0
k, s
)
αk,0(s)ds for (l, l′) ∈ Bk for each k and

t ∈ [0, τ ], which is nothing but (l, l′)th element of Σk(β
0
k, τ) for each k. We can verify the Lindeberg

condition as done in the proof of Proposition 8.6 and conclude

√
n(β̂ − β0)

d→ N
(
0,diag

{
Σ−1
1 (β0

1 , τ),Σ
−1
2 (β0

2 , τ) . . .Σ
−1
K (β0

K , τ)
})

.

The results show that the estimators for each failure type are asymptotically independent.

This property justifies analyzing cause-specific Cox models separately for each event type. In

medical studies involving competing risks, such as cardiovascular vs. non-cardiovascular death,

various forms of cancer recurrence, or progression to organ failure vs. mortality, this separation

is especially useful, because covariate effects can be interpreted without needing to adjust for

correlations between outcomes, and inference procedures remain valid without incorporating cross-

covariance. For instance, one might find that a treatment lowers the risk of cardiovascular death

while raising the risk of non-cardiovascular death, or that a biomarker predicts distant but not local

recurrence, each conclusion supported by its own confidence interval and p-value. More broadly,

this independence is of practical value in fields like oncology, organ transplantation, and chronic

disease management, where understanding risk factors for distinct failure modes is crucial for clinical

decision-making.
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