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S1. Selection of initial values and tuning parameters. To start the iteration, we need
to select pd, rq and the initial values Ωp0q, Up0q, and Vp0q,Ap0q. We use 5-folds cross-
validation to select d. Concretely, based on the test sets, we begin with k “ 1 and esti-
mate the single index model Yi “ ψ1pΩT

1
pfiq ` ε1i using MAVE (Xia et al., 2002) and set

k Ñ k ` 1 until k ď d. In each step k, we obtain rεki “ Yi ´
řk´1
j“1

pψjppΩ
T
j
pfiq and fit model

rεki “ ψkpΩT
k
pfiq ` εki. The resulting estimators for Ω and ψjp¨q are denoted by Ωpdq and

ψjp¨, dq. We find an optimal d that minimizes the prediction error for the test sets. Then, we
choose Ωp0q “ Ωpdq and ψp0q

j p¨q “ ψjp¨, dq based on the whole dataset, and select r so that
řr
i“1 λipΩ

p0qTΩp0qq{
řmintd,qu

i“1 λipΩ
p0qTΩp0qq ą 90%, where λipAq is the i-th eigenvalue

of A. Furthermore, we take Vp0q as the eigenvectors corresponding to the r largest eigen-
values of Ωp0qTΩp0q, and Up0q “ Ωp0qVp0qT. We apply least square regression of ψp0q

j p¨q on

M2p¨q to obtain a
p0q

j pj “ 1, ¨ ¨ ¨ , dq.
In addition, we need to determine the dimension of the latent components q1 and q2 and

the number of eigenfunctions K . Compared to the traditional FPCA or factor models, the
proposed estimation is less sensitive to the choice of (q1, q2,K) since we further choose the
components by the group penalty. Following the literature, we choose (q1, q2,K) by calculat-
ing the proportion of variability explained by each principal component (James et al., 2000;
Happ and Greven, 2018). Since the directions that contain the important information on the
relationship between tXiptq,Ziu and Yi may be different from those for tXiptq,Ziu, we
take (q1, q2,K) to be large so that we can maintain sufficient information on tXiptq,Ziu.
Particularly, we choose (q1, q2,K) such that

řq1
i“1 λi

`

ZZT
˘

{
řm
i“1 λi

`

ZZT
˘

ą 90%,
řq2
i“1 λi

␣
řn
i“1 n

´1
i

řni

l“1XiptilqX
T
i ptilq

(

{
řp
i“1 λi

␣
řn
i“1 n

´1
i

řni

l“1XiptilqX
T
i ptilq

(

ą 90%,

and minjPt1,¨¨¨ ,q2ut
řK
i“1 λip

pΣjq{
ř

λippΣjqu ą 90%, respectively, where pΣj is the estimated

covariance matrix based on hp0q

ij ptq pi“ 1, ¨ ¨ ¨ , nq.
In the adaptive group LASSO penalty, as discussed in Huang et al. (2010), we first ob-

tain an estimator pVLasso by setting wk “ 1 pk “ 1, ¨ ¨ ¨ , qq using the algorithm described in
Section 3.3. Then, wk “ 1{}pVrks,Lasso}2 if }pVrks,Lasso}2 ą 0 and 8; for example, it is 108 if
}pVrks,Lasso}2 “ 0.
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In the simulation studies and real data analysis, we take h “ n´1{3 to satisfy Condition
(C4) in Suppl. S4 and prevent instability which may be caused by an extremely small h.
Finally, we select λ by maximizing the BIC-based criterion:

(S1) BICpλq “ ℓnppγ;pf , log pfq ´ dfpλqlogn{2n,

where dfpλq is the degree of freedom and can be calculated as the number of estimated
nonzero parameters following, as in Zhang and Lian (2018).

S2. Conditions for the asymptotic property of pζi. The following assumptions are re-
quired for establishing the theoretical properties of pζi.

(A1) Denote ζ “ pζ1, ¨ ¨ ¨ ,ζnqT.As nÑ 8, }n´1ζζT´Σζ}2 Ñ 0 and Σζ “ Epζiζ
T
i q is di-

agonal with
řK
k“1 varpξi1kq ě ¨ ¨ ¨ ě

řK
k“1 varpξiqkq ą 0 and varpξij1q ě ¨ ¨ ¨ ě varpξijKq ą

0 pj “ 1, ¨ ¨ ¨ , qq.
(A2) There exist positive constants C , a1, a2 and C1,C2, such that (1) supj}bj}2 ď C; (2)

for any s ą 0, P psupj,k }ξijk}1 ą sq ď expt´ps{C1qa1u and P tsupj }uijptq}1 ą su ď

expt´ps{C2qa2u.
(A3) The random errors uiptq are independent of ζi. There exists constant C ą 0 such that
řp
j1“1 }E tuijptquij1 ptqu}1 ďC for each j and uniformly over t. Furthermore, there exists

δ2 ě 4 such thatE
›

›p´1{2
řp
j“1

“

u2ijptq´Etu2ijptqu
‰
›

›

δ2
1

ďC andE
›

›

›
p´1{2

řp
j“1bjuijptq

›

›

›

δ2

2
ď

C and uniformly over t.
(A4) As pÑ 8, p´1{2

řp
j“1bjuijptq converges to a normal distribution Np0,Γptqq, where

Γptq “ limpÑ8 p´1
řp
j,j1“1bjb

T
j1Etuijptquij1 ptqu.

(A5) Denote thatwj is the j-th knot for M1p¨q with τ1n “Opnv1q, △1 “ maxj }wj´wj´1}1
and △2 “ minj }wj ´ wj´1}1. We assume △1 “ Opn´v1q, where 0 ă v1 ă 1{2 and
△1{△2 is bounded.

(A6) Denote ω “ k ` s for k P N` and s P p0,1s, and Hω “ tgp¨q : }gpkqpxq ´ gpkqpyq}1 ď

C}x ´ y}s1 for any x, yu. We suppose the true functions tϕjk0 pj “ 1, ¨ ¨ ¨ , q2;k “

1, ¨ ¨ ¨ ,Kqu P Hr1 and tψj0 pj “ 1, ¨ ¨ ¨ , dqu P Hr2 , with r1, r2 ą 2.

Condition (A1) is a pervasive condition in factor model, implying Kq2 factors exist and the
variances of ξijk’s are bounded. Condition (A2) gives exponential tail conditions of latent
factor and random error and requires the loading vectors are uniformly bounded. Condi-
tion (A3) sets constrains on the moments of random error uijptq’s and the idiosyncratic er-
rors are allowed to be correlated to some extend across index j. The diagonal structure, i.e.,
covtuiptq,uipsqu “ σ221tt“suIp, also satisfies the constrains. Condition (A4) sets some con-
straints on the limiting distribution of random error. Condition (A5) implies the spline knots
are uniform, which is commonly used in spline approximation theories. Condition (A6) is a
regular condition on the functions.

S3. Conditions for the asymptotic property of pFi. To establish the asymptotic prop-
erties of the estimator for Fi, we need the following conditions.

(B1) As m Ñ 8, m´1ΛTΛ Ñ ΣΛ, where ΣΛ is a positive define diagonal matrix. There
exist two positive constants C1,C2 such that C1 ď λkpΣΛq ďC2 for k “ 1, ¨ ¨ ¨ , q1.

(B2) There exists a positive constant C such that supj}Λj}2 ď C . Further, there exists
a1, a2 ą 0 and c1, c2 ą 0, such that for any s ą 0, k ď q1 and j ď m, P p}Fik}1 ą sq ď

expt´ps{c1qa1u and P p}eij}1 ą sq ď expt´ps{c2qa2u.
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(B3) The random error ei’s are independent of Fi’s and Epeijq “ 0,
řm
j1“1 }Epeijeij1 q}1 ď

C for each j. Further, there exist δ1 ě 4 such that E
›

›m´1{2
řm
j“1

␣

e2ij ´Epe2ijq
(
›

›

δ1
1

ď C

and E
›

›

›
m´1{2

řm
j“1Λjeij

›

›

›

δ1

2
ďC.

(B4) As m Ñ 8, m´1{2
řm
j“1Λjeij converges to a normal distribution Np0,Γ1q, where

Γ1 “ limmÑ8m´1
řm
j“1

řm
j1“1ΛjΛ

T
j1Epeijeij1 q.

S4. Conditions for the asymptotic property of pγ. To establish the asymptotic proper-
ties for pγ, we need the following conditions.

(C1) The true density function f0 P Hr0 belongs to the r0-Hölder continuous function
class Hr0 , where its k-th derivative exists, r0 “ k ` s ą 2 and 0 ă s ď 1. Addition-
ally, we assume that

ş

xr0f0pxqdx ă 8. The kernel function Kp¨q satisfies
ş

Kpxqdx “ 1,
ş

xtKpxqdx“ 0 for tă r0 and 0 ‰
ş

xr0Kpxqdxă 8.
(C2) Denote that wj is the j-th knot of M2p¨q with τ2n “Opnv2q, △1 “ maxj }wj ´wj´1}1

and △2 “ minj }wj ´ wj´1}1. We assume that △1 “ Opn´v2q and △1{△2 is bounded,
where 0 ă v2 ă 1{2.

(C3) Each entry of U0 and V0 is in a compact set.
(C4) We assume that the bandwidth satisfies h“Otd1{p2r0qn´r2{p2r0r2`r0qu “ op1q.

Condition (C1) requires the density function of the error term satisfies some smoothness
condition and ensure the uniform convergence for the kernel smooth estimate of the density
function for error term. Condition (C2) implies that the spline knots are uniform so that the
bias induced by the spline approximation can be well controlled. Condition (C3) is a regular
condition on the true parameters. Condition (C4) ensures that the convergence rate of the
Nadaraya-Watson kernel estimator is fast enough to guarantee the asymptotic properties of pγ
by choosing an appropriate bandwidth h.

S5. Notations. For a matrix Gptq “ tGijptq pi “ 1, ¨ ¨ ¨ , k1; j “ 1, ¨ ¨ ¨ , k2qu, define
ş

Gptqdt “ t
ş

Gijptqdt pi “ 1, ¨ ¨ ¨ , k1; j “ 1, ¨ ¨ ¨ , k2qu. Except for special emphasis, we
omit the integration region r0,1s and omit the dependence of the variable on the subscript
n for notation simplicity. To fix notation, }W}1 be the L1-norm, }W}2 be the spectral-
norm, }W}F be the Frobenius-norm and }W}8 be the sup-norm. Denote f pkq to be the
k-th derivative of f , and }f}8 “ sup |fpxq|1. Denote the metric dtppfT, pfqT, pfT0 , f0qTu “

sup
i

}pfi ´ fi0}2 ` } pf ´ f0}8. Define

Aδ “

!

vecpU,Vq : }U ´ U0}F ă δ, }V ´ V0}F ă δ,vecpU,Vq P Rrpd`qq
)

rAδ “

!

vecpU,Vq : }U ´ U0}F ă δ, }V ´ V0}F ă δ,Vrks “ 0 if k P SC ,vecTpUT,Vq P Rrpd`qq
)

,

Fδ “ tΨ : }ψk ´ψk0}2 ă δ for each k,Ψ P F u ,

and Γnδ “ Aδ ˆ Fδ, rΓnδ “ rAδ ˆ Fδ , where SC is defind in Suppl. S7.
Define the constrained space for f as F={f P Rq: The covarinace matrix of fi satisfies

Conditions (A1) and (B1)}. Let Pn be the the empirical measure of tpYi,Xiptq,Ziq pi “

1, ¨ ¨ ¨ , nqu and P be the probability measure of tYi,Xiptq,Ziu.
In the following part, we will define some derivatives. We first define the 1-order and 2-

order directional derivatives of ℓpγ; f , logfq “ ℓpγ;Y, f , logfq with respect to γ. For ω “
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pωT
1 ,ω

T
2 ,ω

T
3 qT P rΓ or rΓn, where ω1 “ pωT

11, ¨ ¨ ¨ ,ωT
1dq P Rdr,ω2 “ pωT

21, ¨ ¨ ¨ ,ωT
2qq P Rqr

and ω3 “ pω31, ¨ ¨ ¨ ,ω3dq P H d
r2 or F satisfying }ω1}2 ď 1, }ω2}2 ď 1 and }ω3}8 ď 1, we

define the derivative of ℓpγ; f , logfq with respect to γ in the direction ω as

9ℓ1pγ; f , logfqrωs “
Bℓpγ ` ϵω; f , logfq

Bϵ

ˇ

ˇ

ˇ

ϵ“0
“

d
ÿ

j“1

r
ÿ

k“1

9ℓ11,jkpγ; f , logfqrω1jks

`

q
ÿ

k“1

r
ÿ

k1“1

9ℓ12,kk1 pγ; f , logfqrω2kk1 s `

d
ÿ

j“1

9ℓ13,jpγ; f , logfqrω3js,

where 9ℓ11,jkpγ; f , logfqrω1jks, 9ℓ12,kk1 pγ; f , logfqrω2kk1 s and 9ℓ13,jpγ; f , logfqrω3js are the 1-
order directional derivatives with respect to Ujk,Vk1k and ψj .

For rω “ prωT
1 , rω

T
2 , rω

T
3 qT P rΓ or rΓn, where rω1 P Rdr, rω2 P Rqr and rω3 P H d

r2 or F sat-
isfying }rω1}2 ď 1, }rω2}2 ď 1 and }rω3}8 ď 1, we define the derivative of 9ℓ1pγ; f , logfqrωs

with respect to γ in the direction rω as

:ℓ1pγ; f , logfqrω, rωs “
B 9ℓ1pγ ` ϵrω; f , logfqrωs

Bϵ

ˇ

ˇ

ˇ

ϵ“0
“

d
ÿ

j,j1“1

r
ÿ

k,k1“1

:ℓ1,11,jj1,kk1 pγ; f , logfqrω1jk, rω1j1k1 s

`

q
ÿ

k,k1“1

r
ÿ

l,l1“1

:ℓ1,22,kk1,ll1 pγ; f , logfqrω2kl, rωk1l1 s `

d
ÿ

j,j1“1

:ℓ1,33,jj1 pγ; f , logfqrω3j , rω3j1 s

` 2
d
ÿ

j“1

q
ÿ

j1“1

r
ÿ

k,k1“1

:ℓ1,12,jk,j1k1 pγ; f , logfqrω1jk, rω2j1k1 s

` 2
d
ÿ

j,j1“1

r
ÿ

k“1

:ℓ1,13,jk,j1 pγ; f , logfqrω1jk, rω3j1 s ` 2

q
ÿ

k“1

d
ÿ

l“1

r
ÿ

k1“1

:ℓ1,23,kl,k1 pγ; f , logfqrω2kk1 , rω3ls.

In the first subscript part, “1" means the derivative to be related to parameter γ, while
the subscript “1,2,3" in the second part indicates the directional derivative with respect to
U,V,Ψ respectively. For example, :ℓ1,12,jk,j1k1 pγ; f , logfqrω1jk, rω2j1k1 s is the 2-order cross
directioanl derivative with respect to Ujk and Vj1k1 .

Then we define the 1-order and 2-order directional derivatives of ℓpγ; f , logfq with respect
to pfT, fqT. For ω “ pωT

1 ,ω2qT P F ˆ Hr0 , where ω1 “ pω11, ¨ ¨ ¨ ,ω1qq P F and ω2 P Hr0

satisfying }ω1}2 ď 1 and }ω2}8 ď 1, we define the derivative of ℓpγ; f , logfq with respect to
pfT, fqT in the direction ω as

9ℓ2pγ; f , logfqrωs “
Bℓtγ; f ` ϵω1, logpf ` ϵω2qu

Bϵ

ˇ

ˇ

ˇ

ϵ“0
“

q
ÿ

k“1

9ℓ21,kpγ; f , logfqrω1ks ` 9ℓ22pγ; f , logfqrω2s,

where 9ℓ21,kpγ; f , logfqrω1ks and 9ℓ22pγ; f , logfqrω2s are the 1-order directional derivatives
with respect to frks and f .

For rω “ prωT
1 , rω2qT P F ˆ Hr0 , where rω1 P F and rω2 P Hr0 satisfying }rω1}2 ď 1 and

}rω2}8 ď 1, we define the derivative of 9ℓ2pγ; f , logfqrωs with respect to pfT, fqT in the
direction rω as

:ℓ2pγ; f , logfqrω, rωs “
B 9ℓ2tγ; f ` ϵrω1, logpf ` ϵrω2qurωs

Bϵ

ˇ

ˇ

ˇ

ϵ“0

“

q
ÿ

k,k1“1

:ℓ2,11,kk1 pγ; f , logfqrω1k, rω1k1 s ` :ℓ2,22pγ; f , logfqrω2, rω2s ` 2

q
ÿ

k“1

:ℓ2,12,kpγ; f , logfqrω1k, rω2s.
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In the first subscript part, “2" means the derivative to be related to parameter pfT, fqT, while
the subscript “1,2" in the second part indicates the directional derivative with respect to f , f
respectively.

Finally we define the 2-order cross directional derivatives of ℓpγ; f , logfq with respect to
γ and pfT, fqT. For ω˚ P Fˆ Hr0 , where ω˚

1 “ pω˚
11, ¨ ¨ ¨ ,ω˚

1qq P F and ω˚
2 P Hr0 satisfying

}ω˚
1 }2 ď 1 and }ω˚

2 }8 ď 1, we define the derivative of 9ℓ1pγ; f , logfqrωs with respect to
pfT, fqT in the direction ω˚ as

:ℓ12pγ; f , logfqrω,ω˚s “
B 9ℓ1tγ; f ` ϵω˚

1 , logpf ` ϵω˚
2 qurωs

Bϵ

ˇ

ˇ

ˇ

ϵ“0
“

d
ÿ

j“1

r
ÿ

j1“1

q
ÿ

k“1

:ℓ12,11,jj1,kpγ; f , logfqrω1jj1 ,ω˚
1ks

`

q
ÿ

k,l“1

r
ÿ

k1“1

:ℓ12,21,kl,k1 pγ; f , logfqrω2kk1 ,ω˚
1ls `

d
ÿ

j“1

q
ÿ

k“1

:ℓ12,31,j,kpγ; f , logfqrω3j ,ω
˚
1ks

`

d
ÿ

j“1

r
ÿ

j1“1

:ℓ12,12,j,j1 pγ; f , logfqrω1jj1 ,ω˚
2 s `

q
ÿ

k“1

r
ÿ

k1“1

:ℓ12,22,k,k1 pγ; f , logfqrω2kk1 ,ω˚
2 s

`

d
ÿ

j“1

:ℓ12,32,jpγ; f , logfqrω3j ,ω
˚
2 s.

In the first subscript part, “12" means the cross derivative to be related to parameters γ
and pfT, fqT, while the subscript “1,2,3" in the first term of the second part indicates the
direction with respect to U,V,Ψ respectively and the subscript “1,2" in the second term
of the second part represents the direction with repect to f , f respectively. For example,
:ℓ12,11,jk,j1 pγ; f , logfqrω1jj1 ,ω˚

1ks is the 2-order cross directional derivative with respect to
Ujj1 and frks.

In the following part, we give the definition of Σ in Theorem S7.4. Define 9ℓ11pγ; f , logfq “
!

9ℓ11,11pγ; f , logfq, ¨ ¨ ¨ , 9ℓ11,1rpγ; f , logfq, ¨ ¨ ¨ , 9ℓ11,d1pγ; f , logfq, ¨ ¨ ¨ , 9ℓ11,drpγ; f , logfq

)T
to

be the 1-order directional derivative vector of U. Let :ℓ1,11pγ; f , fq be the 2-order directional
derivative of U, which is a rpd` qq ˆ rpd` qq matrix consisting of :ℓ1,11,jj1,kk1 pγ; f , logfq.
The vector 9ℓ12 and the matrices :ℓ1,ij , i, j “ 1,2,3 and :ℓ12,ij , i, j “ 1,2 are defined in the
similar way. Denote Σ1 “ P

␣

l˚1 pγ0; f0, logf0ql˚T1 pγ0; f0, logf0q
(

with

l˚1 pγ0; f0, logf0q “

„"

P :ℓ1,11pγ0; f0log, f0q P :ℓ1,21pγ0; f0, logf0q

P :ℓ1,21pγ0; f0, logf0q P :ℓ1,22pγ0; f0, logf0q

*

`

!

P :ℓ1,31pγ0; f0, logf0q, P :ℓ1,32pγ0; f0, logf0qT
)

R

ȷ

ω

and

R “

!

P :ℓ1,33pγ0; f0, logf0q

)´1
¨

!

P :ℓT1,13pγ0; f0, logf0q, P :ℓT1,23pγ0; f0, logf0q

)

P Rdˆrpd`qq.

Then denote Σ2 “ P tl˚2 pγ0; f0, logf0ql˚T2 pγ0; f0, logf0qu with

l˚2 pγ0; f0, logf0q “

!

9ℓT11pγ0; f0, logf0q, 9ℓT12pγ0; f0, logf0q

)T
`

"

P :ℓ12,11pγ0; f0, logf0q P :ℓ12,21pγ0; f0, logf0q

P :ℓ12,21pγ0; f0, logf0q P :ℓ12,22pγ0; f0, logf0q

*

mtγ0;Y,Xptq,Zu,

where mtγ0;Y,Xptq,Zu is defined in the proof of Therorem S7.1. At last, we define the
matrix Σ “ Σ´1

1 Σ2Σ
´1
1 .
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S6. Identifiablity of the FFRM. Under the following assumptions, we establish the
identifiability of model (6) accompanying with (1) and (4).

(I1) UTU is diagonal matrix with decreasing diagonal entries, and }Uk}2 “ 1 for each
k “ 1, ¨ ¨ ¨ , d; VVT “ Ir , where the first nonzero element of each row of V is positive and
the first nonzero element of each row of UV is positive.

(I2) n´1FTF “ Iq1 and ΛTΛ is diagonal with decreasing diagonal entries, and the first
nonzero element of each column of Λ is positive.

(I3) p´1BTB “ Iq2 , the first nonzero element of each column of B is positive, and EpζTζq

is diagonal with decreasing diagonal entries.
(I4)

ş

ΦptqΦTptqdt“ IKq2 , and ϕjkp0q ą 0.

The identifiability of models (6) and (1) are straightforward by following Yuan (2011) and
Bai and Ng (2013), respectively, under conditions (I1) and (I2). We then show that model
(4) is identifiable without rotation as well under conditions (I3) and (I4), as stated in the
following proposition.

PROPOSITION 1. Under conditions (I3) and (I4) in Suppl. S6, B,Φptq and ζi are denti-
fiable.

Proof of Proposition 1. Denote Σζ , ΣXptq and Σuptq be the covariance matrix of ζi,

Xiptq and uiptq respectively for the fixed t. Further, denote rΣX “
ş

ΣXptqdt and rΣu “
ş

Σuptqdt. By conditions (I3) and (I4), we have

(S2) rΣX “

ż

BΦTptqΣζΦptqBTdt` rΣu “ BΛζB
T ` rΣu,

where Λζ “ diag
!

řK
k“1 varpξi1kq, ¨ ¨ ¨ ,

řK
k“1 varpξiq2kq

)

.

Consider two combinations of parameters pBp1q,Φp1qptq,ζ
p1q

i q and pBp2q,Φp2qptq,ζ
p2q

i q

both satisfying model (4), i.e. Bp1qΦp1qTptqζ
p1q

i “ Bp2qΦp2qTptqζ
p2q

i . By (S2), we have
Bp1qΛ

p1q

ζ Bp1qT “ Bp2qΛ
p2q

ζ Bp2qT. By conditions p´1BTB “ Iq and (I3), we have p´1Bp1qTBp1q “

p´1Bp2qTBp2q “ Iq2 and Λ
p1q

ζ and Λ
p2q

ζ are both diagonal matrix with decreasing ele-
ments. The first q2 eigenvectors associated with the first q2 largest eigenvalues of the matrix
rΣX ´ rΣu are thus determined by pp´1{2Bp1q, pΛ

p1q

ζ q and pp´1{2Bp2q, pΛ
p2q

ζ q. According to

the uniqueness of the matrix eigen decomposition, we have Bp1q “ Bp2q and Λ
p1q

ζ “ Λ
p2q

ζ .

Because Bp1q “ Bp2q, then we have BΦp1qTptqζ
p1q

i “ BΦp2qTptqζ
p2q

i . Then, we consider
the covariance function matrix of ΦTptqζi. By simple calculation, we have

covtΦTptqζi,Φ
Tpsqζiu “ diag

#

K
ÿ

k“1

varpξi1kqϕ1kptqϕ1kpsq, ¨ ¨ ¨ ,
K
ÿ

k“1

varpξiq2kqϕq2kptqϕq2kpsq

+

.

Then, for each j “ 1, ¨ ¨ ¨ , q2, we have

(S3) Φ
p1qT
j ptqΛ

p1q

ζ,jΦ
p1q

j psq “ Φ
p2qT
j ptqΛ

p2q

ζ,jΦ
p2q

j psq,

where Λζ,j “ diagtvarpξij1q, ¨ ¨ ¨ ,varpξijKqu is a diagonal matrix with decreasing elements.
Multiplying both sides of equation (S3) on the left by Φ

p1q

j ptq and on the right by Φ
p2qT
j psq

and integrating with respect to t and s, then by condition (I4), we have

(S4) Λ
p1q

ζ,j

ż

Φ
p1q

j ptqΦ
p2qT
j ptqdt“

ż

Φ
p1q

j ptqΦ
p2qT
j ptqdtΛ

p2q

ζ,j .
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That is,
¨

˚

˚

˝

varpξp1q

ij1q
ş

ϕ
p1q

j1 ptqϕ
p2q

j1 ptqdt ¨ ¨ ¨ varpξp1q

ij1q
ş

ϕ
p1q

j1 ptqϕ
p2q

jKptqdt
...

. . .
...

varpξp1q

ijKq
ş

ϕ
p1q

jKptqϕ
p2q

j1 ptqdt ¨ ¨ ¨ varpξp1q

ijKq
ş

ϕ
p1q

jKptqϕ
p2q

jKptqdt

˛

‹

‹

‚

“

¨

˚

˚

˝

varpξp2q

ij1q
ş

ϕ
p1q

j1 ptqϕ
p2q

j1 ptqdt ¨ ¨ ¨ varpξp2q

ijKq
ş

ϕ
p1q

j1 ptqϕ
p2q

jKptqdt
...

. . .
...

varpξp2q

ij1q
ş

ϕ
p1q

jKptqϕ
p2q

j1 ptqdt ¨ ¨ ¨ varpξp2q

ijKq
ş

ϕ
p1q

jKptqϕ
p2q

jKptqdt

˛

‹

‹

‚

.

(S5)

Because Λ
p1q

ζ,j and Λ
p2q

ζ,j are not equal to 0, it easy to show that the unique solution to (S5) is

Λ
p1q

ζ,j “ Λ
p2q

ζ,j and
ş

Φ
p1q

j ptqΦ
p2qT
j ptqdt is diagnoal but not equal to 0. Then, by (S4), we have

Λζ,j “

"
ż

Φ
p1q

j ptqΦ
p2qT
j ptqdt

*

Λζ,j

"
ż

Φ
p2q

j psqΦ
p1qT
j psqds

*

“ Λζ,j

"
ż

Φ
p2q

j ptqΦ
p1qT
j ptqdt

*2

,

which indicates the elements of the diagnoal matrix
ş

Φ
p1q

j ptqΦ
p2qT
j ptqdt are only 1 or -1

(Without loss of generality, we assume they are both equal to 1). The last equation is because
Λζ,j and

ş

Φ
p1q

j ptqΦ
p2qT
j ptqdt are both diagnoal matrices. Then, multiplying both sides of

equation (S3) on the left by Φ
p1q

j ptq and integrating with respect to t, we have

Λζ,jΦ
p1q

j psq “

!

Φ
p1q

j ptqΦ
p1qT
j ptqdt

)

Λζ,jΦ
p1q

j psq “

"
ż

Φ
p1q

j ptqΦ
p2qT
j ptqdt

*

Λζ,jΦ
p2q

j psq “ Λζ,jΦ
p2q

j psq.

Because Λζ,j is invertible, then Φ
p1q

j psq “ Φ
p2q

j psq for each j “ 1, ¨ ¨ ¨ , q2 and Φp1qpsq “

Φp2qpsq. By the conditions (I3) and (I4), we have
ş

ΦTptqΦptqdt“KIq2 . Along with condi-
tion p´1BTB “ Iq2 , we have Φp1qTptqζ

p1q

i “ Φp2qTptqζ
p2q

i . Thus, we have ζ
p1q

i “ ζ
p2q

i .

S7. Theoretical Properties. We use the subscript “0" for a true value; for example,
αrks,0 is the true value of αrks. Without loss of generality, we assume that αrks,0 ‰ 0 for all
1 ď k ď rq1 and βrks,0 ‰ 0 for all 1 ď k ď rq2, indicating that only the first rq1 entries of ζi and
the first rq2 entries of Fi have important effects on Yi. Denote S “ tk : k ď rq1 and Kq2 ` 1 ď

k ďKq2 ` rq2u and hence the number of elements of S is rq “ rq1 ` rq2. Let the complementary
set be SC . Then, Vrks,0 ‰ 0 if k P S and Vrks,0 “ 0 if k P SC . Suppose that the number of
eigenfunctions and component functions follows the polynomial order of sample size; that
is, K “ Opneq and d “ Opnd0q. In practice, K and d are small and the polynomial order is
easily satisfied.

We then define Γ “ Rrpd`qq ˆ H d
r2 , the subspace rΓ “ tvecpU,Vq : vecpU,Vq P

Rrpd`qq,Vrks “ 0 if k P SCu ˆ H d
r2 and the sieve subspace rΓn “ tvecpU,Vq : vecpU,Vq P

Rrpd`qq,Vrks “ 0 if k P SCu ˆ F , where H d
r2 is the d-dimensional product space of Hölder

continuous functions with parameter r2. To establish the asymptotic properties of pγ, we first
consider the oracle estimator in subspace rΓn, defined as

pγor “ argmax
γPrΓn

ℓnpγ;pf , log pfq.
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For any γ, we define the metric between γ and γ0 as ϱpγ,γ0q “ p
řd
j“1 }Uj ´ Uj0}22 `

řq
j“1 }Vrjs ´ Vrjs0}22 `

řd
j“1 }ψj ´ψj0}22q1{2, where }f}2 “ t

ş

f2pxq dxu1{2. Denote en “

plognq1{a1 ` plognq1{a2 with a1, a2 being positive constants defined in (A2) of Suppl. S2.

THEOREM S7.1 (Consistency and convergence rate of pγor). In addition to the conditions
(A1)-(A6), (B1)-(B4) and (C1)-(C4) in Suppls. S2-S4, we suppose that

e2nKτ1n “Opdτ2nq, e2nKτ
´2r1
1n “Opdτ´2r2

2n q, n1`1{δ1 “Opmdτ2nq,

n1`1{δ2Kτ1n “Oppdτ2nq, d“Orplognq2r0{p2r0`1qnp2r2´2r0q{tp2r0`1qp2r2`1qus.
(S6)

Then for τ2n “Otn1{p2r2`1qu, we have ϱppγor,γ0q “Optd
1{2n´r2{p2r2`1qu.

For finite number of nonparametric functions, the first two equalities in (S6) imply
τ1n ! τ2n ! τ

r1{r2
1n , suggesting the requirement of r1 ą r2. This may be attributed to the

fact that the information of ϕjkp¨q is expressed through ψjp¨q. The third and fourth ones can
be achieved for appropriate m and p. The last equality in (S6) guarantees the consistency of
the estimated component functions, suggesting the requirement of r2 ą r0. In particular, un-
der the assumption of a finite number of nonparametric functions, Theorem S7.1 implies that
ϱppγor,γ0q “Optn

´r2{p2r2`1qu, which achieves the optimal rate for nonparametric functions.
By employing a similar proof framework as for the nonparametric M-estimator in Liu et al.
(2022), we obtain the following functional asymptotic normality of the oracle estimators.

THEOREM S7.2 (Asymptotic normality of oracle estimators). In addition to the condi-
tions in Theorem S7.1, we suppose that n´1{6plognq1{3 ! h! n´1{p4r0q. Then for some ω P

rΓ, we have ´n1{2P :ℓ1pγ0; f0, logf0qrω, pγor ´ γ0s
d

ÑNp0, σ2q, where :ℓ1pγ; f , logfqrω, rωs is
the second order directional derivatives of ℓpγ; f , logfq with respect to γ in the directions ω
and rω, which is defined in Suppl.S5, and σ2 is given in (S15) of Suppl. S9

For finite number of nonparametric functions, n´1{6plognq1{3 ! h ! n´1{p4r0q automat-
ically hold based on Condition (C4). Based on Theorems S7.1 and S7.2, we conclude the
oracle properties in Theorem S7.3.

THEOREM S7.3 (Oracle properties). Under the conditions of Theorem S7.2, if infkPS }Vrks,0}2 ě

C for a constant C , λ
ř

kPS wk “ opanq, and λmin
kPSC

wk Ñ 8. Then

(1) P ppγor “ pγq Ñ 1.
(2) ϱppγ,γ0q “Optd

1{2n´r2{p2r2`1qu,

(3) ´n1{2 P :ℓ1pγ0; f0, logf0qrω, pγ ´ γ0s
d

ÑNp0, σ2q for some ω P rΓ.

If V̆rks is an nα-consistent estimator of Vrks, then wk “ 1{}V̆rks}
l
2 for l ą 0 would be a

“good" weight because
ř

kPS
wk “Op1q and min

kPSC
wk “Opnαlq, which satisfies the conditions

of Theorem S7.3 when λ“ oppanq and λnαl Ñ 8. In numerical studies and real data analy-
sis, we take the lasso estimator as V̆rks, which is an nα-consistent estimator of Vrks. Theorem
S7.3 establishes the functional asymptotic normality for the estimator of γ0, which includes
the coefficents pU0,V0q of the latent factors f0 and the nonparametric Ψ0. To assess the
significance of the factors in relation to the response Y , we further conclude Theorem S7.4,
which provides the asymptotic normality for vecppU, pVq. This enables us to test the parameter
hypothesis H0 : vecpU,Vq “ vecpU0,V0q.
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THEOREM S7.4 (Asymptotic normality of the parameters). Under the conditions of The-
orem S7.3, for any vector ω “ pωT

1 ,ω
T
2 qT with }ω}2 “ 1, we have n1{2ωTΣ´1{2tvecppU, pVq´

vecpU0,V0qu
d

ÑNp0,1q, where Σ is defined in Suppl. S5.

Remark 3. To ensure the samplewise consistency of factors or variablewise consistency
of loadings, we require that p and m diverge at any rate, including the exponential rate of
n, see Lemmas S8.1 and S8.2 of Suppl.S8. That is, the high dimensions p and m become
blessings of dimensionality instead of curses. This is a direct result of the factor models in
(1) and (4), where p and m actually play the role of the number of observations for esti-
mating fi, and more variables mean that more information can be used to estimate loadings,
factors, and eigenfunctions. To guarantee the uniform consistency of factors and loadings
to establish the asymptotic properties of pγ, we require that p and m diverge with the con-
straint that n1{δ2τ1nK ! p ! exppnq and n1{δ1 ! m ! exppnq. If p and m further satisfy
p “ Otn1`1{δ2Kτ1n{pdτ2nqu and m “ Otn1`1{δ1{pdτ2nqu, Theorem S7.1 achieves the cor-
responding rate when all latent factors are observable. The issue of whether the high dimen-
sion is a blessing of dimensionality instead of a curse has also been carefully discussed for the
linear factor model in Li et al. (2018) and the generalized factor model in Liu et al. (2023b).

S8. Lemmas. We establish five lemmas, where Lemmas S8.1 and S8.2, for the conver-
gence rate of estimated latent factors pζi and pFi, are directly available from Wen and Lin
(2022) and Bai and Liao (2013), respectively.

LEMMA S8.1. Under Conditions (A1)-(A6) in Suppl. S2, for a1, a2 defined in (A2), δ2
defined in (A3),

}pbj ´ bj0}2 “OppRpnq pj “ 1, ¨ ¨ ¨ , pq,

}pζi ´ ζi0}2 “Oppτ
1{2
1n Rpn ` τ´r1

1n qK1{2 pi“ 1, ¨ ¨ ¨ , nq,

sup
i

}pζi ´ ζi0}2 “Op

!

enpτ
1{2
1n n

´1{2 ` τ´r1
1n q ` n1{2δ2τ

1{2
1n p

´1{2
)

K1{2 pi“ 1, ¨ ¨ ¨ , nq.

where Rpn “ n´1{2 ` p´1{2 and en “ plognq1{a1 ` plognq1{a2 .

The convergence rate of pbj consists of two terms, the estimate error Rpn “ n´1{2 ` p´1{2

and the approximation error N´1{2
0 “ n´1{2pn´1

řn
i“1 1{niq

1{2, the latter is from the numer-
ical approximation for the covariance matrix EtXiptqX

T
i ptqu for fixed t and is ignorable

when ni ě 1. The convergence rate of pbj is similar to those of the linear factor model (Bai
and Ng, 2013) and generalized factor model (Liu et al., 2023b).

The rate of pζi comprises two components: the estimation error K1{2τ
1{2
1n }pbj ´ bj0}2 “

K1{2τ
1{2
1n Rpn, and the approximation error K1{2τ´r1

1n , arising from estimating pζi, pbj and K
eigenfunctions. Notably, both terms are independent of ni. As a result, the convergence rate
of pγ, which depends on the rate of pζi, is also independent of ni.

LEMMA S8.2. Under Conditions (B1)-(B4), for δ1 defined in Condition (B3), we have

}pFi ´ Fi0}2 “Oppn
´1{2 `m´1{2q pi“ 1, ¨ ¨ ¨ , nq,

sup
i

}pFi ´ Fi0}2 “Oppn
´1{2 ` n1{2δ1m´1{2q pi“ 1, ¨ ¨ ¨ , nq.
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LEMMA S8.3. Denote bn “ hr0 ` logn1{2pnhq´1{2 and a neighborhood of pf0,γ0q by
Nn “ tpf ,γq : supi }fi ´ fi0}2 ` ϱpγ,γ0q ďOppbnqu, where the metric ϱpγ,γ0q is defined in
Suppl. S7. Then, when ppf , pγq P Nn, under Conditions (A6) and (C1), for j “ t0,1u, we have

} pf pjq ´ f
pjq

0 }8 “Op

!

hr0 ` plognq1{2pnh2j`1q´1{2
)

.

Proof of Lemma S8.3. The proof follows from Theorem 37 of Pollard (1984) and
Lemma 1 of Liu et al. (2023a).

LEMMA S8.4. Let Npϵ,F ,Dq denote the covering number with respect to semi-metric
D of function class F . Under the Conditions (A6) and (C2), the covering number of the class
Lnpδ; f , logfq “ tℓpγ; f , logfq : γ P rΓnδ, sup

i
}fi ´ fi0}2 ă δ, }f ´ f0}8 ă δ, f P Fu satisfies

Npϵ,Lnpδ; f , logfq, } ¨ }q ĺ pδ{ϵqτ2nd,

where an ĺ bn means there exists a positive constant C such that an is bounded by Cbn.

Proof of Lemma S8.4. The proof is similar to that in Ma et al. (2015) and thus omitted.

LEMMA S8.5. Under Conditions (C1)-(C4), we have for enough small δ ą 0,

sup
γPrΓnδ

}Pnℓpγ;pf , log pfq ´ Pℓpγ; f0, logf0q}1 Ñ 0,

in probability.

Proof of Lemma S8.5. Note that:

sup
γPrΓnδ

|Pnℓpγ,pf , log pfq ´ Pℓpγ; f0, logf0q| ď sup
γPrΓnδ

|Pnℓpγ; f0, logf0q ´ Pℓpγ; f0, logf0q|

` sup
γPrΓnδ

|Pnℓpγ,pf , log pfq ´ Pnℓpγ;pf , logf0q|

` sup
γPrΓnδ

|Pnℓpγ;pf , logf0q ´ Pnℓpγ; f0, logf0q|

fi I ` II ` III

(S7)

We first show that for any ℓpγ; f , logfq P Lnpδ; f , logfq, sup
γPrΓnδ

|Pnℓpγ; f , logfq ´

Pℓpγ; f , logfq|
p

Ñ 0. Let δn “ 1, pdτ2nq1{2 ! nϕ ! n1{2 and αn “ n´1{2`ϕplognq1{2, where
the sequence tαnu is a nonincreasing sequence. For a fixed ϵą 0, let ϵn “ ϵαn. Then for any
ℓpγ; f , logfq P Lnpδ; f , logfq and sufficiently large n, by Condition (C2), we have

vartPnℓpγ; f , logfqu

16ϵ2n
ď
Pℓ2pγ; f , logfq

16nϵ2α2
n

ăă
1

16ϵ2logn
ă

1

2
,

where aăă b means a{bÑ 0.
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Define k1 “ rpd ` rqq and k2 “ dτ2n. Applying the inequality (31) and Lemma 33 of
Pollard (1984) and Lemma S8.4, we have

P t sup
γPrΓnδ

|Pnℓpγ; f , logfq ´ Pℓpγ; f , logfq| ą 8ϵnu

ď 8Ntϵn,Lnpδ; f , logfq, } ¨ }u ¨ expp´
nϵ2n
128

q ¨ P p sup
γPrΓnδ

|Pnℓ
2pγ; f , logfq| ď 64q

` P p sup
γPrΓnδ

|Pnℓ
2pγ; f , logfq| ą 64q

ĺ exp

„

pk1 ` k2qlogtϵ´1n1{2´ϕplognq´1{2u ´
1

128
nϵ2n´1`2ϕlogn

ȷ

ĺ expp´c˚
0n

2ϕlognq,

where c˚
0 is a constant. Then it follows that

ř8
n“1P tsup

γPrΓnδ
|Pnℓpγ; f , logfq´Pℓpγ; f , logfq| ą

8ϵnu ă 8. By the Borel-Cantelli Lemma, for any ℓpγ; f , logfq P Lnpδ; f , logfq,

(S8) sup
γPrΓnδ

|Pnℓpγ; f , logfq ´ Pℓpγ; f , logfq| Ñ 0,

almost surely. It implies that I “ sup
γPrΓnδ

|Pnℓpγ; f0, logf0q ´ Pℓpγ; f0, logf0q|
p

Ñ 0.

We then prove II “ sup
γPrΓnδ

|Pnℓpγ,pf , log pfq ´Pnℓpγ;pf , logf0q|
p

Ñ 0. It can be seen that

sup
γPrΓnδ

|Pnℓpγ,pf , log pfq ´ Pnℓpγ;pf , logf0q| ď sup
γPrΓnδ

|Pnℓpγ,pf , log pfq ´ Pℓpγ,pf , log pfq|

` sup
γPrΓnδ

|Pnℓpγ,pf , logf0q ´ Pℓpγ,pf , logf0q|

` sup
γPrΓnδ

|Pℓpγ,pf , log pfq ´ Pℓpγ,pf , logf0q|

fi II1 ` II2 ` II3.

(S9)

(S8) yields II1
p

Ñ 0 and II2
p

Ñ 0 and Lemma S8.5 gives II3
p

Ñ 0. Thus II p
Ñ 0.

Similarly, noting (S8) and Condition (C2), we have

III “ sup
γPrΓnδ

|Pnℓpγ;pf , logf0q ´ Pnℓpγ; f0, logf0q| ď sup
γPrΓnδ

|Pnℓpγ,pf , logf0q ´ Pℓpγ,pf , logf0q|

` sup
γPrΓnδ

|Pnℓpγ, f0, logf0q ´ Pℓpγ, f0, logf0q|

` sup
γPrΓnδ

|Pℓpγ,pf , logf0q ´ Pℓpγ, f0, logf0q|

p
Ñ 0,

(S10)

by using of the conclusions in Lemma S8.1. Thus, sup
γPrΓnδ

|Pnpγ,pf , log pfq´Pℓpγ; f0, logf0q|
p

Ñ

0 by (S7). This completes the proof of Lemma S8.5.
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S9. Proofs of the main results. In the following, we first prove the asymptotic proper-
ties of pγor. Then we get the asymptotic properties of pγ.

Proof of Theorem S7.1. We first show the consistency. Denote Nϵ “ tγ : ϵď ϱpγ,γ0q ď

ϵ0,γ P rΓnδu for some ϵ0 ď 1 and any 0 ă ϵă ϵ0. Then

sup
Nϵ

Pℓpγ; f0, logf0q ě ´ sup
γPrΓnδ

|Pnℓpγ;pf , log pfq ´ Pℓpγ; f0, logf0q| ` sup
Nϵ

Pnℓpγ;pf , log pfq

fi ´I1 ` sup
Nϵ

Pnℓpγ;pf , log pfq.

(S11)

For pγor P Nϵ,

sup
Nϵ

Pnℓpγ;pf , log pfq “ Pnℓppγor;pf , log pfq ě Pℓpγ0; f0, logf0q `

!

Pnℓpγ0;pf , log pfq ´ Pnℓpγ0;pf , logf0q

)

`

!

Pnℓpγ0;pf , logf0q ´ Pnℓpγ0; f0, logf0q

)

` tPnℓpγ0; f0, logf0q ´ Pℓpγ0; f0, logf0qu

fi Pℓpγ0; f0, logf0q ´ I2 ´ I3 ´ I4.

(S12)

By Jensen’s inequality,

Pℓpγ; f0, logf0q´Pℓpγ0; f0, logf0q ď logP

"

f0py;γ, f0q

f0py;γ0, f0q

*

“ log

ż

f0py;γ, f0q

f0py;γ0, f0q
f0py;γ0, f0qdy “ 0,

with the equality if and only if γ “ γ0. Then by (S11) and (S12), we have

Pℓpγ0; f0, logf0q ´ sup
Nϵ

Pℓpγ; f0, logf0q ď I1 ` I2 ` I3 ` I4 fi I.(S13)

Let δϵ “ Pℓpγ0; f0, logf0q ´ supNϵ
Pℓpγ; f0, logf0q. It can be seen that I ě δϵ and tpγor P

Nϵu Ď tI ě δϵu. By Lemma S8.5, we have I1 “ opp1q. (S9) and (S10) yield I2 “ opp1q and
I3 “ opp1q. By Law of Large Numbers, we have I4 “ opp1q. Hence, we have P ppγor P Nϵq ď

P pI ě δϵq Ñ 0, which indicates ϱppγor,γ0q “ opp1q.
We then conclude the convergence rate by verifying the conditions of Lemma 5 in Liu

et al. (2022). Define gpk; f , fq “ Pℓpγ0 ` kω; f , logfq for ω P rΓn. For any γ P rΓnδ , we have

Pℓpγ;pf , log pfq ´ Pℓpγ0;pf , log pfq “
␣

gp1; f0, f0q ´ gp0; f0, f0q
(

`

!

gp1;pf , pfq ´ gp1; f0, f0q ´ gp0;pf , pfq ` gp0; f0, f0q

)

fi I1`I2.

For part I1, we have gp0; f0, f0q ´ gp1; f0, f0q “ ´P 9ℓ1pγ0; f0, logf0qrωs` P :ℓ1pγ0 `

ξω; f0, logf0qrω,ωs for some ξ P p0,1q, where 9ℓ1pγ0; f0, logf0qrωs and :ℓ1pγ0; f0, logf0qrω,ωs

are defined in Appendix S5. Noting that P 9ℓpγ0; f0, logf0qrωs “ 0, we have P pI1q ĺ

´ϱ2pγ,γ0q ¨Oppd
1{2q.

For part I2, denote ω˚ “ pω˚T
1 ,ω˚

2 qT “ tppf ´f0qT, pf´f0uT and definem1ptq “ gp1; f0`

tω˚
1 , f0 ` tω˚

2 q and m0ptq “ gp0; f0 ` tω˚
1 , f0 ` tω˚

2 q, we have

I2 “ tm1p1q ´m1p0qu ´ tm0p1q ´m0p0qu “ t 9m1p0q ` :m1pξ˚qu ´ t 9m0p0q ` :m0pξ˚qu ,

for some ξ˚ P p0,1q. For given ω, we have 9mkp0q “ P 9ℓ2pγ0 ` kω; f0, logf0qrω˚s and
:mkpξ˚q “ P :ℓ2tγ0 ` kω; f0 ` ξ˚ω˚

1 , logpf0 ` ξ˚ω˚
2 qurω˚,ω˚s, where 9ℓ2pγ; f , logfqrω˚s
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and :ℓ2pγ; f , logfqrω˚,ω˚s are defined in Appendix S5. It can be seen that P t :m0pξ˚qu ĺ

d2tppfT, pfqT, pfT0 , f0qTu ¨ Oppd
1{2q and P t :m1pξ˚qu ĺ d2tppfT, pfqT, pfT0 , f0qTu ¨ Oppd

1{2q.
Further, 9m1p0q ´ 9m0p0q “ P :ℓ12pγ0 ` ξω; f0, logf0qrω,ω˚s, where :ℓ12pγ; f , logfqrω,ω˚s is
defined in Appendix S5, and we can get P t 9m1p0q´ 9m0p0qu ĺ ϱpγ,γ0q¨dtppfT, pfqT, pfT0 , f0qTu¨

Oppd
1{2q. Finally, we have

P tℓpγ;pf , log pfq ´ ℓpγ0;pf , log pfqu ĺ
“

´ ϱ2pγ,γ0q ` d2tppfT, pfqT, pfT0 , f0qTu

` ϱpγ,γ0qdtppfT, pfqT, pfT0 , f0qTu
‰

¨Oppd
1{2q.

Then we define function class

Lδpf , logfq “

!

ℓpγ; f , logfq ´ ℓpγ0; f , logfq : γ P rΓnδ, ℓpγ; f , logfq P Lnpδ; f , logfq

)

.

Following the similar proof of Lemma 3 in Liu et al. (2022), it can be shown that
logrsNpϵ,Lδpf , logfq, } ¨ }q ĺ τ2nd logpδ{ϵq. Then the bracketing integral

Jtδ,Lδpf , logfq, } ¨ }u “

ż δ

0
t1 ` logrsNpϵ,Lδpf , logfq, } ¨ }q dϵu1{2 ĺ pτ2ndq1{2δ.

By Lemma 3.4.3 of van der Vaart and Wellner (1996), for any ℓpγ; f , logfq P Lnpδ; f , logfq,
we have

E

«

sup
ϱpγ,γ0qďδ,γPrΓnδ

|n1{2pPn ´ P qtℓpγ; f , logfq ´ ℓpγ0; f , logfqu|

ff

ĺ Jtδ,Lδpf , logfq, } ¨ }u

„

1 `
Jtε,Lδpf , logfq, } ¨ }u

δ2n1{2

ȷ

ĺOtδpτ2ndq1{2 ` pτ2ndqn´1{2u.

This shows that the function ϕnpδq in Theorem 3.4.1 of van der Vaart and Wellner
(1996) is given by ϕnpδq “ δpτ2ndq1{2 ` τ2ndn

´1{2. Obviously ϕnpδq{δ is decreasing in
δ and r2nϕnp1{rnq “ rnpτ2ndq1{2 ` r2npτ2ndqn´1{2 ď n1{2 for every n, which implies rn ď

n1{2pτ2ndq´1{2.
Besides, we need to show that pγor satisfies Pnℓppγor; f , logfq ě Pnℓpγ0, f , logfq ´

Oppr
´2
n q. Note that

Pnℓppγor; f , logfq ´ Pnℓpγ0; f , logfq “ pPn ´ P q tℓppγor; f , logfq ´ ℓpγ0; f , logfqu ` P tℓppγor; f , logfq ´ ℓpγ0; f , logfqu

fi I1 ` I2.

Define rLpγ; f , logfq “ tℓpγ; f , logfq´ℓpγ0; f , logfq,γ P rΓnδ, ℓpγ; f , logfq P Lnpδ; f , logfqu,
which is a P-Donsker class by using of Lemma S8.4. Therefore, I1 “Oppd

1{2n´r2v2`ϵn´1{2q

and I2 ě ´Oppdn
´2r2v2q by denoting τ2n “ Opnv2q. Since ϵ ă 1{2 ´ r2v2, it follows

Pnℓppγor; f , logfq´Pnℓpγ0; f , logfq ě ´Oppdn
´2r2v2q for rn ď mintd´1{2np1´v2q{2, d´1{2nr2v2u.

Thus, we have verified the conditions of Lemma 5 in Liu et al. (2022) with an :“ r´1
n “

d1{2n´r2{p2r2`1q for v2 “ 1{p2r2 ` 1q.
Subsequently, we establish the convergence rate of pγor based on Lemma 5 in Liu et al.

(2022). By Lemmas S8.1 and S8.2, we determine the convergence rate of the estimated fac-
tors and scores as:

sup
i

}pfi ´ fi0}2 “Oppcnq,

where cn :“K1{2τ
1{2
1n penn

´1{2 `n1{2δ2p´1{2q`n1{2δ1m´1{2 `enK
1{2τ´r1

1n “ op1q by (S6).
Additionally, conditions (C4) and (S6) indicate an “Opbnq and cn “Opbnq with bn :“ hr0 `
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logn1{2pnhq´1{2 , which leads to ppf , pγorq P Nn. Thus we determine the covergence rate of the
NW-estimator pf by Lemma S8.3 as:

} pf ´ f0}8 “Oppbnq.

Finally, using Lemma 5 in Liu et al. (2022) by treating pf , fq as nuisance parameters, we
establish the convergence rate of pγor as:

ϱppγor,γ0q “Opran ` dtppfT, pfqT, pfT0 , f0qTus “Oppan ` bn ` cnq “Optd
1{2n´r2{p2r2`1qu,

where dtppfT, pfqT, pfT0 , f0qTu“̂ supi }pfi´ fi0}2 `} pf ´f0}8 “Oppbn`cnq, which is defined
in Suppl. S5.

Proof of Theorem S7.2. Denote l8prΓq to be the space of bounded functionals on rΓ under
the supermum norm }g}8 “ sup

ωPrΓ
|gpωq|. Denote

Gnpγ; f , fqrωs “ Pn 9ℓ1pγ; f , logfqrωs and Gpγ; f , fqrωs “ P 9ℓ1pγ; f , logfqrωs.

To derive the asymptotic normality of the estimators, following the clues in Liu et al. (2022),
we need to verify the following conditions.

(AN.1) n1{2pGn ´Gqppγor;pf , pfqrωs ´ n1{2pGn ´Gqpγ0; f0, f0qrωs “ opp1q;

(AN.2) Gpγ0; f0, f0qrωs “ 0 and Gnppγor;pf , pfqrωs “ oppn
´1{2q;

(AN.3) Gpγ; f , fqrωs is Fréchet-differentiable with respect to γ and pfT, fqT with the
continuous derivative 9G1,γ,f ,f rωs and 9G2,γ,f ,f rωs, respectively;

(AN.4) n1{2pGn ´ Gqpγ0; f0, f0qrωs ` n1{2 9G2,γ0,f0,f0tppfT, pfq ´ pfT0 , f0qurωs converges
in distribution to a tight Gaussian process on l8prΓq;

(AN.5) Gppγor;pf , pfqrωs´Gpγ0; f0, f0qrωs´ 9G
1,γ0,pf , pf

ppγor ´γ0qrωs´ 9G2,γ0,f0,f0

␣

ppfT, pfq´

pfT0 , f0q
(

rωs “ oppn
´1{2q.

To vertify (AN.1), we make the decomposition that

n1{2pGn ´Gqppγor;pf , pfqrωs ´ n1{2pGn ´Gqpγ0; f0, f0qrωs

“

!

n1{2pGn ´Gqppγor;pf , pfqrωs ´ n1{2pGn ´Gqpγ0;pf , pfqrωs

)

`

!

n1{2pGn ´Gqpγ0;pf , pfqrωs ´ n1{2pGn ´Gqpγ0; f0, f0qrωs

)

.

(S14)

For the first part, define

Gnpδ; f , logfqrωs “

!

9ℓ1pγ; f , logfqrωs ´ 9ℓ1pγ0; f , logfqrωs : ϱpγ,γ0q ď ϵ,γ P rΓnδ, ℓpγ; f , logfq P Lnpδ; f , logfq

)

,

similar to the class Lnpδ; f , logfq, the covering number of the class Gnpδ; f , logfqrωs satisfies

Ntϵ,Gnpδ; f , logfqrωs, } ¨ }u ĺ pδ{ϵqrτ1nd,

uniformly in ω P rΓ and

Jtδ,Gnpδ; f , logfqrωs, }¨}u “

ż δ

0
t1 ` logrsNpϵ,Gnpδ; f , logfqrωs, } ¨ }q dϵu1{2 ĺ prτ1ndq1{2δ.
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Because nr2{p1`2r2qϱppγor,γ0q “Opp1q with r2 ą 1, we have 9ℓ1ppγor; f , logfqrωs´ 9ℓ1pγ0; f , logfqrωs P

Gnpδ; f , logfqrωs with δ “Opn´r2{p1`2r2qq. Furthermore, we have

sup
ωPrΓ

t 9ℓ1pγ; f , logfqrωs ´ 9ℓ1pγ0; f , logfqrωsu2 “ sup
ωPrΓ

:ℓ1pγ0; f , logfqrω, ξpγ ´ γ0qs2, for some ξ P p0,1q

ď sup
ωPrΓ

:ℓ1pγ0; f , logfqrω,γ ´ γ0s2 ĺ ϱ2pγ,γ0q.

Hence, using the maximal inequality in Lemma 3.4.2 of van der Vaart and Wellner (1996),
we obtain that

E

«

sup
γPrΓnδ

|n1{2pPn ´ P qt 9ℓ1pγ; f , logfqrωs ´ 9ℓ1pγ0; f , logfqrωsu

ff

ĺO
!

δprτ1ndq1{2 ` prτ1ndqn´1{2
)

“ op1q.

Therefore, the Markov inequality gives n1{2pGn´Gqppγor;pf , log pfqrωs´n1{2pGn´Gqpγ0;pf , log pfqrωs “

opp1q uniformly in ω P rΓ. By condition (A6), n1{2pGn ´ Gqpγ0;pf , pfqrωs ´n1{2pGn ´

Gqpγ0; f0, f0qrωs “ opp1q ¨ dtppfT, pfqT, pfT0 , f0qTu “ opp1q uniformly in ω P rΓ. Thus,
(AN.1) holds.

For (AN.2), clearly Gpγ0; f0, f0qrωs “ 0 for ω P rΓ and then we show Gnppγor;pf , pfqrωs “

oppn
´1{2q for ω P rΓ. For any ω P rΓ, there exists ωn P rΓn such that }ωn ´ω}8 “Opn´r2v2q

and Gnppγor;pf , pfqrωns “ 0 by Schumacker (1981). Next, we need to show that

Gnppγor;pf , pfqrωn ´ ωs “ oppn
´1{2q.

We rewrite Gnppγor;pf , pfqrωn ´ ωs as

Gnppγor;pf , pfqrωn ´ ωs “

!

Gnppγor;pf , pfqrωn ´ ωs ´Gnpγ0;pf , pfqrωn ´ ωs

)

`Gnpγ0;pf , pfqrωn ´ ωs

“

!

Gnppγor;pf , pfqrωn ´ ωs ´Gnpγ0;pf , pfqrωn ´ ωs

)

`Gnpγ0; f0, f0qrωn ´ ωs

`

!

Gnpγ0;pf , pfqrωn ´ ωs ´Gnpγ0; f0, f0qrωn ´ ωs

)

fi I1 ` I2 ` I3.

It follows that I1 “ ϱppγ,γ0q}ω ´ ωn}8, I2 “ n´1}ω ´ ωn}8 and I3 “ }ω ´ ωn}8 ¨

drppfT, pfqT, pfT0 , f
T
0 qs, which implies (AN.2).

For (AN.3), by the smoothness of 9ℓ1pγ; f , fq, the Fréchet derivatives G1,γ,f ,f prωqrωs “

P :ℓ1pγ; f , logfqrω, rωs and G2,γ,f ,f pω˚qrωs “ P :ℓ12pγ; f , logfqrω,ω˚s.
Noting the close form of pζi and pFi, we can rewrite pfi as a summation form, that is, pfi “

n´1
řn
j“1 qipXjptq,Zjq “ PnqipXjptq,Zjq “ PntqT1ipXjptqq,qT2ipZjquT, where

q1ipXjptqq “Kτ1n{p2 rV ´1
pζj

ż

XT
j ptqpBM˚Tptqdt

ż

M˚ptqpBTXiptqdt,

q2ipZjq “ 1{mqV ´1
pFjZ

T
j Zi,

and rV , pζj , pB are determined by Xiptq pi “ 1, ¨ ¨ ¨ , nq and qV P Rq1ˆq1 , pFj is determined by
Zi pi “ 1, ¨ ¨ ¨ , nq. Similarly, the kernel density estimation has the form pfpyq “ PnKhpYi ´
řd
j“1ψjpU

T
j Vfiq ´ yq. So we can rewrite 9G2,γ0,f0,f0tppfT, pfq ´ pfT0 , f0qurωs as a sum-

mation form, to be more specific, that is, 9G2,γ0,f0,f0tppfT, pfq ´ pfT0 , f0qurωs “ pPn ´

P q 9G2,γ0,f0,f0 rmtγ0;Y,Xptq,Zus rωs, where

mtγ0;Yi,Xiptq,Ziu “

«

qTi pXi1 ptq,Zi1 q,KhtYi1 ´

d
ÿ

j“1

ψjpU
T
j Vfi1 q ´ Yi `

d
ÿ

j“1

ψjpU
T
j Vfiqu

ffT

.
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Thus,

n1{2pGn ´Gqpγ0; f0, f0qrωs ` n1{2 9G2,γ0,f0,f0

!

ppfT, pfq ´ pfT0 , f0q

)

rωs

“n1{2pPn ´ P q

´

Gpγ0; f0, f0q ` 9G2,γ0,f0,f0 rmtγ0;Y,Xptq,Zus

¯

rωs “ n1{2pPn ´ P qMtγ0;Y,Xptq,Zurωs,

which is a bounded Lipschitz function and is P-Donsker. Then

(S15) n1{2pPn ´ P qMtγ0;Y,Xptq,Zurωs
d

ÑNp0, σ2q,

where σ2 “E rMtγ0;Y,Xptq,Zurωss
2. Therefore, (AN.4) holds.

For (AN.5), we have

Gppγor;pf , pfqrωs “Gpγ0,pf , pfq ` 9G
1,γ0,pf , pf

ppγor ´ γ0qrωs `Optϱ
2ppγor,γ0qu,

and

Gpγ0,pf , pfq “Gpγ0, f0, f0q` 9G2,γ0,f0,f0tppfT, pfq´pfT0 , f0qurωs`Op

”

d2tppfT, pfqT, pfT0 , f0qTu

ı

.

By Condition (C4), ϱ2ppγor,γ0q “ oppn
´1{2q and d2tppfT, pfqT, pfT0 , f0qTu “ oppn

´1{2q , thus
(AN.5) holds.

By (AN.3) and (AN.5) with (AN.2), we have
(S16)
´n1{2Gppγor;pf , pfqrωs “ ´n1{2 9G

1,γ0,pf , pf
ppγor ´γ0qrωs´n1{2 9G2,γ0,f0,f0

!

ppfT, pfq ´ pfT0 , f0q

)

rωs`opp1q.

By (AN.1) and (AN.2), we have

(S17) ´n1{2Gppγor;pf , pfqrωs “ n1{2pGn ´Gqpγ0; f0, f0qrωs ` opp1q.

Thus, it follows from (S16) and (S17) that

´n1{2 9G
1,γ0,pf , pf

ppγor ´ γ0qrωs “ n1{2pGn ´Gqpγ0; f0, f0qrωs ` n1{2 9G2,γ0,f0,f0tppfT, pfq ´ pfT0 , f0qurωs ` opp1q.

Since ϱppγor,γ0qdtppfT, pfqT, pfT0 , f0qTu “ opp1q, we have by Lemmas S8.1 and S8.2, Theo-
rem S7.1 and Condition (C3),

n1{2 9G
1,γ0,pf , pf

ppγor ´ γ0qrωs “ n1{2 9G1,γ0,f0,f0ppγor ´ γ0qrωs ` opp1q.

This implies that

´n1{2 9G1,γ0,f0,f0ppγor ´ γ0qrωs “ n1{2pGn ´Gqpγ0; f0, f0qrωs ` n1{2 9G2,γ0,f0,f0

!

ppfT, pfq ´ pf0, f0q

)

rωs ` opp1q

d
ÑNp0, σ2q,

where σ2 is defined in (S15). This completes the proof of Theorem S7.2.

Proof of Theorem S7.3. To prove the theorem, it suffices to verify the first part by The-
orems 1 and 2. To the end, we denote Qnpγ; f , fq “ Pnℓpγ; f , logfq ´ λ

řq
k“1wk}Vrks}2.

Recalling that δn “Optd
1{2n´r2{p2r2`1qu, we need to show that pγor is a strictly minimum of

Qnpγ;pf , pfq for γ P Γn with probability approaching 1 through the following two steps.

(a) For any γ˚ P Γnδn
Ş

rΓn,

Qnpγ˚;pf , pfq ďQnppγor;pf , pfq,

with the equality only when γ˚ “ pγor.
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(b) Define Γ˚
ntn “

!

γ : ϱpγ,γ˚q ď tn,γ P Γn,Vrks “ V˚
rks
, k P S

)

, where tn ď C is a
positive sequence. For any γ P Γ˚

ntn ,

Qnpγ;pf , pfq ďQnpγ˚;pf , pfq,

with the equality only when γ “ γ˚.

We first show (a). Recall that
q
ÿ

k“1

λwk}pVrks,or}2 “
ř

kPS λwk}Vrks,0}2 `Op

!

ř

kPS λwk}Vrks,0}
´1
2 VT

rks,0ppVrks,or ´ Vrks,0q

)

“
ř

kPS λwk}Vrks,0}2 `Oppδn
ř

kPS λwkq ďC
ř

kPS λwk,

and
q
ÿ

k“1

λwk}V˚
rks}2 “

ř

rq
k“1 λwk}Vrks,0}2 `Op

!

ř

kPS λwk}Vrks,0}
´1
2 VT

rks,0pV˚
rks

´ Vrks,0q

)

“
ř

kPS λwk}Vrks,0}2 `Oppδn
ř

kPS λwkq ďC
ř

kPS λwk.

Under the condition of the theorem,
řq
k“1 λwk}V˚

rks
}2 ´

řq
k“1 λwk}pVrks,or}2 “ oppanq.

In addition, for any γ˚ P Γnδn
Ş

rΓn, by the definition of pγor, we have Pnℓppγor;pf , log pfq ě

Pnℓpγ
˚;pf , log pfq and |Pnℓppγor;pf , log pfq ´ Pnℓpγ

˚;pf , log pfq| “Oppanq by the proof of Theo-
rem S7.1. Hence we get

Qnpγ˚;pf , pfq ďQnppγor;pf , pfq.

Next we show (b). For any γ P Γnδn
Ť

Γ˚
ntn , we have

Qnpγ˚;pf , pfq ´Qnpγ;pf , pfq “ Pnℓpγ
˚;pf , log pfq ´ Pnℓpγ;pf , log pfq ´

#

λ

q
ÿ

k“1

wkp}V˚
rks}2 ´ }Vrks}2q

+

“ tPnℓpγ
˚; f0, logf0q ´ Pnℓpγ; f0, logf0qu ´

#

λ

q
ÿ

k“1

wkp}V˚
rks}2 ´ }Vrks}2q

+

`

”

Pntℓpγ˚;pf , log pfq ´ ℓpγ˚; f0, logf0qu ´ Pntℓpγ;pf , log pfq ´ ℓpγ; f0, logf0qu

ı

fi I1 ` I2 ` I3.

For I1, by Taylor’s expansion, we have for rγ between γ˚ and γ,

|I1| ďC

ˇ

ˇ

ˇ

ˇ

ˇ

P

«

ÿ

kPSC

␣

BTℓprγ; f0, logf0q{BVrks ¨ Vrks

(

ffˇ

ˇ

ˇ

ˇ

ˇ

ďOpptn`δnq
ÿ

kPSC

}Vrks}2 ďC
ÿ

kPSC

}Vrks}2

by noting
ř

kPSC }rVrks ´ Vrks,0}2 ď
ř

kPSCp}V˚
rks

´ rVrks}2 ` }V˚
rks

´ Vrks,0}2q ď tn ` δn.
For I2, it can be seen that

I2 “ λ
ÿ

kPSC

wk}Vrks}2 ě λmin
kPSC

wk
ÿ

kPSC

}Vrks}2.

For I3,

|I3| “ Pn 9ℓ2pγ˚; f0, logf0qrppfT, pfq ´ pfT0 , f0qs ´ Pn 9ℓ2pγ; f0, logf0qrppfT, pfq ´ pfT0 , f0qs

ďC

ˇ

ˇ

ˇ

ˇ

ˇ

P

«

ÿ

kPSC

!

BT 9ℓ2prγ; f0, logf0qrppfT, pfq ´ pfT0 , f0qs{BVrks ¨ Vrks

)

ffˇ

ˇ

ˇ

ˇ

ˇ
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“Op

”

ptn ` δnq ¨ dtppfT, pfqT, pfT0 , f0qTu

ı

ÿ

kPSC

}Vrks}2

ďC
ÿ

kPSC

}Vrks}2.

Thus,

Qnpγ˚;pf , pfq ´Qnpγ;pf , pfq ě pλmin
kPSC

wk ´Cq
ÿ

kPSC

}Vrks}2 ě 0.

This completes the proof of Theorem S7.3.

S10. Other results in numerical studies. Table S1 shows the Bias, SD and RMSE for
pΨp¨q of the proposed FFRM method and LSE. Similar conclusions to those shown in Figure
6 can be obtained. It appears that FFRM performs slightly better than LSE in Setting I and
much better in Settings II and III.

S11. The transformation from the regression relationships between LDL and scores
to functioanl covariates for analyzing the effects of functional covariates on LDL. To
assess the effects of individual anthropometrics and other assay results on LDL, we esti-
mate the coefficient functions for Xiptq by multiplying p´1ΦptqBT on both sides of (4).
This yields p´1ΦptqBTXiptq « ΦptqΦTptqζi, where we assume the identification condition
p´1BTB “ Iq2 .

By combining this result with the identification condition
ş

ΦptqΦTptqdt “ I, we obtain
p´1

ş

αΦptqBTXiptqdt« α
ş

ΦptqΦTptqdtζi “ αζi. Therefore, the regression relationship
αζi between the response variable Yi and the factor ζi can be written as

ş

ηTptqXiptqdt
between Yi and the original functional covariates Xiptq, where ηptq “ tη1ptq, ¨ ¨ ¨ , ηpptquT “

p´1BΦTptqαT represents the regression coefficient function.

S12. Other results of the analysis of the BMI outcomes with the ALSPAC data. To
select the numbers of factors q1 and latent processes q2, we use the method mentioned in
Suppl. S1 and parallel analysis. The scree plots in Figure S1 show the variance explained by
the first 30 principal components of n´1ZZT and n´1

řn
i“1 n

´1
i

řni

l“1XiptilqX
T
i ptilq, and

the dashed lines are the average with 100 iterations of the first 30 eigenvalues of random
samples by parallel analysis. We first select q2 “ 13 latent processes from the functional
covariates and the explanation ratio reaches 91.28%. In addition, parallel analysis chooses
only 9 factors from the scalar covariates but the explanation ratio is only 76.88%. Since we
will select the factors that are related to the response by the sparse penalty, a larger q1 is
better for our analysis. By calculation, the explanation ratio of 20 factors reaches 92.13%,
so we finally select q1 “ 20 factors from the scalar covariates. It appears that the selected
q1-dimensional factors and q2-dimensional processes have extracted most of the information
of the covariates.

The information of functional covariates and the scalar covariates used in Section 5 is
summaried in Tables S2-S4.
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TABLE S1
Bias, SD and RMSE of component functions Ψp¨q for Example 1

Setting I
n“ 100, p“m“ 100 n“ 100, p“m“ 500 n“ 500, p“m“ 500

FFRM LSE FFRM LSE FFRM LSE

ψ1p¨q

Bias 0.0773 0.0595 0.0681 0.0453 0.0933 0.0949
SD 0.4447 0.4575 0.3355 0.4034 0.2898 0.2814

RMSE 0.4514 0.4614 0.3424 0.4059 0.3044 0.2969

ψ2p¨q

Bias 0.0071 0.0177 0.0279 0.0065 0.0036 0.0091
SD 0.2230 0.3055 0.2128 0.2953 0.1579 0.1675

RMSE 0.2231 0.3060 0.2146 0.2954 0.1580 0.1677

ψ3p¨q

Bias 0.0126 0.0112 0.0239 0.0084 0.0175 0.0091
SD 0.2628 0.3022 0.2470 0.3206 0.1963 0.2094

RMSE 0.2631 0.3025 0.2481 0.3207 0.1970 0.2096

ψ4p¨q

Bias 0.0177 0.0501 0.0513 0.0111 0.0650 0.0374
SD 0.4018 0.3935 0.3612 0.3438 0.2969 0.2964

RMSE 0.4022 0.3967 0.3649 0.3440 0.3039 0.2987

Setting II

ψ1p¨q

Bias 0.0748 0.0818 0.0687 0.0528 0.0990 0.1012
SD 0.4559 0.6164 0.3367 0.4584 0.2871 0.3419

RMSE 0.4620 0.6218 0.3436 0.4615 0.3037 0.3566

ψ2p¨q

Bias 0.0080 0.0302 0.0290 0.0144 0.0041 0.0144
SD 0.2227 0.4652 0.2179 0.3130 0.1631 0.1779

RMSE 0.2228 0.4662 0.2199 0.3134 0.1631 0.1785

ψ3p¨q

Bias 0.0155 0.0329 0.0245 0.0094 0.0194 0.0158
SD 0.2639 0.3781 0.2499 0.3403 0.1976 0.2585

RMSE 0.2643 0.3795 0.2511 0.3404 0.1986 0.2589

ψ4p¨q

Bias 0.0131 0.0428 0.0531 0.0261 0.0614 0.0555
SD 0.4066 0.4503 0.3626 0.3997 0.2961 0.3586

RMSE 0.4068 0.4523 0.3665 0.4006 0.3024 0.3629

Setting III

ψ1p¨q

Bias 0.0747 0.0928 0.0711 0.0655 0.0931 0.0955
SD 0.4016 0.5662 0.3097 0.5195 0.2847 0.3675

RMSE 0.4084 0.5738 0.3178 0.5236 0.2995 0.3797

ψ2p¨q

Bias 0.0204 0.0388 0.0187 0.0175 0.0050 0.0136
SD 0.2989 0.4943 0.2203 0.3411 0.1627 0.1758

RMSE 0.2996 0.4958 0.2211 0.3415 0.1628 0.1763

ψ3p¨q

Bias 0.0127 0.0426 0.0156 0.0161 0.0221 0.0190
SD 0.3576 0.4096 0.2730 0.3739 0.1986 0.2567

RMSE 0.3578 0.4118 0.2735 0.3742 0.1998 0.2574

ψ4p¨q

Bias 0.0486 0.0226 0.0857 0.0311 0.0696 0.0611
SD 0.3761 0.4892 0.3263 0.4035 0.2941 0.3524

RMSE 0.3793 0.4897 0.3374 0.4046 0.3022 0.3576
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TABLE S2
Summary of functional covariates used in Section 5

Feature Description of each feature
fms010 height (cm)
fms012 sit height (cm)
fms018 waist circumference (cm)
fms026a weight
fms026a body mass index
fms028 impedance
fms030 scoliometer measure
fvs212 axis of left eye
fdar117 systolic measure
fdar118 diastolic measure
fms016 arm circumference (cm)
fems028a fat percentage
fems028b body water
CHOL cholesterol (nmol/L)
HDL high density lipoprotein (nmol/L)
LDL low density lipoprotein (nmol/L)
fms0102 the square of height
fms0122 the square of sit height
fms0182 the square of waist circumference
fms026a2 the square of BMI
fms0282 the square of impedance
fms0302 the square of scoliometer measure
fvs2122 the square of axis of left eye
fdar1172 the square of systolic measure
fdar1182 the square of diastolic measure
fms0162 the square of arm circumference
fems028a2 the square of fat percentage
fems028b2 the square of body water
CHOL2 the square of cholesterol
HDL2 the square of high density lipoprotein
LDL2 the square of low density lipoprotein
fms012a2 the square of leg length
fms012ˆfms010 the interaction between height and sit height
fms018ˆfms010 the interaction between height and waist circumference
TRIGˆfms026a the interaction between weight and triglycerides
fms010ˆfsa021b the interaction between samples of BP systolic 2 and height
fms026ˆfsa021b the interaction between samples of BP systolic 2 and weight
fms010ˆfsa022a the interaction between samples of BP diastolic 1 and height
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Feature Description of each feature
fms026ˆfsa022a the interaction between samples of BP diastolic 1 and weight
fms026aˆfms010 the interaction between height and BMI
fms028ˆfms010 the interaction between height and impedance
fms030ˆfms010 the interaction between height and scoliometer measure
fvs212ˆfms010 the interaction between height and axis of left eye
fdar117ˆfms010 the interaction between height and systolic measure
fdar118ˆfms010 the interaction between height and diastolic measure
fms016ˆfms010 the interaction between height and arm circumference
fems028aˆfms010 the interaction between height and fat percentage
fems028bˆfms010 the interaction between height and body water
CHOLˆfms010 the interaction between height and cholesterol
HDLˆfms010 the interaction between height and high density lipoprotein
LDLˆfms010 the interaction between height and low density lipoprotein
fms012aˆfms010 the interaction between height and leg height
fsa021bˆfms010 the interaction between height and BP systolic
fsa022bˆfms010 the interaction between height and BP diastolic
fsa023aˆfms010 the interaction between height and samples of pulse 1
fms023bˆfms010 the interaction between height and samples of pulse 2
fms012ˆfms018 the interaction between waist circumference and sit height
fms026aˆfms018 the interaction between waist circumference and BMI
fms028ˆfms018 the interaction between waist circumference and impedance
fms030ˆfms018 the interaction between waist circumference and scoliometer measure
fvs212ˆfms018 the interaction between waist circumference and axis of left eye
fdar117ˆfms018 the interaction between waist circumference and systolic measure
fdar118ˆfms018 the interaction between waist circumference and diastolic measure
fms016ˆfms018 the interaction between waist circumference and arm circumference
fms028ˆfms026a the interaction between BMI and impedance
fms030ˆfms026a the interaction between BMI and scoliometer measure
fvs212ˆfms026a the interaction between BMI and axis of left eye
fms016ˆfms026a the interaction between BMI and arm circumference
fms030ˆfms028 the interaction between impendence and scoliometer measure
fms016ˆfms028 the interaction between impendence and arm circumference
fems028aˆfms028 the interaction between impendence and fat percentage
fms026aˆfms012a the interaction between leg length and BMI
fms028ˆfms012a the interaction between leg length and impendence
fms026aˆfms026a the interaction between weight and BMI
fms028ˆfms026a the interaction between weight and impendence
HBˆfms026a the interaction between weight and haemoglobin
CHOLˆfms026a the interaction between weight and cholesterol
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TABLE S3
Summary of scalar covariates (the maternal information) used in Section 5

Feature Description of each feature Feature Description of each feature
fm1a011 age at attendance (years) fm1ms100 height (cm)
fm1ms101 sitting height (cm) fm1ms103 leg length (cm)
fm1ms115a waist circumference (cm), 1st fm1ms110 weight (kg)
fm1ms115b waist circumference (cm), 2nd fm1ms111 BMI
fm1ms120a hip circumference (cm), 1st fm1ms115 mean waist circumference (cm)
fm1ms120b hip circumference (cm), 2nd fm1ms125 arm circumference (cm)
fm1dx020 total fat mass (g) fm1dx021 total lean mass (g)
fm1dx030 total bmd (g/cm2) fm1dx031 total bmc (g)
fm1dx035 total area (cm2) fm1dx036 total bone mass (g)
fm1dx391 total tissue fat (g) fm1bp110a systolic of right arm, 1st
fm1bp110b systolic of right arm, 2nd fm1bp110 mean systolic of right arm
fm1bp111a diastolic of right arm, 1st fm1bp111b diastolic of right arm, 2nd
fm1bp111 mean of right arm fm1bp112a pulse rate of right arm, 1st
fm1bp112b pulse rate of right arm, 2nd fm1bp112 mean pulse rate of right arm
fm1bp120a systolic of left arm, 1st fm1bp120b systolic of left arm, 2nd
fm1bp120 mean systolic of left arm fm1bp121a diastolic of left arm, 1st
fm1bp121b diastolic of left arm, 2nd fm1bp121 mean diastolic of left arm
fm1bp122a pulse rate of left arm, 1st fm1bp122b pulse rate of left arm, 2nd
fm1bp122 mean pulse rate of left arm fm1bp130 mean systolic of both arms
fm1bp131 mean diastolic of both arms fm1bp132 mean pulse rate pf both arms
DELP1006 gestation days based on LMP DELP1007 gestation weeks based on LMP
DELP1008 gestation days based on EDD DELP1009 gestation weeks based on EDD
DELP1010 preterm delivery DELP1015 number of antenatal measurements
DELP1047 haemoglobin DELP1128 weight change (0-18)
DELP1129 weight change (18-28)
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TABLE S4
Summary of scalar covariates (the paternal information) used in Section 5

Feature Description of each feature Feature Description of each feature
ff1ms100 height (cm) ff1ms101 sitting height (cm)
ff1ms103 leg length (cm) ff1ms105 pacemaker fitted
ff1ms110 weight (kg) ff1ms111 BMI
ff1ms115a waist circumference (cm), 1st ff1ms115a waist circumference (cm), 2nd
ff1ms115 mean waist circumference (cm) ff1ms120a hip circumference (cm), 1st
ff1ms120b hip circumference (cm), 2nd ff1ms120 mean hip circumference (cm)
ff1ms125 arm circumference (cm) ff1ms126a head circumference (cm)
ff1dx020 total fat mass (g) ff1dx021 total lean mass (g)
ff1dx030 total bmd (g/cm2) ff1dx031 total bmc (g)
ff1dx035 total area (cm2) ff1dx036 total bone mass (g)
ff1bp103 arm used for BP ff1bp140a seated systolic BP (mmHg), 1st
ff1bp140b seated systolic BP (mmHg), 2nd ff1bp140 mean seated systolic BP (mmHg)
ff1bp141a seated diastolic BP (mmHg), 1st ff1bp141b seated diastolic BP (mmHg), 2nd
ff1bp141 mean seated diastolic BP (mmHg) ff1bp142a seated pulse rate, 1st
ff1bp142b seated pulse rate, 2nd ff1bp142 mean seated pulse rate
ff1bp143a standing systolic BP (mmHg), 1st ff1bp143b standing systolic BP (mmHg), 2nd
ff1bp143 mean standing systolic BP (mmHg) ff1bp144a standing diastolic BP (mmHg), 1st
ff1bp144b standing diastolic BP (mmHg), 2nd ff1bp144 mean standing diastolic BP (mmHg)
ff1bp145a standing pulse rate, 1st ff1bp145b standing pulse rate, 2nd
ff1bp145 mean standing pulse rate
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