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S1. Selection of initial values and tuning parameters. To start the iteration, we need
to select (d,r) and the initial values Q©), U© and V(O A We use 5-folds cross-
validation to select d. Concretely, based on the test sets, we begin with £ = 1 and esti-
mate the single index model Y; = @bl(ﬂ?ﬁ) + £1; using MAVE (Xia et al., 2002) and set
k — k + 1 until k < d. In each step k, we obtain ; = Y; — Zf;ll Aj(ﬁ}?@) and fit model

Eki = wk(ﬂgﬁ) + €k;. The resulting estimators for € and v;(-) are denoted by €2(d) and
1;(-,d). We find an optimal d that minimizes the prediction error for the test sets. Then, we

choose Q) = Q(d) and 1/13(0)(~) = 1;(-,d) based on the whole dataset, and select r so that
D1 )\i(Q(O)TQ(O))/Zﬁ?{d’Q} i (QOTQO)) > 90%, where \;(A) is the i-th eigenvalue
of A. Furthermore, we take V(¥ as the eigenvectors corresponding to the r largest eigen-
values of QOTQO) and U = QOVOT We apply least square regression of %(_0) (-) on

M, (+) to obtain ag-o) (j=1,---.,d).

In addition, we need to determine the dimension of the latent components ¢; and g2 and
the number of eigenfunctions K. Compared to the traditional FPCA or factor models, the
proposed estimation is less sensitive to the choice of (g1, g2, K) since we further choose the
components by the group penalty. Following the literature, we choose (g1, g2, K) by calculat-
ing the proportion of variability explained by each principal component (James et al., 2000;
Happ and Greven, 2018). Since the directions that contain the important information on the
relationship between {X;(¢),Z;} and Y; may be different from those for {X;(¢),Z;}, we
take (q1,q2, K) to be large so that we can maintain sufficient information on {X;(t),Z;}.
Particularly, we choose (qi,g2,K) such that >.7', X, (ZZT) /Y7, N (ZZ7) > 90%,

N g X X () X (k) /350 N {0y 0 Xa(ta) X T (ta) } > 90%,

~ ~

and minje(g ... 7q2}{2£1 Xi(25)/ 2N (X5)} > 90%, respectively, where 33 is the estimated

covariance matrix based on hl(.;)) t) (i=1,---,n).
In the adaptive group LASSO penalty, as discussed in Huang et al. (2010), we first ob-
tain an estimator Vo by setting wy =1 (k= 1,---,q) using the algorithm described in

Section 3.3. Then, wy, = 1/H\A7[k]7LaSSOH2 if H\/\/[@Lagso”g > 0 and oo; for example, it is 10® if
HV[k],LassoH2 =0.
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In the simulation studies and real data analysis, we take h = n~/3 to satisfy Condition
(C4) in Suppl. S4 and prevent instability which may be caused by an extremely small h.
Finally, we select A by maximizing the BIC-based criterion:

(S1) BIC(\) = £,(3;f,logf) — df (\)logn/2n,

where df () is the degree of freedom and can be calculated as the number of estimated
nonzero parameters following, as in Zhang and Lian (2018).

S2. Conditions for the asymptotic property of CAz The following assumptions are re-
quired for establishing the theoretical properties of ;.

(A1) Denote ¢ = (C1,- -+ ,¢n) T Asn — o0, [n1¢¢T = ¢ |2 — 0 and B¢ = E(¢i¢T) is di-
agonal with ' var(&;15) = -~ = Y8 var(Eigx) > 0 and var(&;1) = - - = var(£x ) >

(A2) There exist positive constants C, a1,a2 and C1, Ca, such that (1) sup;|b;[2 < C; (2)
for any s > 0, P(suijC |&ijxll1 > s) < exp{—(s/C1)*} and P{supj Jwij ()]l > s} <
exp{—(s/C2)*}.

(A3) The random errors u;(t) are independent of ;. There exists constant C' > 0 such that

b1 | E {uij(t)uij (t)}], < C for each j and uniformly over ¢. Furthermore, there exists
_ 8 _ %
6 > 4 such that Blp2 57 _ [u, (1)~ B{u2, (0}][* < Cand B [p~V2 X2 byusi (1)) <
C and uniformly over t.

(Ad) Asp— o0, p1/2 Z§:1 b;u;;j(t) converges to a normal distribution /N (0,T'(¢)), where
I'(t)= lim,, 0 pil Zg’jlzl bjb}:E{uij (t)uij/ (1)}

(AS) Denote that wj is the j-th knot for M (-) with 71,, = O(n"*), A1 = max; |wj —w;—1 |1
and Ay = min; |w; — wj—1]1. We assume A; = O(n™"), where 0 < v; < 1/2 and
A1//g is bounded.

(A6) Denote w =k + s for ke N, and s € (0,1], and 7, = {g(-) : ¢ (z) — ¢ (y)|; <
C|z — y|; forany x,y}. We suppose the true functions {@;x0 (j = 1,---,q2;k =
1,---,K)}e s, and {¢jo (j =1,--- ,d)} € 7, with 7,79 > 2.

Condition (A1) is a pervasive condition in factor model, implying K ¢» factors exist and the
variances of ;;;’s are bounded. Condition (A2) gives exponential tail conditions of latent
factor and random error and requires the loading vectors are uniformly bounded. Condi-
tion (A3) sets constrains on the moments of random error u;;(t)’s and the idiosyncratic er-
rors are allowed to be correlated to some extend across index j. The diagonal structure, i.e.,
cov{u;(t),ui(s)} = 031_41,, also satisfies the constrains. Condition (A4) sets some con-
straints on the limiting distribution of random error. Condition (AS5) implies the spline knots
are uniform, which is commonly used in spline approximation theories. Condition (A6) is a
regular condition on the functions.

S3. Conditions for the asymptotic property of IA?‘Z To establish the asymptotic prop-
erties of the estimator for F';, we need the following conditions.

(B1) As m — o0, m 'ATA — X5, where 3, is a positive define diagonal matrix. There
exist two positive constants C'1, Co such that C; < A\g(Xp) < Cofork=1,---,q.

(B2) There exists a positive constant C' such that sup;|A;|2 < C. Further, there exists
ay,az > 0 and c1,co > 0, such that for any s > 0,k < ¢ and j < m, P(|Fip|1 > s) <
exp{—(s/c1)" } and P([es;]1 > s) < exp{—(s/c2)*}.
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(B3) The random error e;’s are independent of F;’s and E(e;;) = 0, 2277:1 |E(eijei )|,

<
C for each j. Further, there exist & > 4 such that E|lm=123" {e2 — E(e2)}" < C
j. s 1 = 4 such that E[m~123" {eZ, — E(ef)}]]' <
01
and B |m~ 125, Ajey , <C.
(B4) As m — o0, m~1/? 27]":1 Aje;; converges to a normal distribution N (0,I';), where
'y =lim,, o m~! Z;rL:l Z?:l AjA;I,‘E(eijeij/).

S4. Conditions for the asymptotic property of 4. To establish the asymptotic proper-
ties for 4, we need the following conditions.

(C1) The true density function fy € .77, belongs to the ro-Holder continuous function
class 7, where its k-th derivative exists, 1o = k + s > 2 and 0 < s < 1. Addition-
ally, we assume that {2 fo(z)dz < co. The kernel function K(-) satisfies { K(z)dz =1,
§2'K(z)dx =0 for t <rgand 0 # (2K (z)dx < .

(C2) Denote that wj is the j-th knot of My () with 79, = O(n"?), A1 = max; [|w; —w;—1]1
and Ay = min; |w; — w;—1[1. We assume that Ay = O(n™"?) and A;/A, is bounded,
where 0 < vg < 1/2.

(C3) Each entry of Uy and Vj is in a compact set.

(C4) We assume that the bandwidth satisfies h = O{d'/ (270 =72/(2ror2tr0)} — (1),

Condition (C1) requires the density function of the error term satisfies some smoothness
condition and ensure the uniform convergence for the kernel smooth estimate of the density
function for error term. Condition (C2) implies that the spline knots are uniform so that the
bias induced by the spline approximation can be well controlled. Condition (C3) is a regular
condition on the true parameters. Condition (C4) ensures that the convergence rate of the
Nadaraya-Watson kernel estimator is fast enough to guarantee the asymptotic properties of
by choosing an appropriate bandwidth h.

S5. Notations. For a matrix G(t) = {G;;(t) (i = 1,--- k155 = 1,--- ,ko)}, define
§G(t)dt = {{Gi;(t)dt (i =1,--- k1;5 =1,--- ,ka)}. Except for special emphasis, we
omit the integration region [0, 1] and omit the dependence of the variable on the subscript
n for notation simplicity. To fix notation, |[W|; be the L;-norm, |[W|y be the spectral-
norm, |W||z be the Frobenius-norm and |[W |, be the sup-norm. Denote f*) to be the
k-th derivative of f, and | f], = sup|f(z)|1. Denote the metric d{(£T, /)T, (£F, fo)T} =
sup [[£; — fioll2 + [|f — follo- Define

(2

As = {Vec(U,V) U —=Ug|r <6,V —Vo|p <d,vec(U,V) e Rr(d+q)}

As = {Vec<UaV) U = Ug|p <6, [V = Volr <6,V =0if ke S vecT(UT, V) e Rr(d+q>} ’
Fs={W: |, — Yoz < foreach k, ¥ e F},

and I'y5 = As x Zy, f‘n(s = /T(; x Fs, where S€ is defind in Suppl. S7.

Define the constrained space for f as F={f € R?: The covarinace matrix of f; satisfies
Conditions (A1) and (B1)}. Let P, be the the empirical measure of {(Y;,X;(¢),Z;) (i =
1,---,n)} and P be the probability measure of {Y;, X;(t),Z;}.

In the following part, we will define some derivatives. We first define the 1-order and 2-
order directional derivatives of ¢(~;f,logf) = ¢(;Y,f,logf) with respect to ~. For w =
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(T, wF,wf)TeT or Iy, where w1 = (W, ,wk) e RY wy = (W]}, ,w}) e R
and w3 = (w31, ,wsq) € A or F satisfying [will2 <1, |wol2 <1 and |wsfe < 1, we

define the derivative of £(~y;f,logf) with respect to -y in the direction w as
0l(y + ew; f,logf)

d r
01 (v £, logf)[w] = =0 (i £, log ) [wiji]

Oe e=0 =lk=1
q r . d .
+ 0D iy g (3 £, 10g ) [warn ] + ) bas i (v: £, log f) [ws;],
k=1k=1 =

where 11 i (v; £, 1og f) [wiji], L1z ik (7; £, log f ) [warne] and £13 (7; £, log f ) [ws;] are the 1-
order directional derivatives with respect to Ui, Vi, and 1.

For w = (wlT,wQT,w;f) el or I, where & € R &y € RY" and &3 € %”T‘j or . sat-
isfying |@12 < 1, [@2]2 < 1 and ||@3]|x < 1, we define the derivative of ¢ (;f,logf)[w]
with respect to « in the direction @ as

001 (7 + €a; £, log f)[w]
Oe

d r
= Z 2 fl,ﬂ,jj/,kk/(%falogf)[wljka‘;lj’k’]
0~
53" =1k k=1

O1(7: £, log f)[w, @] =

€=

¢ d
+ >0 bga e (i £ 1og f)[wars, @k ] + D s gy (vi £, log ) [ws, Day]
kk'=111'=1 3y'=1

d q T

+2 Z Z Z Zl,lQJk;?j/k/ (’7a f; logf) [UJljk, JJQj/k’]

j=1j4=1kk'=1
d r

q d r
+2 Z Z 01135k, (73 £, log f) [wijk, @3] + 2 Z Z Z 1,23,k (73 T, log f ) [warkr, @3]
JJ'=lk=1 k=11=1k'=1
In the first subscript part, “1" means the derivative to be related to parameter -y, while
the subscript “1,2,3" in the second part indicates the directional derivative with respect to
U, V, ¥ respectively. For example, {1 12 i jor (7: £, 108 f)[wi i, @a2j4/] is the 2-order cross
directioanl derivative with respect to Uj; and V .
Then we define the 1-order and 2-order directional derivatives of ¢(~; f,log f) with respect
to (fT, £)T. For w = (wf,w2)T € F x J4,, where wy = (w11, ,wiq) € F and wq € 54,
satisfying [|w1 |2 < 1 and ||wal|sc < 1, we define the derivative of £(~y; f,log f) with respect to
(fT, £)T in the direction w as

ol{y; f + ewq,log(f + ews)}

é2(’7§ f,logf)w] = Oe

Z Ua1 k(v £, og f)[wik] + faa (v £, log ) [wsl,
k=1

e=0

where (5 k(v;f, logf)[wik] and (a9 (~; £,1og f)[ws] are the 1-order directional derivatives
with respect to f[;) and f.

For @ = (wir,wg) eF x A, where @y € F and @,y € 77, satisfying @12 < 1 and
|l < 1, we define the derivative of f5(~;f,logf)[w] with respect to (£T, f)T
direction @ as

la(~; £, logf)[w,&] =

in the

0la{; f + €1, log(f + i) }[w]
66 e=0

q q
D Loy pw (i £, 108 ) Wik, @1 ] + o,0(v; £, log f)[wa, @2] +2 ) | fa 10 k(v log f)[wik, Ba)-
kk'=1 k=1
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In the first subscript part, “2" means the derivative to be related to parameter (fT, f)T, while
the subscript “1,2" in the second part indicates the directional derivative with respect to f, f

respectively.
Finally we define the 2-order cross directional derivatives of £(~;f,logf) with respect to
~ and (fT, f)T. For w* € F x J7,,, where w} = (wiy, - ,wi,) € Fand wj € 77, satisfying

[wize <1 and ||w3 | < 1, we define the derivative of A (7;f,1logf)[w] with respect to
(fT, /)T in the direction w* as

r q

d
Z Z Z Cia11,5j k(7 £, Jog f)[wijr, wi]

1k=1

Ol {~;f + ew? log(f + ew?)}

ro(7; £, log f)[w,w*] = Ep

d g
+ Z Z 12,21, 00,0 (7 £ 10g ) [@arnr, i Z Z 12,315,k (7; £, log f) [ws;, wiy ]
ki=1k'—1 o

q T
+ 2 Z l12,12,5,5(v; F,log ) wijgr,wi] + D D liaga ke (v £, log f) [ wopnr, wi ]

j=1j=1 k=1k'=1
d ..
+ Z l12,32,5 (7 £, log f)[wsj, w3 ].
=1

In the first subscript part, “12" means the cross derivative to be related to parameters -y
and (fT, f)T, while the subscript “1,2,3" in the first term of the second part indicates the
direction with respect to U, V, W respectively and the subscript “1,2" in the second term
of the second part represents the direction with repect to f, f respectively. For example,
U211k, (v; £, log f )[wljj/,w;‘k] is the 2-order cross directional derivative with respect to
UJ 5’ and f[ K]

In the following part, we give the definition of 3 in Theorem S7.4. Define I8 (v; £, logf )
{511 n(yifilogf), - o e (vif,logf), -+ by an (i £ log f), -+, by ar (3 1, logf)} to

be the 1-order directional derivative vector of U. Let /. 1,11(; £, f) be the 2-order directional
derivative of U, which is a r(d + q) x 7(d + q) matrix consisting of 0 11,55 kk (73 £, log f).

The vector 612 and the matrices 61 ij%,J = 1,2,3 and 612”,2 j = 1,2 are defined in the
similar way. Denote 31 = P{l 'yo,fo,logfo)l*T(’yo,fo,logfo } with

Pty 11(0; folog, fo) Pﬁl 21(70; o, log fo) 5 5 T
¥ £y, L = P/ £y, 1 P/? :fy.1 R
1 (03 fo, log fo) [{Pﬁl 1(70: B, 108 fo) P 25 (7o fo, 108 o) +{ 1,31 (703 fo, log fo), Pty 32(0: fo, log fo) } w

and
; -t T T dxr(d+q)
R = {P€1,33(’70;f0710gf0)} : {P51,13(’70;fo,10gf0)7P51,23(’Yo;f0,10gf0)} e R,
Then denote 3y = P{l3(~0; fo,log fo)15T (0; fo,log fo)} with
15 (705 fo, log fo) =

P€12 11(70; fo,1log fo) Pglz 21(’70,f0,10gf0)}
m{vo;Y,X(t), 2},
P512 21(’70,f0,10gf0) P£12 22('7’07f0710gf0) {70 (t),Z}

where m{~o;Y, X( ) Z} is defined in the proof of Therorem S7.1. At last, we define the
matrix X = X7 2227

. . T
{5}1(70;foylogfo),ezrz(’)’o;fo,logfo)} +{



S6. Identifiablity of the FFRM. Under the following assumptions, we establish the
identifiability of model (6) accompanying with (1) and (4).

(I1) UTU is diagonal matrix with decreasing diagonal entries, and |Uy||2 = 1 for each
k=1,---,d; VVT =1, where the first nonzero element of each row of V is positive and
the first nonzero element of each row of UV is positive.

(I12) n~'FTF =1, and ATA is diagonal with decreasing diagonal entries, and the first
nonzero element of each column of A is positive.

(13) p~'BTB =1,,,, the first nonzero element of each column of B is positive, and E(¢T¢)
is diagonal with decreasing diagonal entries.

(14) (@ (t)®T(t)dt =1k, and ¢j5(0) > 0.

The identifiability of models (6) and (1) are straightforward by following Yuan (2011) and
Bai and Ng (2013), respectively, under conditions (I1) and (I2). We then show that model
(4) is identifiable without rotation as well under conditions (I3) and (I4), as stated in the
following proposition.

PROPOSITION 1.  Under conditions (I3) and (I4) in Suppl. S6, B, ®(t) and ¢; are denti-
fiable.

Proof of Proposition 1. Denote X, Xx(t) and 3(t) be the covariance matrix of ¢;,

X;(t) and w;(t) respectively for the fixed ¢. Further, denote EX = {Xx(t)dt and Eu =
§ 3. (¢)dt. By conditions (I3) and (I4), we have

(S2) Sx = f BaT(t)S:®(t)BTdt + £, = BABT + 3,

where A = diag {Zle var(&;1x), - - ,Zle var(&ig, k) }

Consider two combinations of parameters (B(), @1 (¢),¢M) and (B@, @) (1), ¢?)
both satisfying model (4), i.e. BOBMOT ()¢ = B@@@T(4)¢® . By (S2), we have
BOALBOT = BAPBAT. By conditions p~'BTB = I, and (I3), we have p~ 'BOTB() =

p'BATB® =1, and A(l) and Aéz) are both diagonal matrix with decreasing ele-
ments. The first g0 elgenvectors associated with the first gy largest eigenvalues of the matrix

Sx — 3, are thus determined by (p~/2B() pA( )) and (p~/?B®), A( )) According to

the uniqueness of the matrix eigen decomposmon we have B() = B(?) and A(Cl) = A(g).
Because B() = B(?), then we have B&(T (¢ )C(l) )T (t)Ci(z). Then, we consider
the covariance function matrix of ®T (¢)¢;. By simple calculatlon we have
K
cov{®T(£)¢i, 8T ()¢} = dlag{ 3 var(En) e O1k(), -+ 3 Var(Eum) o >¢q2k<s>} .
k=1 k=1
Then, foreach j =1,--- , g2, we have
)T 1) 5 (1 2)T 2
(83) 2T ()AL ® (5) = BT ()AL @ (s),
where A¢ ; = diag{var(&;;1),- - ,var(&;x)} is a diagonal matrix with decreasing elements.

Multiplying both sides of equation (S3) on the left by @gl) (t) and on the right by @ég)T(s)
and integrating with respect to ¢ and s, then by condition (I4), we have

(S4) AL

& f oV (1)ePT (1)t = f ) (1)@ (HatAL).

¢.J-



That is,
var<§m>5¢ ')l (ydt - var<sm>5¢<”< £\ (t)dt

Var(fin) S¢3K (t)Qsﬁ) (t)dt--- Var(ﬁin) Sd)JK (ﬂ‘ﬁﬁg (t)dt

(S5)
var(€2)) § asﬁ? (662 (D)t - var(€2)) § ¢>§i> (6)e\ 7 (t)dt

var(€}7) S<z>ﬂ< (1) (t)dt - var(€k 3% (£ (¢t

Because A( ) and A(z)

¢.J
Aélg = A( and S<I>(1)

Acj= { f <1>§.1>(t)<1>§?>T(t)dt} Ac U q>§2>(s)<1>§.1>T(s)ds} — A¢ U 3!? (t)q>§1>T(t)dt}2 ,

which indicates the elements of the diagnoal matrix S<I>§.1)(t)<1>§,2)T(t)dt are only 1 or -1

(Without loss of generality, we assume they are both equal to 1). The last equation is because
A j and S<I> '1>(2) T( t)dt are both diagnoal matrices. Then, multiplying both sides of

are not equal to 0, it easy to show that the unique solution to (S5) is

J <I>§ )T (t)dt is diagnoal but not equal to 0. Then, by (S4), we have

equation (S3) on the left by <I>§1) (t) and integrating with respect to ¢, we have
Ag ;@ (s) = {c1>§.1)(t)q>§.”T(t)dt} Ag ;@ (s) = U 3! (t)@f”(t)dt} Ag ;@7 (s) = Ag ;@17 (s).

Because A ; is invertible, then @ﬁl)(s) = <I>§-2)(s) for each j = 1,---,¢2 and ®W(s) =
®(?)(s). By the conditions (I3) and (I4), we have { ®T(¢)®(t)dt = K1,,. Along with condi-
tion p~!BTB =1, we have 'I>(1)T(t)(_,'i(1) = @(Q)T(t)cl@). Thus, we have CZ-(U = Ci@). O

S7. Theoretical Properties. We use the subscript “0" for a true value; for example,
Qg0 18 the true value of ay). Without loss of generality, we assume that cy) o # 0 for all
1 <k<qiand B, o # 0 forall 1 <k < g, indicating that only the first g entries of ¢; and
the first g, entries of F'; have important effects on Y;. Denote S = {k : k < ¢ and Kq2 + 1 <
k < K @2 + G2} and hence the number of elements of S is § = G; + G2. Let the complementary
set be S¢. Then, Viro#0ifkeSand Vi g=0if ke SC. Suppose that the number of
eigenfunctions and component functions follows the polynomial order of sample size; that
is, K = O(n°) and d = O(n%). In practice, K and d are small and the polynomial order is
easily satisfied.

We then define T' = R™(@+9) x % the subspace I' = {vec(U,V) : vec(U,V) ¢
]Rr(d“f)?V[k] =0if ke 8¢} x s and the sieve subspace I, = {vec(U, V) :vec(U,V) e
R7(d+a) Vi =0ifke SC} x .Z, where %’jff is the d-dimensional product space of Holder
continuous functions with parameter ro. To establish the asymptotic properties of 4, we first
consider the oracle estimator in subspace I, defined as

For = argmax £y, (v; T, log f).
vel',
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For any -, we define the metric between ~ and ~y as o(7y,70) = (Z?Zl I0; — Ujol3 +

d
S IV = Vijol3 + X521 [ — ¢0l13) /2, where | £l = {§ £*(z) da}!/2. Denote e, =
(logn)'/® + (logn)'/*: with a1, as being positive constants defined in (A2) of Suppl. S2.

THEOREM S7.1 (Consistency and convergence rate of 4,;). In addition to the conditions
(A1)-(A6), (B1)-(B4) and (C1)-(C4) in Suppls. S2-S4, we suppose that
€2 K11, = O(dray), 2K, 2" = 0(dr;,>"), Y% — O(mdryy),

In

S6
(S6) RV K~ Opdran), d = O[(logn)2o/(2rot ) (2ra=2r0)/{2ro ) (2ra4 1)}

Then for 72, = O{n"/ "2+ 'we have o(For, y0) = Op{d"/>n72/Cr2+1)1,

For finite number of nonparametric functions, the first two equalities in (S6) imply
Tin & Top < Tf;/ " suggesting the requirement of r; > 75. This may be attributed to the
fact that the information of ¢ () is expressed through ¢;(-). The third and fourth ones can
be achieved for appropriate m and p. The last equality in (S6) guarantees the consistency of
the estimated component functions, suggesting the requirement of ry > rg. In particular, un-
der the assumption of a finite number of nonparametric functions, Theorem S7.1 implies that
0(For, ¥0) = Op{n~"2/(2+11 'which achieves the optimal rate for nonparametric functions.
By employing a similar proof framework as for the nonparametric M-estimator in Liu et al.
(2022), we obtain the following functional asymptotic normality of the oracle estimators.

THEOREM S7.2 (Asymptotic normality of oracle estimators). In addition to the condi-
tions in Theorem S7.1, we suppose that n_l/G(logn)l/?’ « h « n~1/(470) Then for some w €
I, we have —n'/2 P, (70; f0,10g fo)[w, Yor — Vo] LA N(0,0?), where A (7v; £, logf)|w,@] is
the second order directional derivatives of ¢(-;f,logf) with respect to - in the directions w
and &, which is defined in Suppl.S5, and o2 is given in (S15) of Suppl. S9

For finite number of nonparametric functions, n~%(logn)'/? « h « n=1/(47) automat-
ically hold based on Condition (C4). Based on Theorems S7.1 and S7.2, we conclude the
oracle properties in Theorem S7.3.

THEOREM S7.3 (Oracle properties).  Under the conditions of Theorem S7.2, if infyes [V 0l2 =
C for a constant C, A > ;g wi = o(ay), and A;?%% wy, — 00. Then
€

(1) P(S’or = :)\/) — 1.
2) 0(3,70) = Op{d"/2n=72/Cr24 1)},

(3) —nl/2 Pi, (705 fo,log fo) [w, ¥ — o] 4 N(0,0?) for some w € T.

If V[k] is an n®-consistent estimator of V), then wy, = 1/\]V[k] le for [ > 0 would be a

“good" weight because > wy = O(1) and lgrl}grcl wy, = O(n), which satisfies the conditions
keS €

of Theorem S7.3 when A = op(a,,) and An® — oo, In numerical studies and real data analy-

9

sis, we take the lasso estimator as V), which is an n®-consistent estimator of V3. Theorem
S7.3 establishes the functional asymptotic normality for the estimator of ~g, which includes
the coefficents (Ug, V() of the latent factors f; and the nonparametric ¥y. To assess the
significance of the factors in relation to the response Y, we further conclude Theorem S7.4,
which provides the asymptotic normality for vec(ﬁ, \A/') This enables us to test the parameter
hypothesis Hy : vec(U, V) = vec(Uy, Vo).
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THEOREM S7.4 (Asymptotic normality of the parameters). Under the conditions of The-
orem S7.3, for any vector w = (W, wy )T with |w]|2 = 1, we have n'/2wTE~1/2{vec(U, V) —
vec(Up, Vo) } A N(0,1), where X is defined in Suppl. S5.

Remark 3. To ensure the samplewise consistency of factors or variablewise consistency
of loadings, we require that p and m diverge at any rate, including the exponential rate of
n, see Lemmas S8.1 and S8.2 of Suppl.S8. That is, the high dimensions p and m become
blessings of dimensionality instead of curses. This is a direct result of the factor models in
(1) and (4), where p and m actually play the role of the number of observations for esti-
mating f;, and more variables mean that more information can be used to estimate loadings,
factors, and eigenfunctions. To guarantee the uniform consistency of factors and loadings
to establish the asymptotic properties of 4, we require that p and m diverge with the con-
straint that n'/%7, K « p « exp(n) and n'/%" « m « exp(n). If p and m further satisfy
p=O0{n'"*/%2Kr,/(dry,)} and m = O{n'+/% /(dry,)}, Theorem S7.1 achieves the cor-
responding rate when all latent factors are observable. The issue of whether the high dimen-
sion is a blessing of dimensionality instead of a curse has also been carefully discussed for the
linear factor model in Li et al. (2018) and the generalized factor model in Liu et al. (2023b).

S8. Lemmas. We establish five lemmas, where Lemmas S8.1 and S8.2, for the conver-
gence rate of estimated latent factors CZ and Fl, are directly available from Wen and Lin
(2022) and Bai and Liao (2013), respectively.

LEMMA S8.1.  Under Conditions (A1)-(A6) in Suppl. S2, for a;,as defined in (A2), Jo
defined in (A3),

[bj —bjol2 = Op(Rpn) (4 =1,---,p),
1G = Ciollz = Op (1102 R + 1)K M2 (i =1,--- 1),
sup [Gi = Giols = Op {enl(ri)fn ™2 ) 4!/ 2 By 2L K2 (i = 1, ).

where R, = n~1/2 4 p*1/2 and e,, = <logn)1/al + (logn) 1/as

The convergence rate of Bj consists of two terms, the estimate error R, = n~12 4 p1/2
and the approximation error Ny /2 = n=1/2(n=1 3% 1/n;)V/2, the latter is from the numer-
ical approximation for the covariance matrix E{X;(t)XT ()} for fixed ¢ and is ignorable

when n; > 1. The convergence rate of b, is similar to those of the linear factor model (Bai
and Ng, 2013) and generalized factor model (Liu et al., 2023b).
9 1/2

The rate of ¢; comprises two components: the estimation error K'/27,/ H i —bjoll2 =

K'27!/>R . and the approximation error K'1/27;", arising from estimating &;, b; and K
eigenfunctions. Notably, both terms are independent of n;. As a result, the convergence rate
of 4, which depends on the rate of ¢;, is also independent of 7.

LEMMA S8.2. Under Conditions (B1)-(B4), for d; defined in Condition (B3), we have
|Fs = Figlz = Op(n ™2+ m™Y2) (i=1,---,n),
sup [F; — Fipla = Op(n~ Y2 4 nV/2rm=12) (i=1,.. ).
i
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LEMMA S8.3. Denote b, = h™ + logn'/?(nh)~? and a neighborhood of (fy,7o) by
N = {(£,7) :sup; |£i — fio|2 + o(v,70) < Op(by)}, where the metric o(y,7o) is defined in

~

Suppl. S7. Then, when (f,4) € N, under Conditions (A6) and (C1), for j = {0, 1}, we have
IF9 — S”Hq>=(z,{h”-+(kgn)”2oﬂfj+ﬂ‘lﬁ}.

Proof of Lemma S8.3. The proof follows from Theorem 37 of Pollard (1984) and
Lemma 1 of Liu et al. (2023a). ]

LEMMA S8.4. Let N(¢,.#, D) denote the covering number with respect to semi-metric
D of function class .% . Under the Conditions (A6) and (C2), the covering number of the class

L (6;£,1ogf) = {€(v; £, logf) :7el~“n5,sup If; — fioll2 < 0, || f — folloo < 9, f € F} satisfies

N (e, Ln(83£,10gf), | -|) < (8/€)™,

where a,, < b, means there exists a positive constant C' such that a,, is bounded by Cb,,.

Proof of Lemma S8.4. The proof is similar to that in Ma et al. (2015) and thus omitted.
O

LEMMA S8.5. Under Conditions (C1)-(C4), we have for enough small § > 0,

sup | Pal(y; £, logf) — Pe(v; fo,log fo) |1 — 0,
’YEF,,L(;

in probability.

Proof of Lemma S8.5. Note that:
(S7)
sup |Pol(v,1,1ogf) — PU(v;fo,log fo)| < sup [Ppl(~;fo,logfo) — PL(~; o, log fo)]
")’EFn(s ’YGFTLJ

+ sup |Pul(y,,logf) — Pul(y: £, logfo)]
—yel“m;

+ sup [Pul(;£,10gfo) — Pul(~;fo,log fo)|
’Y€F7L§

= J+IT+111

We first show that for any ¢(v;f,logf) € £, (d;f,logf), sup,_.j | P l(; £, logf) —
PU(v;£,logf)| 5 0. Let 6, = 1, (dm2,)"/? « n® « n¥? and o, = n~/2%(logn)'/?, where
the sequence {«,} is a nonincreasing sequence. For a fixed € > 0, let €,, = €c,. Then for any
L(v;f,logf) € L,,(d;f,1logf) and sufficiently large n, by Condition (C2), we have

var{Pol(y;f,logf)} _ PC(vif,logf) 1 1

16¢2 = 16ne2a2 16e2logn ~ 2’

where a << b means a/b— 0.
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Define k1 = r(d + q) and ko = dr9,. Applying the inequality (31) and Lemma 33 of
Pollard (1984) and Lemma S8.4, we have
P{ sup |Ppl(v;f,logf) — Pl(v;f,logf)| > 8en}
‘yEan

2
ne;
<8N{en, Ln(5:£,10gf), | - [} - exp(=58) - P(sup [Pal*(y;f,logf)] < 64)
’YEFn(S

+ P(sup |Pf?(v;f,logf)| > 64)
7€f‘n6

<exp |:(]€1 + kQ)log{eflnl/Q*(i’(logn)fl/Q} . %

2% n62n1+2¢logn]

< exp(—cin29losn),

where ¢} is a constant. Then it follows that >, P{sup,yefms | Pol(7y; £, logf)— Pl(v;f,1logf)| >
8¢, } < 0. By the Borel-Cantelli Lemma, for any ¢(~;f,logf) € £,,(6;f,logf),
(S8) sup |Pol(v;f,logf) — PU(;f,logf)| — 0,
A/Ef‘nﬁ
almost surely. It implies that [ = Sup_ i | | P t(~y; £o,log fo) — P(v; £y, logfo)| 2 0.

~

We then prove I1 = sup_ ¢ |Pol(~,£,10gf) — Pul(~;£,10gfo)| 2 0. It can be seen that

(S9)
sup |Pnl(v,f,logf) — Pul(7;f,logfo)| < sup [Pnl(v,f,logf) — Pl(~,f,logf)|
’761:”5 "/Ef‘n&
+ sup |Pul(v,f,1ogfo) — Pe(v,E,logfo)]
7Efn5
+ sup |PU(v,f,logf) — Pl(~,f,logfo)]
~Y€lns

= T+ 11+ 113.

(S8) yields II; 5 0 and I, > 0 and Lemma S8.5 gives I I3 5 0. Thus 11 5 0.
Similarly, noting (S8) and Condition (C2), we have

(S10)
IIT = sup |Pl(v;f,logfo) — Pul(v;fo,logfo)| < sup |P.l(v,f,logfo) — Pl(v,f,log fo)]
'yef‘ng ’YEfna
+ sup |P,l(v,fo,1logfo) — Pl(~,fo,log fo)]
’Yerf‘nts
+ sup |PU(v,E,logfo) — PL(v,fo,10gfo)|
‘YEf‘n{s
20,

by using of the conclusions in Lemma S8.1. Thus, sup_ g | P (7, f, logf) — PU(~; £o,logfo)| LN
0 by (S7). This completes the proof of Lemma S8.5. O
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S9. Proofs of the main results. In the following, we first prove the asymptotic proper-
ties of 4. Then we get the asymptotic properties of 4.

Proof of Theorem S7.1. We first show the consistency. Denote NV, = {7 : € < o(7,70) <
€0,y € I'y5} for some €p < 1 and any 0 < € < eg. Then

(S11)
sup PL(vy;fo,logfo) = — sup [P l(;f,logf) — Pl(~;fo,logfo)| + sup Pu.l(v;: f,logf)
. Py N
= —J1 +sup Pnﬁ('y;?, 10gf).
N.
For o € NG,
(S12)

Sjl\lfp Pol(v; £,108f) = Pol(For; £,10gf) = Pl(~0; fo,log fo) + {Pnﬁ('m;?, logf) — Pul(y0; , logfo)}

+ { Putl(v0:E.10g o) — Pal(y0ifo, 08 fo) | + {Pat(y03 o, logfo) — Pé(r0: o, logfo)}

= Pl(yo;fo,logfo) — I — I3 — I4.

By Jensen’s inequality,

; 7f 5 ,f
PL(~;fo, log fo) — PE(~v0; fo,1og fo) < logP{fO(y'VO)} fo(y; v, fo)

—1log | JOG10) 0 )y = 0,
Jo(y:7v0,%0) 8 fo(y;’m,fo)ﬂ)(y Y0, fo)dy

with the equality if and only if v = ~p. Then by (S11) and (S12), we have
(S13) Pl(~o; o, 10gfo) — Skl/p Pl(v;fologfo) <1+ o+ Is+ Iy = 1.

Let 0c = Pl(o;fo,logfo) — supp, Pe(v;fo,logfy). It can be seen that I > 6. and {7 €
N} € {I = 4.}. By Lemma S8.5, we have I1 = 0,(1). (S9) and (S10) yield I> = 0p(1) and
I3 = 0,(1). By Law of Large Numbers, we have I, = 0,(1). Hence, we have P(7,; € N¢) <
P(I = .) — 0, which indicates o(Yor, Y0) = 0p(1).

We then conclude the convergence rate by verifying the conditions of Lemma 5 in Liu
et al. (2022). Define g(k;f, f) = Pl(7yo + kw; f,logf) for w e T,,. For any «y € fng, we have

Pe(y; £, log ) = PU(yo;E,log f) = {g(1: %o, fo) — 9(0; o, fo)}
+{9(E D) — g1 6o fo) = 9(0:E, F) + 9(0: 0. fo)}
= Li+1Ds.

For part I, we have g(0;f, fo) — g(1;fo, fo) = —Pli(v0;f0,logfo)[w]+ Pli(vo +
§w; £y, log fo)[w, w] for some £ € (0, 1), where £1 (0; £, log fo) [w] and £1 (v0; fo, log fo ) [w, w]
are defined in Appendix S5. Noting that P/{(~o;fo,logfo)[w] = 0, we have P(I;) <
—0*(7,70) - Op(d'7?). R R
For part I3, denote w* = (wiT, wi)T = {(f—1£)T, f — fo} T and define my (t) = g(1; o+
twy, fo +tws) and mo(t) = g(0; £y + tw?, fo + tws), we have
(

Iy = {m1(1) —=m1(0)} — {mo(1) —mo(0)} = {n1(0) + ni1 (£*)} — {nio(0) + mio(§*)},

for some {* € (0,1). For given w, we have 11,(0) = Ply(~yo + kw; £y, log fo)[w*] and
i (§%) = Plafyo + kwify + £*wi log(fo + £*w3)}w™, w*], where (2(v:f,logf)[w"]
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and l5(y;f,logf)[w*, w*] are defined in Appendix S5. It can be seen that P{rig(¢*)} <
P{(ET, )T, (8 fo)T} - Op(d™?) and P{niy(€*)} < d*{(£7, )T, (£, fo)T} - Op(d"/?).

Further, 711 (0) — mo(0) = Plia(vo + &w; £o,log fo) [w, w™], where £12(7y; £, log f)[w, w™] is
defined in Appendix S5, and we can get P{ni1(0) —nip(0)} < o(~,v0)-d{(fT, /)T, (£X, fo)T}-
O,(d"/?). Finally, we have

P{e(~:E,1ogf) — (vo: £,logf)} < [ — 0> (v, 0) + d{(ET, )T, (£F, fo) T}
+ 0(v,70)d{(FF, /)T, (£, fo0)T}] - Op(d"?).

Then we define function class
£5(8,1og ) = {(v: £, 1ogf) — £(30:, 108 ) : Y € Tus, £(v: £, 08 ) € La(0:F,108)

Following the similar proof of Lemma 3 in Liu et al. (2022), it can be shown that
log N (€, L5(f,1ogf), [ - |) < 72nd log(d/€). Then the bracketing integral

)
J{0, Ls(F,logf), |- |} = fo {1 +logyN (e, Ls(£,logf), | - ) de}'/? < (r2nd) /6.

By Lemma 3.4.3 of van der Vaart and Wellner (1996), for any £(v; f,logf) € £, (0;f,logf),

we have
J{e, Ls(f,logf),]| -
El s [n'2(P — P){t(v:f.logf) — L0; . log )} ﬁJ{a,za<f,1ogf>,-r}[1+ { ‘5552 o8l).] ”}]
(7, 70)<6,7v€l s n

< O{6(7ond)"? + (1ond)n™'/2}.

This shows that the function ¢, () in Theorem 3.4.1 of van der Vaart and Wellner
(1996) is given by ¢, (0) = 6(72nd)"? + Tondn~Y2. Obviously ¢n(0)/0 is decreasing in
& and 126, (1/13) = 1 (Tond)? + 172 (19,d)n =12 < n'/? for every n, which implies 7, <
n1/2(7_2nd)—1/2.

Besides, we need to show that 7, satisfies P,¢(Jor;f,logf) = P.l(vo,f,logf) —
Oyp(r,%). Note that

Pol(For; £,10gf) — Pol(yo; £,1ogf) = (P, — P) {l(For; £, 10g f) — £(~v0; £,10g )} + P {(Yor; £,10gf) — £(70; £, logf)}
= 1 + Is.

Define L(v; f,logf) = {£(;f,logf) —£(v0; f,log ),y € Tns, £(v; £, log f) € L, (6;f,logf)},
which is a P-Donsker class by using of Lemma S8.4. Therefore, I} = O, (d"/2n~"2v2+ep=1/2)
and I, > —Op(dn*%”?) by denoting 79, = O(n"?). Since € < 1/2 — rovy, it follows
Pul(Rors £ 108.) — Pul(y0: £.1og ) > — O, (dn=22%2) for r,, < minfd—"/2n(1=22)/2, d=1/2pm2v2},
Thus, we have verified the conditions of Lemma 5 in Liu et al. (2022) with a,, := 7, -
d'/2n=72/Cr2H1) for vy = 1/(2r9 + 1).

Subsequently, we establish the convergence rate of 4, based on Lemma 5 in Liu et al.
(2022). By Lemmas S8.1 and S8.2, we determine the convergence rate of the estimated fac-
tors and scores as:

sup | — fiol2 = Op(cn),

where ¢, := Kl/leléz(enn_l/Q +nl/202p=1/2) 4 /200 =12 e K27 = 0(1) by (S6).
Additionally, conditions (C4) and (S6) indicate a,, = O(b,,) and ¢,, = O(b,,) with b,, := h™ +
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logn'/?(nh)~1/2 , which leads to (f, or) € N, Thus we determine the covergence rate of the
NW-estimator f by Lemma S8.3 as:

HJ?_ fOHoo = Op(bn)-

Finally, using Lemma 5 in Liu et al. (2022) by treating (f, f) as nuisance parameters, we
establish the convergence rate of 4, as:

Q(:;’orfYO) = Op[an + d{(/f:T, J}\)T, (f(;r7 fO)T}] = Op(an +bp +cn) = Op{dl/gn_rz/(2r2+1)}a

where d{(£T, /)T, (£T, fo) T} = sup; | £ — £iolla + | f — folloo = Op(bn + ¢, which is defined
in Suppl. S5. O

Proof of Theorem S7.2. Denote I”°(I') to be the space of bounded functionals on I' under
the supermum norm || g|, = sup__g |g(w)|. Denote

Gn(1:£, f)[w] = Poli(7: £, logf)[w] and G(v: £, f)[w] = Pty (v;£,logf)[w].

To derive the asymptotic normality of the estimators, following the clues in Liu et al. (2022),
we need to verify the following conditions.

(AN.1) n2(Gr = G)Fori £, )w] = n'2(Gr = G) (703 fo, fo)[w] = 0p(1);

(AN.2) G(o;fo, fo)lw] = 0 and Gy (Jors £, F)[w] = 0p(n~172);
(AN.3) G(v;f, f)w] is Fréchet-differentiable with respect to « and (fT, £)T with the

continuous derivative G ~ ¢, f[w] and Ggmﬁ flw], respectively;

(AN.4) n'2(Gy, = G) (03 fo, fo)[w] + n'/* Gy b, 5o {(ET, ) = (57, fo) Hew] converges
in distribution to a tight Gaussian process on 1°(1);

(AN.5) G(For:E, D]~ Glroifo. /)[w] =G, ¢ 7 For—710)[w] ~ Gy s, { 7. )~
(5. fo) ] = 0p(n~1/2).

To vertify (AN.1), we make the decomposition that
(S14)
(G = G) Fos B, Plw] =02 (G = G) (03 o, fo) ]

= {n2(Gn — G) Ao T, Plw] = (G — G)(0i, )] |
+ {n2(Gn = @) (s, lw] =12 (Go = O (0o, fo)[w]
For the first part, define
Gu(5:£.log f)[w] = {1 (v: £, log f)[ew] — 1 (s £, log )[w] : o(7.70) < €, € T, £(v: £, log ) € L0 (83, logf) |
similar to the class £, (d; £, logf), the covering number of the class G, (J; f, log f)[w] satisfies
N{e,Gu(8: £, logf)[w], | - |} < (8/e)7,

uniformly in w € I and

J{0,Gn(0:1,log f)[w], [ }—f {1+ logy N (e, Gu(6: . log f)[w], | - |) de}'/? < (1) /26
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Because 1"/ (1+272) p(F,1, v0) = O, (1) with o > 1, we have £1 (Jor; £, log f) [w] — £1 (70; £, log f ) [w] €
Gn (05 £, logf)[w] with 6 = O(n _”/(HQ“)). Furthermore, we have
sup{¢1(; £, log f)[w] — £1(70; £, log f) [w]}* = sup £1 (0; £, log f)[w, £ (v — 70)]?, for some & € (0,1)

wel wel’

< supy (yo; f,log f)[w, v — 0]* < 2° (7, 70)-

wel
Hence, using the maximal inequality in Lemma 3.4.2 of van der Vaart and Wellner (1996),
we obtain that

B sup |n2(P, — P){h (8. log )] — b1 (0: . logf)[w]}] <082 + (nd)n~ | = o(1).
Y€l ns
Therefore, the Markov inequality gives n'2(Gp—G)(For: £, log f)[w] — 1/2(G — @) (v0: F,logf)[w] =
0p(1) uniformly in w € I'. By condition (A6), n'/2(G,, — Q) (vo: £, f)w] —n2(G, —
G)(v0;fo, fo)[w] = 0p(1) - d{(?T,f)T,(fér,fo)T} = 0p(1) uniformly in w € I'. Thus,
(AN.1) holds. N A
For (AN.2), clearly G(0; fo, fo)[w] = 0 for w € I and then we show G (Yor; £, f)[w] =

0,(n1/2) for w e T For any w € T, there exists wy, € I, such that |lw,, — w|q, = O(n"2v2)
and G, (Yor; f S )[wn] = 0 by Schumacker (1981). Next, we need to show that

Gn(’?or;?a f) [wn - w] = Op(n_1/2)'
We rewrite G, (Yor; ?, f )wn — w] as

Gn(%’or;?a ]?)[wn - w] = {Gn(aor;/f:v f)[wn - w] - Gn(70;/fa f)[wn - w]} + Gn(’YO;’f\a f)[wn - w]
= {Gn(:)\'or;/fa f)[wn - w] - Gn(’YO;’fv f)[wn - w]} + Gn(’YO;fDafO)[wn - w]

+ {Gn(’Yo;?, Plwn —w] = Gnlo: fo. fo) [wn — w]}
= L+ 1+ Is.
It follows that I1 = o(4,70)|lw — wallew, 2 = N7 w — Wyl and I3 = |w — wy e -
d[(fT, /)T, (£F, f&5)], which implies (AN.2).
For (AN.3), by the smoothness of (1(7;f, f), the Fréchet derivatives G ¢,7(@)[w] =

Ply(v;f,logf)[w, @] and Gy ¢, Hw)lw] = Plis(v; 1, log f)[w, w*].
Noting the close form of Cl and FZ, we can rewrite f as a summation form, that is, f =
nt Y @i(X(1),Z)) = Pagi(X;(1), Zj) = Pa{a;(X;(1)), a3;(Z;)} T, where

@i(X;(1) = Krin /71, f XT (1) BM*T (1)dt f M (6)BTX; (1) dr,

q2i(Z;) = 1/mV ™ 1sz;.fzi,

and V,Ej,B are determined by X;(¢) (i =1,---,n) and V € qux‘h,f‘j is determined by

Z; (i=1,---,n). Similarly, the kernel density estimation has the form 1 (y) = P ICh(Y; —
Z;l:l ¢;(UTVE;) —y). So we can rewrite G2770’fu’f0{(/f}T,f) — (fF, fo)}[w] as a sum-
mation form, to be more specific, that is, Gan~, .5, {(ET,F) — (EF, fo)}[w] = (P, —
P)Gary, .5, [m{y0; Y, X (1), Z}] [w], where

d d T
miv0; Vi, Xi(t), Zi} = | @ (Xo (1), Zir), Kn{Yir — > 05 (UT V) = Vi + > 4;(UT VE;)}

j=1 J=1



16
Thus,
n!2(G = G) (03 o, fo)[w] + 2G5 { (B ) = (B Jo) } ]
=12 (P = P) (G(y0i B0, fo) + G g 4703 Y, X (), 23] ) [w] = n/2(Py = P)M{05 Y, X (8), Z} ],
which is a bounded Lipschitz function and is P-Donsker. Then
(S15) nY2(P, — PYM{~0: Y, X(t), Z}[w] > N(0,0?),

where 02 = E [M{~0;Y,X(t), Z}[w]]?. Therefore, (AN.4) holds.
For (AN.5), we have

GFos £, Nw] = G(v0, £, 1) + G, 5 7For = 70)[w] + Op{® For, 10)}

and
G(10,E, ) = G0, 50 10) + Gy o A (ET, )= (B, fo) Y w] + O, | a{(ET, )T (6, )T}

By Condition (C4), 02(For, 70) = 0p(n~Y/2) and d2{(fT, )T, (£, f0)T} = 0,(n"Y/2) , thus
(AN.5) holds.

By (AN.3) and (AN.5) with (AN.2), we have
(S16)

—n G o £, Plw] = —n'2C | 5 i For—0)[w] =1 2G5, { @, F) = (6, fo) } [w] +0,(1).
By (AN.1) and (AN.2), we have
(S17) —n'2G(Fors £, F)w] = n'*(G — G) (03 fo, fo)[w] + 0p(1).
Thus, it follows from (S16) and (S17) that
—n2G, 3 1o — 70)[w] = nVA(Go — G) (03 o, fo)[w] + 02 Cam g, 1, {ET, F) = (5, fo)}w] + 0p(1).

Since Q(*Ayor,’yo)d{(?T, f)T, (£F, fo)T} = 0,(1), we have by Lemmas S8.1 and S8.2, Theo-
rem S7.1 and Condition (C3),

n1/201770,?,f(’/)\/0r - 70)[(4)] = nl/gG.l,'Yo,fmfo (:)\/01' - 'YO)[W] T Op(l)'
This implies that
3G 5, — )] = 12 G — G 0 o )]+ 122G g5, {7, ) = (B o)} 0]+ (1)
4 N(0,0?),

where o2 is defined in (S15). This completes the proof of Theorem S7.2. O

Proof of Theorem S7.3. To prove the theorem, it suffices to verify the first part by The-
orems 1 and 2. To the end, we denote Q,,(7;f, f) = Pol(~;f,logf) — XX wil Viglla-
Recalling that d,, = Op{dl/ 22/ (2411 we need to show that 4, is a strictly minimum of
Qn(;f, f) for v € T',, with probability approaching 1 through the following two steps.

(a) Forany v*€T5 ) T,

~

Qn(Y*: £, f) < Qn(Fori £, f),
with the equality only when v* = 4.
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(b) Define I, — {7;9(7,7*) <ty €Ty, Vg = Vi, keS}, where ¢, < C is a

.. «
positive sequence. For any y € I';, ,

with the equality only when v = ~*.
We first show (a). Recall that

q
2 M| Viggerllz = Sies Aorl Viggollz + Oy {ZkeS M| Vi olz Vi o (Vikgor = V[k],O)}

= ZkeS )‘wkHV[k],OHQ + Op(én ZkeS Awk) < CZkeS AW,

and

q ~
D dwg [ Viglle = iy Mok Viggoll2 + Op {Zkes M| Vi olla Vi o (Vi — V[k],O)}
k=1

= Zkes )‘wk‘HV[k] 2+ Op(0n, ZkeS Awg) < CZkes Awg.

Under the condition of the theorem, Y7 _ 1 AWk Vi llz = 1 )\wkH\Af Jorl2 = op(an).
In addition, for any v* € I';;5, ﬂFn, by the deﬁmtlon of 4 'yor, we have P, é(vor, f Jogf )
P o(~* f logf) and | P, E('yor,f logf) P l(~* £ 10gf)| = Op(ay) by the proof of Theo-

rem S7. 1 Hence we get
Qn(')’*' f f) < Qn(%’or? f, f)
Next we show (b). For any v € I';5, | JT'};; , we have

~

q
QY5 E, ) — Qu(v: £, f) = Pol(v*;,logf) — Pol(v: £, logf) — {Azwk Vil = 1V ||2)}
k=1

q
= {Pol(v"; fo,log fo) — Pol(v:fo,logfo)} {/\ D wi([Vigle — V[k]2)}
f=1

+ | Pttty s ogf) — €7 o, Jogfo)} = Pu{t(v:E. log ) — ((v:fo, log fo)} |
= L+ 1+ Is.

For I, by Taylor’s expansion, we have for 4 between v* and ~,

<Opltn+6n) X Vgl <C D] [Vl
keS¢ keS¢

|L|<C

P [ > 0T £, log fo)/OV sy - Vi)
keS¢
by noting Yycse [Vik) = Viole < Sgese (1Vig = Vil + [Vig = Vikpoll2) < tn + 6.
For I, it can be seen that
Iy =X ) wi|Viggllz = A min wy DIVl
keS¢ keS¢
For I3,

|I3| = Pobo(~v*; o, 1og fo) [(ET, F) — (T, fo)] — Puba(; fo,log fo) [(ET, ) — (£F, fo)]

<C|P

~

Y, {dTlaFisto,logfo) (BT, F) = (67 fo))/0V i ”
keS¢
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-0, [(tn+6n)-d{(fT, AT EE fo)T ] DIVl

keS¢
<C X Vil
keS¢
Thus,
Qn(yE ) = Qu(wif, )= Ominw = C) Y Vil
keS¢
This completes the proof of Theorem S7.3. 0

R S10. Other results in numerical studies. Table S1 shows the Bias, SD and RMSE for
W (-) of the proposed FFRM method and LSE. Similar conclusions to those shown in Figure
6 can be obtained. It appears that FFRM performs slightly better than LSE in Setting I and
much better in Settings II and III.

S11. The transformation from the regression relationships between LDL and scores
to functioanl covariates for analyzing the effects of functional covariates on LDL. To
assess the effects of individual anthropometrics and other assay results on LDL, we esti-
mate the coefficient functions for X;(¢) by multiplying p~'@®(¢)B™ on both sides of (4).
This yields p~1® () BTX; (t) ~ ®(t)®T ()¢;, where we assume the identification condition
p'BTB=1,.

By combining this result with the identification condition {®(¢)®T (¢)dt = I, we obtain
p1§a®(t)BTX;(t)dt ~ a{ ®(t)®T (t)dt(; = ;. Therefore, the regression relationship
a(; between the response variable Y; and the factor ¢; can be written as {nT(¢)X;(t)dt
between Y; and the original functional covariates X;(t), where n(t) = {n1(t),- -+ ,m,(t)}T =
p 'B®T ()T represents the regression coefficient function.

S12. Other results of the analysis of the BMI outcomes with the ALSPAC data. To
select the numbers of factors ¢; and latent processes gz, we use the method mentioned in
Suppl. S1 and parallel analysis. The scree plots in Figure S1 show the variance explained by
the first 30 principal components of n 'ZZT and n=' 37" n; P X (4) X F (¢i1), and
the dashed lines are the average with 100 iterations of the first 30 eigenvalues of random
samples by parallel analysis. We first select go = 13 latent processes from the functional
covariates and the explanation ratio reaches 91.28%. In addition, parallel analysis chooses
only 9 factors from the scalar covariates but the explanation ratio is only 76.88%. Since we
will select the factors that are related to the response by the sparse penalty, a larger q; is
better for our analysis. By calculation, the explanation ratio of 20 factors reaches 92.13%,
so we finally select ¢; = 20 factors from the scalar covariates. It appears that the selected
q1-dimensional factors and g2-dimensional processes have extracted most of the information
of the covariates.

The information of functional covariates and the scalar covariates used in Section 5 is
summaried in Tables S2-S4.
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TABLE S1
Bias, SD and RMSE of component functions ¥ (-) for Example 1

Setting I
n=100,p=m =100 n =100,p=m =500 n =500,p=m =500
FFRM LSE | FFRM LSE | FFRM LSE
Bias  0.0773 0.0595 | 0.0681 0.0453 | 0.0933 0.0949
P1(+) SD  0.4447 0.4575 | 0.3355 0.4034 | 0.2898 0.2814
RMSE 04514 0.4614 | 0.3424 0.4059 | 0.3044 0.2969
Bias  0.0071 0.0177 | 0.0279 0.0065 | 0.0036 0.0091
Pa(:) SD  0.2230 0.3055 | 0.2128 0.2953 | 0.1579 0.1675
RMSE  0.2231 0.3060 | 0.2146 0.2954 | 0.1580 0.1677
Bias  0.0126 0.0112 | 0.0239 0.0084 | 0.0175 0.0091
Y3(-) SD  0.2628 0.3022 | 0.2470 0.3206 | 0.1963 0.2094
RMSE  0.2631 0.3025 | 0.2481 0.3207 | 0.1970 0.2096
Bias  0.0177 0.0501 | 0.0513 0.0111 | 0.0650 0.0374
Yy(-) SD 04018 0.3935 | 0.3612 0.3438 | 0.2969 0.2964
RMSE  0.4022 0.3967 | 0.3649 0.3440 | 0.3039 0.2987

Setting 1T
Bias  0.0748 0.0818 | 0.0687 0.0528 | 0.0990 0.1012
¥1(+) SD  0.4559 0.6164 | 0.3367 0.4584 | 0.2871 0.3419
RMSE  0.4620 0.6218 | 0.3436 0.4615 | 0.3037 0.3566
Bias  0.0080 0.0302 | 0.0290 0.0144 | 0.0041 0.0144
Pa(-) SD  0.2227 0.4652 | 0.2179 0.3130 | 0.1631 0.1779
RMSE  0.2228 0.4662 | 0.2199 0.3134 | 0.1631 0.1785
Bias  0.0155 0.0329 | 0.0245 0.0094 | 0.0194 0.0158
¥3(+) SD  0.2639 0.3781 | 0.2499 0.3403 | 0.1976 0.2585
RMSE  0.2643 0.3795 | 0.2511 0.3404 | 0.1986 0.2589
Bias  0.0131 0.0428 | 0.0531 0.0261 | 0.0614 0.0555
Pa(-) SD  0.4066 0.4503 | 0.3626 0.3997 | 0.2961 0.3586
RMSE  0.4068 0.4523 | 0.3665 0.4006 | 0.3024 0.3629

Setting 111
Bias  0.0747 0.0928 | 0.0711 0.0655 | 0.0931 0.0955
P1(+) SD  0.4016 0.5662 | 0.3097 0.5195 | 0.2847 0.3675
RMSE  0.4084 0.5738 | 0.3178 0.5236 | 0.2995 0.3797
Bias  0.0204 0.0388 | 0.0187 0.0175 | 0.0050 0.0136
Pa(:) SD  0.2989 0.4943 | 0.2203 0.3411 | 0.1627 0.1758
RMSE  0.2996 0.4958 | 0.2211 0.3415 | 0.1628 0.1763
Bias  0.0127 0.0426 | 0.0156 0.0161 | 0.0221 0.0190
P3(+) SD  0.3576 0.4096 | 0.2730 0.3739 | 0.1986 0.2567
RMSE  0.3578 04118 | 0.2735 0.3742 | 0.1998 0.2574
Bias  0.0486 0.0226 | 0.0857 0.0311 | 0.0696 0.0611
Pq(-) SD  0.3761 0.4892 | 0.3263 0.4035 | 0.2941 0.3524
RMSE  0.3793 0.4897 | 0.3374 0.4046 | 0.3022 0.3576
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TABLE S2
Summary of functional covariates used in Section 5

Feature Description of each feature
fms010 height (cm)

fms012 sit height (cm)

fms018 waist circumference (cm)
fms026a weight

fms026a body mass index

fms028 impedance

fms030 scoliometer measure

fvs212 axis of left eye

fdar117 systolic measure

fdar118 diastolic measure

fms016 arm circumference (cm)
fems028a fat percentage

fems028b body water

CHOL cholesterol (nmol/L)

HDL high density lipoprotein (nmol/L)
LDL low density lipoprotein (nmol/L)
fms0102 the square of height

fms0122 the square of sit height

fms0182 the square of waist circumference
fms026a> the square of BMI

fms0282 the square of impedance

fms0302 the square of scoliometer measure
fvs2122 the square of axis of left eye
fdar1172 the square of systolic measure
fdar1182 the square of diastolic measure
fms0162 the square of arm circumference
fems028a2 the square of fat percentage
fems028b? the square of body water

CHOL? the square of cholesterol

HDL? the square of high density lipoprotein
LDL? the square of low density lipoprotein
fms012a2 the square of leg length

fms012xfms010  the interaction between height and sit height

fms018 xfms010  the interaction between height and waist circumference
TRIG xfms026a the interaction between weight and triglycerides
fms010xfsa021b  the interaction between samples of BP systolic 2 and height
fms026 xfsa021b  the interaction between samples of BP systolic 2 and weight
fms010xfsa022a  the interaction between samples of BP diastolic 1 and height
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Feature Description of each feature

fms026 x fsa022a the interaction between samples of BP diastolic 1 and weight
fms026axfms010  the interaction between height and BMI

fms028 x fms010 the interaction between height and impedance

fms030x fms010 the interaction between height and scoliometer measure
fvs212xfms010 the interaction between height and axis of left eye

fdar117 xfms010 the interaction between height and systolic measure

fdar118 xfms010 the interaction between height and diastolic measure

fms016 x fms010 the interaction between height and arm circumference
fems028axfms010 the interaction between height and fat percentage
fems028bxfms010  the interaction between height and body water

CHOL x fms010 the interaction between height and cholesterol

HDL xfms010 the interaction between height and high density lipoprotein

LDL xfms010 the interaction between height and low density lipoprotein
fms012axfms010  the interaction between height and leg height

fsa021bxfms010 the interaction between height and BP systolic

fsa022b x fms010 the interaction between height and BP diastolic

fsa023axfms010 the interaction between height and samples of pulse 1
fms023bxfms010  the interaction between height and samples of pulse 2

fms012 xfms018 the interaction between waist circumference and sit height
fms026axfms018 the interaction between waist circumference and BMI

fms028 x fms018 the interaction between waist circumference and impedance
fms030 x fms018 the interaction between waist circumference and scoliometer measure
fvs212xfms018 the interaction between waist circumference and axis of left eye
fdar117 xfms018 the interaction between waist circumference and systolic measure
fdar118 xfms018 the interaction between waist circumference and diastolic measure
fms016 xfms018 the interaction between waist circumference and arm circumference
fms028 xfms026a  the interaction between BMI and impedance

fms030xfms026a  the interaction between BMI and scoliometer measure

fvs212 xfms026a the interaction between BMI and axis of left eye

fms016 xfms026a  the interaction between BMI and arm circumference

fms030 x fms028 the interaction between impendence and scoliometer measure
fms016 xfms028 the interaction between impendence and arm circumference
fems028axfms028  the interaction between impendence and fat percentage
fms026axfms012a  the interaction between leg length and BMI

fms028 xfms012a  the interaction between leg length and impendence
fms026axfms026a  the interaction between weight and BMI

fms028 xfms026a  the interaction between weight and impendence

HB xfms026a the interaction between weight and haemoglobin

CHOL x fms026a the interaction between weight and cholesterol




TABLE S3
Summary of scalar covariates (the maternal information) used in Section 5
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Feature Description of each feature Feature Description of each feature
fm1a011 age at attendance (years) fm1ms100  height (cm)

fm1ms101 sitting height (cm) fmlms103  leg length (cm)

fmlmsl15a waist circumference (cm), Ist  fmlms110  weight (kg)

fmIms115b  waist circumference (cm), 2nd  fmlmsl11  BMI

fmlms120a  hip circumference (cm), Ist fmlms115  mean waist circumference (cm)
fm1ms120b  hip circumference (cm), 2nd fmIms125  arm circumference (cm)
fm1dx020 total fat mass (g) fm1dx021 total lean mass (g)

fm1dx030 total bmd (g/cm?) fm1dx031  total bmc (g)

fm1dx035 total area (cm?) fm1dx036  total bone mass (g)

fm1dx391 total tissue fat (g) fmlbpl10a systolic of right arm, Ist
fmlbpl10b  systolic of right arm, 2nd fmlbpl10  mean systolic of right arm
fmlbpllla diastolic of right arm, 1st fmlbplllb diastolic of right arm, 2nd
fmlbpll1 mean of right arm fmlbpl12a pulse rate of right arm, 1st
fmlbpl12b  pulse rate of right arm, 2nd fmlbpl12  mean pulse rate of right arm
fmlbpl20a  systolic of left arm, 1st fm1bp120b  systolic of left arm, 2nd
fm1bp120 mean systolic of left arm fmlbpl2la diastolic of left arm, 1st
fmlbpl121b  diastolic of left arm, 2nd fm1bpl121 mean diastolic of left arm
fmlbpl22a  pulse rate of left arm, 1st fm1bpl122b  pulse rate of left arm, 2nd
fm1bp122 mean pulse rate of left arm fmlbpl30  mean systolic of both arms
fmlbpl31 mean diastolic of both arms fmlbpl32  mean pulse rate pf both arms
DELP1006  gestation days based on LMP  DELP1007  gestation weeks based on LMP
DELP1008  gestation days based on EDD  DELP1009  gestation weeks based on EDD
DELP1010  preterm delivery DELP1015 number of antenatal measurements
DELP1047  haemoglobin DELP1128  weight change (0-18)
DELP1129  weight change (18-28)
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TABLE S4
Summary of scalar covariates (the paternal information) used in Section 5

Feature Description of each feature Feature Description of each feature
fflms100  height (cm) ffims101 sitting height (cm)

fflms103  leg length (cm) fflms105  pacemaker fitted

fflms110  weight (kg) ffilms111  BMI

fflms115a  waist circumference (cm), 1st fflms115a  waist circumference (cm), 2nd
fflms115 mean waist circumference (cm) fflms120a  hip circumference (cm), 1st
fflms120b  hip circumference (cm), 2nd fflms120  mean hip circumference (cm)
fflms125 arm circumference (cm) fflms126a head circumference (cm)

ff1dx020 total fat mass (g) ff1dx021 total lean mass (g)

ff1dx030 total bmd (g/cm2) ff1dx031 total bmc (g)

ff1dx035 total area (cm?) ff1dx036 total bone mass (g)

ff1bp103 arm used for BP fflbpl40a  seated systolic BP (mmHg), 1st
fflbp140b  seated systolic BP (mmHg), 2nd ff1bp140 mean seated systolic BP (mmHg)
fflbpl4la  seated diastolic BP (mmHg), 1st fflbpl41lb  seated diastolic BP (mmHg), 2nd
fflbpl141 mean seated diastolic BP (mmHg)  fflbpl42a  seated pulse rate, 1st

fflbp142b  seated pulse rate, 2nd fflbp142 mean seated pulse rate

fflbpl43a  standing systolic BP (mmHg), 1st fflbp143b  standing systolic BP (mmHg), 2nd
fflbp143 mean standing systolic BP (mmHg) fflbpl44a standing diastolic BP (mmHg), 1st
fflbp144b  standing diastolic BP (mmHg), 2nd  ff1bp144 mean standing diastolic BP (mmHg)
fflbpl45a  standing pulse rate, 1st fflbp145b  standing pulse rate, 2nd

ff1bp145

mean standing pulse rate
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