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Atherosclerosis is a chronic, multifaceted disease that affects multiple
arterial systems. Its progression is primarily driven by low-density lipopro-
tein (LDL) cholesterol accumulation, which promotes localized arterial le-
sion formation. These lesions can lead to severe complications, including is-
chemic heart disease (IHD) and stroke. Both genetic factors, particularly sin-
gle nucleotide polymorphisms (SNPs), and age-related changes in body com-
position significantly influence LDL levels, generating extensive ultrahigh-
dimensional covariates from functional and scalar mixtures (UDFSM), which
may be stored at different sites due to the massive amount of data and the
different data representations. To analyze the impact of genetic and physi-
ological variables on LDL levels, we first separately extract features from
ultrahigh-dimensional functional and scalar covariates in an unsupervised
manner. Then, we propose a novel regression model that incorporates these
features, which may be correlated due to the underlying correlations in the
ultrahigh-dimensional covariates comprising both functional and scalar mix-
tures. Our methodology employs a factor regression model with an addi-
tive multiple-index component to sufficiently and effectively capture latent
feature-response variable relationships. We enhance model interpretability
and account for covariate correlations by imposing column sparsity and low-
rank structures on the regression coefficients matrix, thereby incorporating
structural information to improve efficiency and robustness. This distribution-
agnostic approach to the response variable ensures greater flexibility and ver-
satility. For model fitting, we develop a sieve likelihood-based framework that
leverages the problem’s inherent structure to provide efficient and robust es-
timates. We apply our method to the Avon Longitudinal Study of Parents and
Children (ALSPAC) dataset, achieving high prediction accuracy for LDL lev-
els and identifying significant SNPs and anthropometric measures affecting
LDL. We specifically examine how various anthropometric measures influ-
ence LDL levels over ages. We further extend our analysis to identify key
parental and individual characteristics that influence adult body mass index
(BMI).

1. Introduction. Atherosclerosis is a chronic and multifaceted disease affecting multi-
ple arterial systems, often resulting in severe clinical outcomes, including ischemic heart dis-
ease (IHD) and stroke. According to the Global Burden of Disease 2021 report (Institute for
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Health Metrics and Evaluation (IHME), 2024), IHD and stroke ranked first and third among
global causes of mortality, with age-standardized death rates of 108.7 and 87.4 per 100,000
population, respectively. Projections indicate that by 2050, these conditions will become the
leading contributors to global disease burden. Therefore, effective and timely management
of atherosclerosis risk factors is crucial for prevention and treatment. From 1990 to 2020,
advances in atherosclerosis prevention and treatment have substantially improved life ex-
pectancy. Low-density lipoprotein (LDL) cholesterol, the primary cholesterol-transporting
lipoprotein in human plasma, plays a central role in the progression of atherosclerosis. Ac-
cording to the unifying hypothesis of atherosclerosis etiology and pathogenesis (Schwartz
et al., 1991), LDL cholesterol accumulation at lesion-prone arterial sites represents a critical
early event in disease progression. As Packard et al. (2000) emphasized, enhancing our un-
derstanding of the biological mechanisms governing LDL metabolism and regulation could
provide crucial insights for developing targeted therapeutic strategies against atherosclerotic
disease.

Genetic determinants play a pivotal role in regulating LDL levels. Large-scale genome-
wide association studies (GWAS) have identified numerous genetic loci, particularly single
nucleotide polymorphisms (SNPs), that significantly influence LDL levels (Sandhu et al.,
2008; Willer et al., 2013). Mendelian randomization studies have further established causal
relationships between specific SNPs and LDL cholesterol (Ference et al., 2012; Jansen et al.,
2014), validating these SNPs as reliable genetic markers for LDL. These findings highlight
the importance of SNP data as reliable genetic markers for LDL. Based on these scientific
findings, we utilize SNP data to develop a predictive model for LDL levels, providing a
foundation for prevention and therapeutic strategies.

Anthropometric measures, including height, body mass index (BMI), and body fat per-
centage, are intrinsically linked to lipid metabolism and significantly influence LDL regula-
tion. Understanding these relationships is crucial for developing effective LDL management
strategies. Moreover, since anthropometric measures evolve with age, single time-point mea-
surements may fail to capture critical temporal patterns, thereby limiting our understanding
of LDL regulation. To address this limitation, our predictive model incorporates functional
data on these anthropometric measures, enabling us to capture age-related trends and exam-
ine their impact on LDL levels across different life stages, ultimately enhancing prediction
accuracy.

The Avon Longitudinal Study of Parents and Children (ALSPAC, https://www.bristol.ac.
uk/alspac/), initiated in 1991, is a comprehensive longitudinal study investigating the effects
of environmental factors, lifestyle, and genetics on health and development. This ongoing
study has tracked approximately 14,000 pregnant women and their children, accumulating
extensive data on pregnancy outcomes, birth characteristics, child development, and fam-
ily environmental factors. ALSPAC represents an invaluable resource for analyzing health
trajectories across the life course, providing detailed longitudinal measurements of physio-
logical parameters—including weight, height, and blood pressure—alongside comprehensive
genetic information such as SNP data. This combination yields abundant data with ultrahigh-
dimensional risk predictors and allows data to be recorded with high frequency from diverse
scientific fields, providing large volumes of ultrahigh-dimensional covariates of functional
and scalar mixtures (UDFSM). The challenges in building the analysis framework for the
ALSPAC dataset arise from the following aspects. First, ultrahigh-dimensional covariates of
functional and scalar may be stored at different sites due to the massive amount of data and
the different data representations. Second, longitudinal measurements for anthropometrics
are functional while the SNPs are scalar covariates. Modeling the mixing types of functional
and scalar covariates can be further complicated by the high dimensionality of both covari-
ates, where functional covariates themselves are infinite-dimensional. Third, irregular lon-
gitudinal measurements make functional covariates sparse, presenting additional challenges
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in a high-dimensional scenario. Therefore, to account for the distributed storage of the data
and the different types of data, as well as to modulate the association between LDL and high-
dimensional functional and scalar covariates, it is important to first separately and sufficiently
extract a low-dimensional representation and then associate the extracted representation with
the response. The paper attempts to build a highly predictive and intrinsically interpretable
featured factor regression model to explicitly express the relationship.

It is well-known that achieving high prediction accuracy and model interpretability may
conflict with each other. For example, a deep neural network may provide accurate predic-
tions but with low interpretability, while some statistical regression models are explainable
but have less predictability. In particular, a large amount of statistical literature has been de-
veloped to handle high-dimensional scalar covariates under the sparse assumption, including
variable selection (Tibshirani, 1996; Fan and Li, 2001; Zou, 2006) and sure independence
screening (Fan and Lv, 2008; Ma et al., 2017). However, their performance highly depends
on the sparsity assumption and the well-known restricted eigenvalue condition, where the
former requires that only a limited number of the covariates are associated with the response,
and the latter requires that the effects of important covariates are well separated from those
of the null covariates. These assumptions are violated due to the inevitable correlation among
high-dimensional covariates (Hall et al., 2005; Fan et al., 2020). To alleviate the limitation of
the sparsity assumption and make full use of the correlation among high-dimensional scalar
covariates, factor regularized methods are proposed (Wang, 2012; Jiang et al., 2019; Fan
et al., 2020).

In contrast to scalar variables, functional data involving infinite-dimensional processes are
more complex. With advances in data generation, various methods have been developed to
analyze functional data, including functional linear regression (Yao et al., 2005b; Cai and
Hall, 2006), generalized functional linear regression (Reiss and Ogden, 2010), functional
additive regression (Müller et al., 2013), functional adaptive models (James and Silverman,
2005), functional index regression (Chen et al., 2011), and semiparametric mixed normal
transformation models (Zhong et al., 2021). Some methods have also been proposed to si-
multaneously model functional and scalar predictors (Lu et al., 2014; Kong et al., 2016; Wong
et al., 2019). However, these works mainly focus on finite multivariate functional predictors.

Recently, Xue and Yao (2021) considered high-dimensional functional regression models
by selecting important functional covariates under a linear model structure, and Fan et al.
(2015) proposed a functional additive regression to flexibly model the nonlinear relationship
between a response and high-dimensional functional predictors. However, the performance of
these works still relies heavily on the sparsity assumption and the restricted eigenvalue con-
dition. Moreover, these methods focus on the cumulative information of functional covariates
and often require complete information for predictor functions, which may be infeasible in
practice. Additionally, recovering whole random curves using parametric or nonparametric
techniques can be challenging when the original observations are sparse or observed at irreg-
ular time points (Yao et al., 2005b; Li and Hsing, 2010). Furthermore, even when the entire
curve is observed, applying functional regression directly to the whole functions may not be
optimal with much noise, especially in high-dimensional scenarios.

To overcome these challenges, functional regression based on functional principal com-
ponent analysis (FR-FPCA) has been developed (Zhu et al., 2014; Wong et al., 2019; Liu
et al., 2021). FR-FPCA utilizes standard functional principal component analysis or spline
approximation techniques to extract scores and performs regression on these scores. How-
ever, FR-FPCA focuses on the scores extracted from functional covariates, potentially ignor-
ing important information regarding the relationship between the response and the covariates.
Specifically, existing FR-FPCA methods for functional covariates or factor models for scalar
covariates conduct regression on the functional principal scores ζi or factors Fi using mod-
els such as Yi “ gpζqi q ` εi or Yi “ gpFq

i q ` εi, where ζqi and Fq
i are the first q factors of
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ζi and Fi, respectively, and gp¨q represents various known or unknown functions. Although
the first q factors are important for the functional and scalar covariates, they may not capture
the full relationship between the response and the covariates, potentially overlooking crucial
information.

To fix these problems, we propose a functional factor regression model (FFRM) by con-
sidering a multiple-index model Yi “ ψpΩfiq ` εi, where fi “ pζTi ,F

T
i qT includes all suffi-

cient information from high-dimensional functional and scalar covariates, respectively. Here,
Ω P Rdˆq is the coefficient matrix, with both d and q allowed to diverge to infinity to capture
sufficient information. The introduction of Ω provides an opportunity to detect significant
factors or directions by distinguishing between zero and nonzero columns of Ω. By exclud-
ing the zero columns of Ω, we can identify the important features of tXiptq,Ziu that are
relevant to the relationship between the response and UDFSM. To balance the prediction
accuracy, stability, and interpretability, we consider the additive multiple-index structure for
ψp¨q, which serves as a universal approximator for any function when d is sufficiently large
(Pinkus, 1999). Furthermore, to incorporate the correlation between ζi and Fi arising from
the dependence of functional and scalar covariates, we impose a low-rank structure on Ω, al-
lowing for an explicit expression of the dependence between Xiptq and Zi, as fully explained
later.

To enhance the efficiency and flexibility of the estimators, we propose to estimate all com-
ponent functions and parameters based on a penalized likelihood, even when the distribution
of εi is unknown. As presented by our simulation studies, the proposed likelihood-based
method outperforms the estimator based on the least square error (LSE), even when εi fol-
lows a normal distribution (see Figure 6(b,c)). The superior performance in Figure 6(b,c) can
be attributed to the use of structural information, specifically the estimated density function
pfp¨q. This observation is consistent with findings in the literature (Zhou et al., 2019; Lin et al.,
2021). In addition, we develop an iterative procedure that updates each parameter or func-
tion using existing packages, making computation and programming simple. We establish
the selection and estimation consistency, as well as the asymptotic normality of the proposed
estimators.

We apply the proposed method to analyze the data from the second-generation ALSPAC
dataset. As demonstrated in Table 1, our method achieves superior prediction accuracy for
LDL levels compared to existing approaches. The proposed FFRM identifies 424 SNPs sig-
nificantly associated with LDL levels, many of which corroborate findings from previous
research. Furthermore, we discover several anthropometric measures that substantially influ-
ence adult LDL levels. Notably, our analysis reveal considerable variation in how these char-
acteristics affect LDL over ages. We observe that diverse anthropometric measures exhibit
synchronized patterns in their influence on LDL levels, with both maximum and minimum
effects occurring at similar ages.

We extend our analysis to examine the relationship between parental and individual char-
acteristics and adult BMI. Furthermore, we apply the proposed method to analyze six dif-
ferent responses in ALSPAC, and Figure 5 demonstrates that our method provides higher
prediction accuracy compared to existing methods for each response. In particular, the two
ALSPAC analyses and simulation studies confirm that the proposed FFRM method outper-
forms shallow neural network (SNN) with sufficient width in terms of prediction accuracy.

The remainder of the paper is organized as follows. Section 2 introduces the FFRM. The
estimation method is provided in Section 3. Section 4 applies the proposed method to an-
alyze the ALSPAC data and presents the scientific findings and interpretations. In Section
5, we supplement additional analyses on the ALSPAC study. Furthermore, we evaluate the
performance of the proposed estimation procedure through simulation studies in Sections
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6. In Section 7, we provide a brief discussion of further research. The details on the theo-
retical result, along with some simulation and real data analysis results, are included in the
Supplementary Materials (Suppl).

2. Model. Let Yi denote the response variable, Xiptq “ tXi1ptq, ¨ ¨ ¨ ,XipptquT repre-
sent the functional variables measured at various time points pti1, ¨ ¨ ¨ , tini

q prior to the
measurement of Yi, where ni is the number of observations for the i-th individual (Zhang
and Wang, 2016), and Zi “ pZi1, ¨ ¨ ¨ ,ZimqT denote the scalar covariates. Observations
tYi,Xiptq,Ziu pi “ 1, ¨ ¨ ¨ , nq, are assumed to be independent and identically distributed.
Particularly, in the ALSPAC data, for the i-th young adult, Yi represents the LDL cholesterol
level at age 24, Xiptq are the anthropometrics measured at different ages prior to 24, and Zi

refer to the genotypes of the SNPs. For simplicity, we assume that the mean of Xijptq and
Zij has been subtracted, which means that EtXijptqu “ 0 and EpZijq “ 0 for any j and t.

Following Bai and Ng (2013), we assume that Zi are correlated with the shared latent
factors Fi and consider the following model

(1) Zi “ ΛFi ` ei,

where Fi is a q1-dimensional vector with q1 ! m, Λ is a loading matrix, and ei represents
random errors that are independent of Fi with Epeiq “ 0 and varpeiq “ σ21Im, where Im
denotes the m-dimensional identity matrix. We suppose Conditions (I1) and (I2) in Suppl.
S6 to ensure model (1) is identifiable by following Bai and Ng (2013).

Similarly, we assume that Xiptq are correlated due to sharing a vector of latent processes
hiptq and can be modeled as

(2) Xiptq “ Bhiptq ` uiptq,

where hiptq “ thi1ptq, ¨ ¨ ¨ , hiq2ptquT is a q2-dimensional latent processes with q2 ! p,
B “ pb1, ¨ ¨ ¨ ,bpqT “ pbjkqpˆq2 is a loading matrix, and uiptq represent random errors in-
dependent of hiptq with Etuiptqu “ 0 and covtuiptq,uipsqu “ σ221tt“suIp. By applying the
Karhunen-Loève expansion (Ash and Gardner, 1975) to hijptq, we suppose

(3) hijptq “

K
ÿ

k“1

ξijkϕjkptq,

where ϕjkp¨q is the k-th orthonormal eigenfunction for factor process j; ξijk is the score
with Epξijkq “ 0 and covpξijk, ξijk1 q “ ρjk1tk“k1u. Model (3) has been extensively studied
in the literature of FPCA when K is fixed (Yao et al., 2005a; Zhou et al., 2018). To improve
flexibility, we allow K Ñ 8 and varies with n (Hall and Hosseini-Nasab, 2006).

Denote ζi “ pζTi1, ¨ ¨ ¨ ,ζTiq2qT with ζij “ pξij1, ¨ ¨ ¨ , ξijKqT and Φp¨q “ diagtΦ1p¨q, ¨ ¨ ¨ ,Φq2p¨qu

with block j being Φjp¨q “ tϕj1p¨q, ¨ ¨ ¨ , ϕjKp¨quT. By the expression in (3), model (2) can
be written as

(4) Xiptq “ BΦTptqζi ` uiptq.

To ensure the identifiability of model (4), we impose Conditions (I3) and (I4) in Suppl. S6, as
shown in Proposition 1 of the same Suppl. S6. Models (1) and (4) capture the heterogeneity of
realizations tXiptq,Ziu pi“ 1, ¨ ¨ ¨ , nq, where the features within each realization tXiptq,Ziu

are fully determined by the latent factors fi “ pζTi ,F
T
i qT, provided that q1, q2, andK are suf-

ficiently large. Features are extracted from tXiptq,Ziu in an unsupervised manner based on
models (1) and (4), which may introduce redundancy for modeling the relationship between
Yi and tXiptq,Ziu. To address this, we introduce Ω to refine the features, emphasizing the
relationship between Yi and fi, leading to the following model for Yi

(5) Yi “ ψpΩfiq ` εi,
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to detect significant factors or directions by identifying zero collums of Ω. To achieve a
balance between prediction accuracy, stability, and interpretability, we propose the following
additive multiple-index model

(6) Yi “

d
ÿ

j“1

ψjpα
T
j ζi ` βT

j Fiq ` εi,

with Ω “ pα,βq, α “ pα1, ¨ ¨ ¨ ,αdqT, β “ pβ1, ¨ ¨ ¨ ,βdqT and divergent d, where both ψjp¨q

and error distribution f are unknown. In model (6), we suppose that Etψjp¨qu “ 0 for iden-
tifiability and the density function f satisfies the smooth Condition (C1) in Suppl. S4. In
fact, additive multiple-index model is a universal approximator provided that d is sufficiently
large (Pinkus, 1999). If we fix each component function ψjp¨q to be a prespecified activation
function, it reduces to a SNN with inputs tXiptq,Ziu, inferred factors fi, features si “ Ωfi,
activation function ψj and output Yi. Our simulation studies in Section 6 show that the data-
driven activation function is helpful in improving prediction accuracy.

Furthermore, there is typically a correlation between the functional and scalar covari-
ates, leading to the correlation between ζi and Fi. To incorporate the correlation between
them, we impose a low-rank structure on their effects Ω “ pα,βq. That is, we assume
Ω “ UV with U “ pU1, ¨ ¨ ¨ ,UdqT P Rdˆr , V “ pVr1s, ¨ ¨ ¨ ,Vrqsq “ pV1,V2q P Rrˆq and
rank r ă minpd, qq, where Vrks is the k-th column of the matrix V, q “ q1 `Kq2 denotes
the dimension of features extracted from functional and scalar covariates, and V1 and V2

correspond to α and β, respectively. With Ω “ pα,βq “ UV, we can write αj “ VT
1 Uj

and βj “ VT
2 Uj . It is clear that the terms αj and βj are correlated with each other due to

the shared component Uj . This, in turn, captures the dependence between Xiptq and Zi. The
low-rank structure serves two main purposes. First, it addresses the challenge of modeling the
correlation between functional and scalar covariates. Second, this low-rank structure reduces
the dimensionality of the parameters in model (6), thereby improving the model’s predictive
performance and stability, as demonstrated in Table 1 for predicting LDL and Figure 5 for
other responses.

Remark 1. Since the structure of vartuiptqu does not affect the identifiability and es-
timation of model (4), we assume vartuiptqu “ σ22Ip for simplicity. The diagonal structure
can be relaxed to allow weak correlations among uiptq. For example, there exists a constant
C ą 0 such that

řp
j1“1 }E tuijptquij1 ptqu}1 ďC for each j and uniformly over t.

3. Estimation Procedure.

3.1. Estimation of latent factors and scores. Following Bai and Ng (2013), the estima-
tion of pΛ,Fq is a principal component problem, where F “ pF1, ¨ ¨ ¨ ,FnqT. We hence di-
rectly estimate F by pF “ n1{2EvpZZT; q1q, where Z “ pZ1, ¨ ¨ ¨ ,ZnqT and EvpA; cq is a
matrix composed by the first c eigenvectors of matrix A.

The estimation of the model (4) involves three terms: B, Φp¨q and ζi. However, it
is not straightforward to use existing methods, such as those proposed by Bai and Ng
(2013), to estimate ζi due to the individual-dependent observation time. To avoid the
need for iterative procedures, which often fail to converge without good initial values,
Wen et al. (2025a) proposed a direct estimator for B, Φp¨q and ζi. To calculate Φp¨q, let
M1p¨q “ tM11p¨q, ¨ ¨ ¨ ,M1,τ1np¨quT be a vector of B-spline basis functions on r0,1s, then
we have ϕjkp¨q « ΘT

jkM1p¨q. After some computations (Wen et al., 2025a) on (4), B and
ζrks “ pζ1k, ¨ ¨ ¨ ,ζnkqT are estimated by the following closed-form expressions,

pB “ p1{2Ev

“

n´1
␣
řn

i“1 n
´1
i

řni

l“1XiptilqX
T
i ptilq

(

; q2
‰

,

pζrks “ τ
´1{2
1n Wk ˆ EvpWT

k Wk;Kq pk “ 1, ¨ ¨ ¨ , q2q,
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where Wk “ pw1k, ¨ ¨ ¨ ,wnkqT with wik “ t
řni

l“1M1ptilqM
T
1 ptilqu´1t

řni

l“1 p
´1

řp
j“1M1ptilqpbjkXijptilqu.

Remark 2. We require ni ě τ1n to ensure invertibility of
řni

l“1M1ptilqM
T
1 ptilq. Partic-

ularly, for a second-order Hölder continuous functions, we can take τ1n “Opn1{5q to achieve
the optimal convergence rate. Then ni “ Opn1{5q is enough to ensure the invertibility of
řni

l“1M1ptilqM
T
1 ptilq.

3.2. Estimation of loadings and component functions. Denote Ψp¨q “ tψ1p¨q, ¨ ¨ ¨ ,ψdp¨quT

and let M2p¨q “ tM21p¨q, ¨ ¨ ¨ ,M2,τ2np¨quT be a vector of B-spline basis functions, we have
ψjp¨q « aTj M2p¨q. Here, we use the different basis functions for ϕjkp¨q and ψjp¨q to en-
sure the convergence rate of pΩ and pΨ, see details in Section S7. Define the sieve space
as F “

śd
j“1taTj M2puq : aj P Rτ2n , u P rul, uusu. The features fi are extracted from

tXiptq,Ziu in an unsupervised manner based on models (1) and (4), which may introduce
redundancy in modeling the relationship between Yi and tXiptq,Ziu. To effectively capture
the relevant information from tXiptq,Ziu for the response Yi, we identify the important
latent factors of fi that contribute to Yi using the sparsity assumption. The sparsity assump-
tion also allows us to select larger dimensions pq1, q2,Kq, so that as much information as
possible from tXiptq,Ziu is retained. The identification of important latent factors of fi is
equivalent to detecting the zero columns in the coefficient matrix Ω “ pΩr1s, ¨ ¨ ¨ ,Ωrqsq with
q “ q1 `Kq2. Given the low-rank structure Ω “ UV, it suffices to identify the zero columns
of the matrix V. To accomplish this, we apply a group penalty to the columns of matrix V
and estimate γ “ pU,V,Ψq as follows

pγ “ argmax
U,V,ΨPF

#

ℓnpγ;pf , ρq ´ λ

q
ÿ

k“1

wk}Vrks}2

+

,(7)

where ℓnpγ; f , ρq “ n´1
řn

i“1 ℓpγ;Yi, fi, ρq “ n´1
řn

i“1 ρtYi ´
řd

j“1ψjpU
T
j Vfiqu and f “

tf1, ¨ ¨ ¨ , fnu, λ is a tuning parameter, wk is a known weight such as that for adaptive LASSO
(Zou, 2006), }w}2 is the L2-norm of vector w, and ρp¨q is a given loss function; for example,
the least squares loss ρptq “ ´t2, which is the most commonly used, is optimal when the
error εi is normally distributed but inefficient when the normality is violated. Some adjust-
ments have been suggested, for example, the kernel M-smoother, median smoothing, locally
weighted regression, and the local least absolute method. These methods are mathematically
convenient, robust, and easily implemented. However, they are suboptimal. If the density
function f is known, an ideal choice of the loss function ρp¨q is logfp¨q (Stone, 1975), which
is the likelihood function. In this paper, to enhance efficiency, we propose a maximum like-
lihood estimator for γ even when fp¨q is unknown. The key idea is to replace the unknown
density function fp¨q by an estimated density function, pfp¨q. The density function can be es-
timated by the Nadaraya-Watson kernel: pfpyq “ n´1

řn
i“1KhtYi ´

řd
j“1ψjpU

T
j Vfiq ´ yu,

where Khp¨q “ Kp¨{hq{h, Kp¨q is a nonnegative symmetric kernel function with support on
r´1,1s and h is a bandwidth. By replacing the loss function ρp¨q in (7) with log pfp¨q, we can
estimate γ “ pU,V,Ψq by the following penalized likelihood

(8) pγ “ argmax
U,V,ΨPF

#

ℓnpγ;pf , log pfq ´ λ

q
ÿ

k“1

wk}Vrks}2

+

.

3.3. Algorithm to compute (8). Since the penalty term is independent of U and Ψ, in the
pt` 1q-th step, we update U and Ψ with a gradient algorithm, that is,

Upt`1q “ Uptq ` η▽U ℓnpγptq;pf , log pfq,

Ψpt`1qp¨q “ Ψptqp¨q ` η▽A ℓnpγptq;pf , log pfqM2p¨q,
(9)
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where A “ pa1, ¨ ¨ ¨ ,adqT, ▽c denotes the derivative of ℓnpγ;pf , log pfq with respect to c,
where c may represent a matrix or a vector, and η is a constant and may be different in
different places.

To deal with the nonsmoothness of the penalty, we use the algorithm proposed by Noah
et al. (2013) to update V. In the pt ` 1q-th step, we majorize the negative loss function by
´ℓnpVrks,γ

ptq
´Vrks

;pf , log pfq ď ´ℓnpγptq;pf , log pfq ´ pVrks ´ V
ptq
rks

qT ▽Vrks
ℓnpγptq;pf , log pfq `

}Vrks ´ V
ptq
rks

}22{p2ηq, where ℓnpVrks,γ
ptq
´Vrks

;pf , log pfq is ℓnpγ;pf , log pfq with γ´Vrks
(e.g., γ

excluding Vrks) replaced by the estimators γptq
´Vrks

from the t-th step, and η is a sufficiently
small constant so that the quadratic term dominates the Hessian matrix of the loss function.
Considering the penalty term, we estimate Vrks by minimizing ´ℓnpγptq;pf , log pfq ´ pVrks ´

V
ptq
rks

qT ▽Vrks
ℓnpγptq;pf , log pfq ` }Vrks ´ V

ptq
rks

}22{p2ηq ` λwk}Vrks}2, which is equivalent

to minimizing }Vrks ´ tV
ptq
rks

` η▽Vrks
ℓnpγptq;pf , log pfqu}22{p2ηq ` λwk}Vrks}2. Then, we

update V
ptq
rks

pk “ 1, ¨ ¨ ¨ , qq one-by-one by
(10)

V
pt`1q

rks
“

$

’

&

’

%

0, }V
ptq
rks

` η▽Vrks
ℓnpγptq;pf , log pfq}2 “ 0,

"

1 ´
ηλwk

}Vrks`η▽Vrks
ℓnpγptq;pf ,log pfq}2

*

`

!

Vrks ` η▽Vrks
ℓnpγptq;pf , log pfq

)

,otherwise,

where paq` “ maxp0, aq. We repeat (9) and (10) until convergence. The selections of initial
values and tuning parameters are discussed in Suppl. S1.

4. Analysis of the LDL with the ALSPAC data. We applied our proposed FFRM to
analyze LDL levels at age 24 using the ALSPAC dataset. The analysis incorporated both
functional and scalar covariates. The functional covariates comprised 11 primary variables
measured from ages 7 to 17, including anthropometric measures (height, weight, sitting
height, waist circumference, arm circumference, and BMI), body composition indicators (fat
percentage and body water), scoliometer readings, axis of astigmatism in the left eye, and
impedance measurements. To account for nonlinear relationships, we included squared terms
and interaction effects of these functional variables, expanding the functional covariate set
to 77 variables. The scalar covariates consisted of genotype data from 455,395 SNPs (in-
cluding rs4420638, rs11206510, and rs10411594) distributed across the 23 pairs of human
chromosomes.

Prior to analysis, we conducted quality control (QC) by excluding individuals with missing
functional covariate data, resulting in a final sample size of 1,077 individuals. As illustrated in
Figure 1 (left), we analyzed the principal components of n´1

řn
i“1 n

´1
i

řni

l“1XiptilqX
T
i ptilq,

selecting 30 components for initial examination. Following the criteria detailed in Suppl. S1,
we observed that the eigenvalues plateaued at 17 principal components, corresponding to
an explained variance ratio of 90.73%. Consequently, we set q2 “ 17. Similarly, based on
criteria outlined in the same supplementary section, we established K “ 3.

The matrix Z contains mintm,nu “ 1077 singular values. While conventional selection
of q1 based on explained variance proportion would result in an excessive number of factors,
we implemented an alternative selection procedure. We computed the relative eigenvalue dif-
ference for the j-th eigenvalue as: dj “ tλjpn

´1ZZTq ´ λj´1pn´1ZZTqu{λj´1pn´1ZZTq

with d1 “ 0. As illustrated in Figure 1 (right), we initially examined 50 principal components
of n´1ZZT. The eigenvalue difference approached zero at 20 principal components, lead-
ing us to set q1 “ 20. For the final implementation of FFRM, we specified d “ 2, r “ 1 and
λ“ 0.01, and employed a bandwidth of h“ n´1{3 « 0.09.
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Fig 1: (left): the eigenvalues for the first 30 principal components of
n´1

řn
i“1 n

´1
i

řni

l“1XiptilqX
T
i ptilq; (right): the eigenvalue differences for the first 50

principal components of n´1ZZT.

TABLE 1
PEs and the corresponding standard deviations (reported in parentheses) of LDL

FFRM PFLM PLFAM SNN

PE 0.6918 (0.1059) 0.7334 (0.1032) 0.7380 (0.1044) 0.7625 (0.1078)

We evaluated the predictive performance of our proposed FFRM method against exist-
ing methods, including the partially functional linear regression model (PFLM; Kong et al.
2016), partially linear functional additive model (PLFAM; Wong et al. 2019), and SNN.
The SNN architecture parallels FFRM’s structure but employs the tanh function for ψjp¨q

in equation (6). Using optimized tuning parameters, we performed 200 iterations of ran-
dom data partitioning, with 90% allocated to training and 10% to testing. For SNN, we se-
lected the number of neurons that minimized prediction error, while optimal tuning parame-
ters were chosen for PFLM and PLFAM. Table 1 presents the prediction error (PE), defined
as: PE “

ř

iPST
ppYi ´ Yiq

2{
ř

iPST
pYi ´ Ȳ q2, where ST denotes the test set. Results demon-

strated that FFRM achieved superior predictive performance compared to SNN, PFLM, and
PLFAM.

By the identifiability Condition (I1) in Suppl. S6, we had U1 “ U2 and pαT
1 ,β

T
1 q “

pαT
2 ,β

T
2 q when pd, rq “ p2,1q. This indicated that the low-rank structure identified only one

direction for the effect of fi on Yi, which we denoted by pα,βq. Define rβ “ prβ1, . . . , rβmq “

pβppΛT
pΛq´1

pΛT. Following Jiang et al. (2019), a simple calculation showed that pβFi « rβZi,
implying that rβ represented the regression coefficients of the SNPs and could be used
to quantify their impacts on LDL. We then performed hypothesis testing for each scalar
covariate j (i.e., testing rβj “ 0). To do so, we proposed to use p-values while control-
ling the false discovery rate. More specifically, we computed the p-values as pj “ 2r1 ´

Φt}rβj}1{SDprβjqus, where Φ denoted the cumulative distribution function of the standard
normal distribution. Then, following Benjamini and Hochberg (1995), we ordered the p-
values as pp1q ď ¨ ¨ ¨ ď ppmq, corresponding to each of the null hypotheses,H0piq, i“ 1, . . . ,m.
We then identified the threshold i“ maxtj : ppjq ď 0.05j{mu and rejected all null hypothe-
ses associated with the first i p-values. The analysis, based on 200 bootstrap replications,
identified 424 significant SNPs, with key findings presented in Table 2. The majority of these
SNPs demonstrated positive associations with LDL levels, suggesting their variants may con-
tribute to elevated LDL concentrations and consequently increase IHD and stroke risk. Our
findings corroborated previous research by Sandhu et al. (2008), confirming the association
of SNPs, such as rs693, rs1713222, and rs10402271, with LDL levels.
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TABLE 2
Estimates, SDs and p-values for rβ with LDL response using FFRM

Esitimate SD p value

rs6511720 -1.7498 0.5361 1.0978 ˆ 10´3

rs693 1.7863 0.4063 1.0980 ˆ 10´5

rs1713222 1.5173 0.3920 1.0843 ˆ 10´4

rs10402271 1.2598 0.3156 6.5522 ˆ 10´5

rs1042031 1.4366 0.4315 8.7151 ˆ 10´4

rs1412444 1.1401 0.3929 3.7112 ˆ 10´3

rs4803750 1.1233 0.3505 1.3507 ˆ 10´2

rs646776 1.4138 0.3940 3.3348 ˆ 10´4

rs1713222 1.5173 0.3920 1.0843 ˆ 10´4

Based on the theoretical justification in Suppl. S11, we had p´1
ş

pαΦptqBTXiptqdt «

pα
ş

ΦptqΦTptqdtζi “ pαζi, which implied that p´1
pBpΦTptqpαT was the regression coeffi-

cient function of Xiptq and could be used to investigate the impact of the functional effects
of anthropometric measures on LDL levels. Figures 2 and 3 present the estimated coeffi-
cient functions for selected functional covariates, accompanied by confidence bands derived
from 200 bootstrap replications. Our analysis revealed no significant associations between
LDL levels and several variables, including weight, impedance measurements, scoliometer
readings, and the axis of astigmatism in the left eye.

Among anthropometric measures, height, sitting height, and arm circumference (Figures 2
(a)-(c)) – commonly used indicators of growth, body proportions, and skeletal-muscular de-
velopment – showed distinct associations with LDL levels. Height demonstrated a negative
correlation with LDL levels, consistent with Fujita et al. (2016) findings that LDL choles-
terol decreases with increasing height during puberty, independent of weight gain, as shown
in their three-year follow-up study in Fukuroi. Conversely, both sitting height and arm cir-
cumference exhibited positive associations with LDL levels, corroborating previous research
by (Schooling et al., 2007; Zhu et al., 2020), who reported higher LDL levels among indi-
viduals with greater sitting height and mid-upper arm circumference. Notably, the effects of
all three anthropometric measures on LDL peaked at age 12, highlighting the crucial role of
pubertal changes in body composition and fat distribution in determining blood lipid profiles.

Waist circumference, BMI, fat percentage, and body water content (Figures 3 (a)-(d))
served as critical indicators of body composition, weight status, and health risk. Our anal-
ysis revealed positive associations between LDL levels and waist circumference, BMI, and

(a) (b) (c)

Fig 2: The estimated coefficient function curves corresponding to (a) Height, (b) Sitting
Height, (c) Arm Circuference.
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fat percentage, while body water content showed an inverse relationship. These findings cor-
roborated previous research (Maffeis et al., 2012; Shirasawa et al., 2013; Oda, 2013; Liu
et al., 2023). Notably, the timing of peak influence varied among these anthropometric mea-
sures: waist circumference exhibited maximum effect around age 7, while body water con-
tent, BMI, and fat percentage showed strongest associations between ages 11 and 13. These
temporal patterns suggested the need for age-specific interventions: early childhood (before
age 7) should focus on preventing abdominal fat accumulation through dietary modifications,
particularly reducing sugary beverage and high-fat food consumption. During puberty, care-
ful monitoring of body composition becomed crucial for obesity prevention, while adoles-
cent health management should emphasize maintaining proper fluid and electrolyte balance
through controlled salt and sugar intake.

Our analysis revealed consistent patterns in the ages at which anthropometric measures
exhibited minimal influence on LDL levels. Specifically, arm circumference, waist circum-
ference, BMI, and body water content showed their weakest associations between ages 9
and 11, while height and sitting height demonstrated minimal impact at ages 16-17. Fat per-
centage uniquely displayed reduced influence during both intervals. These temporal patterns
align with known developmental phases: children aged 9-10 years typically experience a
period of relative metabolic stability during their transition from early childhood to adoles-
cence, resulting in diminished associations between body composition measures and LDL
levels. Similarly, by ages 16-17, as physiological development approaches maturity and hor-
monal profiles stabilize, the influence of anthropometric measures on LDL levels becomes
notably reduced.

5. Analysis of the BMI with the ALSPAC data. We further applied FFRM to inves-
tigate a critical question in the ALSPAC study, specifically identifying key scalar and func-
tional predictors of adult BMI. To proceed, we set the response variable to be the BMI of the
participants at age 24, and included as the covariates 77 functional (and historical) variables,
such as the anthropometrics of the individuals (e.g., height and weight), lipid levels (e.g.,
fat percentage, body water) and their squared or interaction terms, measured between ages 7
and 24. Additionally, 88 scalar covariates, such as maternal and paternal anthropometrics and
blood pressure, were included in the analysis. Supplementary Tables S2-S4 provide summary
information on these covariates.

We first performed QC by removing individuals with missing values in the scalar
and functional covariates. In total, we analyzed 348 individuals. As shown in Supple-
mentary Figure S1, we selected the number of principal components of n´1ZZT and
n´1

řn
i“1 n

´1
i

řni

l“1XiptilqX
T
i ptilq to 30, respectively. Based on the criteria outlined in the

(a) (b) (c) (d)

Fig 3: The estimated coefficient function curves corresponding to (a) Waist circumference,
(b) BMI, (c) Fat percentage, (d) Body Water.
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Suppl. S1, we set q1 “ 20, q2 “ 13, K “ 2, λ“ 0.001, d“ 1, and r “ 1. Using a bandwidth
of h“ n´1{3 « 0.15, we estimated Ω using the proposed FFRM.

To investigate the effects of parental anthropometrics, blood pressure, and other scalar
covariates on response, similar to Section 4, for each scalar covariate j, we performed a
hypothesis test of rβj “ 0 by evaluating its p-value. We identified a total of 28 significant
scalar covariates as shown in Table 3. Among them, the positive effects of parental BMI
(fm1ms111, ff1ms111) on the BMI of their offspring at 24 years of age were identified by
FFRM, which was consistent with positive association between parental BMI and offspring
BMI at age 7.5 based on a study using ALSPAC data (George et al., 2007). Furthermore, both
maternal and paternal weight (fm1ms110, ff1ms110) and height (fm1ms100, ff1ms100) were
significantly identified in positive and negative associations, respectively, with their offspring
BMI at age 24.

FFRM also significantly identified the negative association of childbearing age (fm1a011)
and preterm delivery (DELP1010) and the positive association of hemoglobin (DELP1047)
and gestational weight gain (DELP1128, DELP1129), respectively, with the BMI of the off-
spring at age 24. Previous studies reported that premature delivery and anemia during preg-
nancy are the primary risk factors for low birth weight (Rasmussen, 2001), while low birth
weight was reported to be significantly associated with increased maternal age in a study of
individuals aged 20 to over 40 (Callaway et al., 2005). More recently, a significant associa-
tion between birth weight and BMI was reported at ages 9 and 7 (Simpson et al., 2017). All
this evidence suggests that premature delivery, anemia, and increasing maternal age could
lead to a lower BMI of the offspring through a lower birth weight. Furthermore, a systematic
review of 15 observational studies revealed a significant positive effect of gestational weight
gain on birth weight (Bodnar et al., 2014).

To assess the effects of individual anthropometrics and other assay results on BMI at age
24, similar to Section 4, we used the coefficient functions p´1

pBpΦTptqpαT. The estimated
coefficient functions for nine selected functional covariates along with the confidence bands
based on 200 bootstrap replications are shown in Figure 4, suggesting a significant positive
association of weight, fat percentage, cholesterol, arm circumference and systolic pressure
and a negative assocation of height and high-density lipoprotein (HDL) in BMI at age 24.
These findings were consistent with the existing literature on positive correlations between

TABLE 3
Estimates, SDs and p-values for rβ with BMI response using FFRM

Esitimate SD p value Esitimate SD p value

fm1a011 -0.0328 0.0066 7.50 ˆ 10´7 fm1ms100 -0.2410 0.0492 9.68 ˆ 10´7

fm1ms110 0.4177 0.0209 ă 1 ˆ 10´15 fm1ms111 0.5315 0.0220 ă 1 ˆ 10´15

fm1ms115 0.4513 0.0170 ă 1 ˆ 10´15 fm1ms125 0.4490 0.0174 ă 1 ˆ 10´15

fm1dx020 0.4629 0.0184 ă 1 ˆ 10´15 fm1dx021 0.1341 0.0263 3.37 ˆ 10´7

fm1dx391 0.4289 0.0170 ă 1 ˆ 10´15 fm1bp112 -0.1197 0.0167 7.78 ˆ 10´13

fm1bp122 -0.1228 0.0165 1.04 ˆ 10´13 fm1bp132 -0.1240 0.0170 2.89 ˆ 10´13

DELP1010 -0.0251 0.0030 ă 1 ˆ 10´15 DELP1047 0.0358 0.0041 ă 1 ˆ 10´15

DELP1128 0.0451 0.0021 ă 1 ˆ 10´15 DELP1129 0.0425 0.0112 1.51 ˆ 10´4

ff1ms100 -0.0885 0.0203 1.35 ˆ 10´5 ff1ms110 0.1927 0.0153 ă 1 ˆ 10´15

ff1ms111 0.2598 0.0183 ă 1 ˆ 10´15 ff1ms120 0.2183 0.0184 ă 1 ˆ 10´15

ff1ms125 0.2057 0.0141 ă 1 ˆ 10´15 ff1dx020 0.2479 0.0164 ă 1 ˆ 10´15

ff1dx030 0.0401 0.0102 8.61 ˆ 10´5 ff1bp140 -0.2050 0.0206 ă 1 ˆ 10´15

ff1bp141 -0.2126 0.0204 ă 1 ˆ 10´15 ff1bp142 -0.0253 0.0057 7.90 ˆ 10´6

ff1bp143 -0.1938 0.0209 ă 1 ˆ 10´15 ff1bp144 -0.2025 0.0208 ă 1 ˆ 10´15
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig 4: The estimated coefficient function curves corresponding to (a) BMI, (b) Weight, (c)
Height2, (d) Fat Percentage, (e) Arm Circumference, (f) Systolic2, (g) HDL, (h) Cholesterol,
(i) Waist Circumference2.

body fat percentage, mid-upper arm circumference, and hypertension with BMI (Tang et al.,
2013; Demarco et al., 2014) and the negative association between higher BMI and HDL
(Shamai et al., 2009).

We further evaluated the prediction performance of the proposed FFRM, PFLM, PLFAM,
and SNN on six different response variables, i.e., (a) BMI, (b) average systolic pressure, (c)
average diastolic pressure, (d) cortical density (Tibia) (mg/cm3), (e) cortical density tibia
regression correction derived from area and content (mg/cm3), and (f) subcortical density
(Fibula) (mg/cm3). For each response variable, we first selected the tuning parameters λ, d,
r, and h as those for BMI. Using the selected tuning parameters, we divided the dataset into
a training set (90% of the data) and a test set (10% of the data) and repeated this process
200 times in each scenario. For SNN, we chose the number of neurons that minimizes the
prediction error.

Figure 5 shows the boxplots of the PE for each response. The results demonstrate that our
proposed FFRM consistently outperformed SNN, PFLM, and PLFAM in all six responses. In
particular, in Figures 5(e) and 5(f), the PE of PFLM exceeded 1, suggesting that PFLM per-
formed even worse than a null model in some cases. Similarly, in Figures 5(c) and 5(f), the PE
of PLFAM was also greater than 1, suggesting poor performance compared with a null model.
Possible reasons for these observations are as follows (1) the average number of observations
per response is around 4, which might be insufficient to provide accurate estimations of uF-
PCA and mFPCA scores; (2) in both PFLM and PLFAM, the part of regression for the scalar
covariates is assumed to be linear, which might not capture the nonlinearity between Yi and



14

(a) (b) (c)

(d) (e) (f)

Fig 5: The boxplot of PE using the proposed FFRM, SNN, PFLM and PLFAM for ALSPAC
datasets with different responses: (a) BMI, (b) Systolic Pressure, (c) Diastolic Pressure, (d)
Cortical Density (Tibia) (e) Cortical Density Tibia Regression Correction derived from area
and content, (f) SubCortical Density (Fibula).

Zi adequately; (3) Supplementary Figure S1 shows that we can extract the information from
the covariates using few latent factors with pq1, q2,Kq “ p20,13,2q, supporting the existence
of low-rank structures in Xiptq and Zi; and (4) both methods may overlook the specific cor-
relation structure in the data. In each scenario, the number of activation functions in SNN
is larger than that of component functions in FFRM and FFRM performs better than SNN,
which shows the estimated component functions efficiently reduce the number of neurons
and improve stability.

6. Numerical Studies. In this section, we evaluate the performance of the proposed
FFRM method compared with existing methods, including PFLM, PLFAM and SNN regres-
sion model, which is denoted by d-SNN. We also make comparisons with the least square
error (LSE) criterion to evaluate the increase in efficiency using a likelihood criterion. We
evaluate the performance of the estimators in terms of }pΩ ´ Ω}F for any matrix Ω and use
the bias, standard deviation (SD), and root mean square error (RMSE), which are defined as
Bias “ pn´1

grid

řngrid

i“1 rEtpgpxiqu´gpxiqs2q1{2, SD “ pn´1
grid

řngrid

i“1 Erpgpxiq´Etpgpxiqus2q1{2,

and RMSE “ pBias2 ` SD2q1{2 for any function gp¨q, where x1, ¨ ¨ ¨ , xngrid
are the grid points

and Etpgpxiqu is approximated using the sample mean of the simulated datasets. In our simu-
lation, we set ngrid “ 100. We evaluate the prediction performance using the PE. In fairness,
we considered four examples. Among them, one example is for the case where the assump-
tions of all the methods were not satisfied, while the other three examples satisfy the model
assumptions of FFRM, PFLM and PLFAM, respectively.

6.1. Simulation setting. We first generated fi “ pζTi ,F
T
i qT from Np0,Σq with Σ “

p
Σζ Σζ,F

ΣT
ζ,F ΣF

q, where Σζ “ pσ
p1q

kj qKq2ˆKq2 with σp1q

kj “ 1{k ¨ 1tk“ju; ΣF “ pσ
p2q

kj qq1ˆq1 with

σ
p2q

kj “ 0.5}k´j}1 ; and Σζ,F “ pσ
p3q

kj qKq2ˆq1 with σp3q

kj “ 0.2}k´j}1`1.
Given Fi, we generated Zi by Zi “ ΛFi ` ei, where ei „ Np0,0.12Iq. To construct Λ,

we first generated n samples of the m-dimensional random vector mi from Np0, pσijqmˆmq
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with σij “ 0.5}i´j}1 . Denote M “ pm1, ¨ ¨ ¨ ,mnqT. We performed the eigenvalue decompo-
sition on the matrix MMT “ Mq1Λq1M

T
q1 , where Λq1 was a diagonal matrix consisting of

the q1 largest eigenvalues and Mq1 P Rnˆq1 were their corresponding eigenvectors. In addi-
tion, Λn “ MTMq1 , singular value decomposition was applied to the matrix Λn “ SnVnDn

and Λ “ SnV
1{2
n .

Given ζi, we generated Xiptq by Xiptq “ Bhiptq`uiptq, where uiptq „Np0,0.12Iq. The
latent process hiptq “ thijptq pj “ 1, ¨ ¨ ¨ , q2quT is generated by hijptq “

ř2
k“1 ξijkϕjkptq

with ϕj1ptq “ sintp2j ´ 1qπtu{
?
5 and ϕj2ptq “ costp2j ´ 1qπtu{

?
5. To construct B, we

generated Bn following the process for Λn except that pm,q1q was replaced by pp, q2q. Then,
we performed QR decomposition on the matrix Bn “ QnRn and took B “ p1{2Qn. For each
trajectory Xiptq, 50 observation time points were sampled from Up0,1q.

In all the examples, we took q1 “ 10, q2 “ 5,K “ 2, d“ 4 and r “ 2. For each setting, we
considered n“ 100 or 500, p“m“ 100 or 500, and conducted a total of 200 replications.

Example 1. To investigate the advantage of using the likelihood-based approach, we gen-
erated Yi from the three settings, where the first two settings followed the model assumptions
of the FFRM method with a normal distribution and non-normal distribution, respectively,
and the last one was heteroscedastic; that was,
Setting I : Yi “ }ΩT

1 fi ` 1}1 ` pΩT
2 fiq

2 ` sinpΩT
3 fiq ` cospΩT

4 fiq ` 0.2ϵi,
Setting II : Yi “ }ΩT

1 fi ` 1}1 ` pΩT
2 fiq

2 ` sinpΩT
3 fiq ` cospΩT

4 fiq ` ϵ˚
i ,

Setting III : Yi “ }ΩT
1 fi ` 1}1 ` pΩT

2 fiq
2 ` sinpΩT

3 fiq ` cospΩT
4 fiq ` 0.1}ΩT

1 fi}1ϵi,
where ϵi „Np0,1q is also used in the other examples, and ϵ˚

i „ 2{3 ˆNp´4,2{5q ` 2{3 ˆ

Np2,1{5q; Ωk “ VTUk with U1 “ p3,´2qT{
?
13,U2 “ p3,2qT{

?
13,U3 “ p2,1qT{

?
5,

U4 “ p2,´1qT{
?
5 and V “ pVr1s, ¨ ¨ ¨ ,Vrqsq with q “ 20; Vrks “ p1,´1qT{2

?
2 if k P

t1,2,11,12u; and Vrks “ p1,1qT{2
?
2 if k P t3,4,13,14u and 0 otherwise.

Example 2 was generated from the following model: Yi “ 4 `
ř10

k“1 cospfik ` 3q `
ř20

k“11 sinpfik ` 3q ` 0.5ϵi, where fik was the k-th component of fi. Obviously, Example
2 did not satisfy the assumptions of PFLM and PLFAM. Without the dimension reduction
step for features Ωfi, Example 2 also did not follow the assumption of the proposed FFRM
method.

Example 3 followed the assumption of PFLM; that was, Yi “
řp

j“1

ş1
0 βjptqXijptqdt `

ηTZi ` 0.3ϵi, where η “ pη1, ¨ ¨ ¨ , ηmqT with ηk “ 0.1{
?
10 if k ď 20 and 0 otherwise;

βjp¨q “ bT
j Φp¨q with bj “ 0.1ˆ 110 ˆ 1pj ď 20q and Φp¨q was formed by the first 10 eigen-

functions of Xijptq. Here, 110 was a 10-dimensional vector with component 1.
Example 4 was generated using the setting of PLFAM, Yi “

ř10
k“1 fkpζ˚

ikq ` θTZi `

0.5ϵi,where f1pxq “ 3x´1.5, f3pxq “ sint2πpx´0.5qu, f5pxq “ 4px´0.5q3´8{9, f7pxq “

2cospx` 0.5q and fkpxq “ 0 if k R t1,3,5,7u; ζ˚
ik “ Φpλ

´1{2
k ζikq with pζi1, ¨ ¨ ¨ , ζi,10q being

the first 10 multivariate functional principal component analysis (mFPCA) scores of Xiptq
and λk “ varpζikq; θ “ pθ1, ¨ ¨ ¨ , θmqT with θk “ 0.1{

?
10 if k ď 5, θk “ ´0.1{

?
10 if 5 ă

k ď 10 and 0 otherwise.

6.2. Comparison with the LSE criterion. To compare the performance of FFRM and
LSE, we first extracted features from Zi using model (1) and from Xiptq using model (4).
Subsequently, we computed the LSE of pγ based on (7), that is,

pγ “ argmax
U,V,ΨPF

#

ℓnpγ;pf , ρq ´ λ

q
ÿ

k“1

wk}Vrks}2

+

,

where ℓnpγ; f , ρq “ n´1
řn

i“1 ℓpγ;Yi, fi, ρq “ n´1
řn

i“1 ρtYi ´
řd

j“1ψjpU
T
j Vfiqu with the

least squares loss function ρpxq “ ´x2.
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In Example 1, we generated Yi according to the proposed setting in (6), which looked
independent of ϕjkptq. However, we estimated all unknown parameters and functions based
on the observations tYi,Xiptq,Ziu pi “ 1, ¨ ¨ ¨ , nq, which were related to ϕjkptq. Therefore,
the problem could still be considered as a functional regression problem from the perspective
of functional predictors. Figure 6 shows the boxplots of }pΩ ´ Ω0}F using the proposed
FFRM method and LSE with the three settings in Example 1. Clearly, the performance of
both methods improved as n or pp,mq increases, which was consistent with Theorem S7.1
in Section S7. In addition, we have some interesting findings in Figure 6. First, since the
random error in Setting I followed a normal distribution, it was expected that LSE performs
better than FFRM. However, we observed this phenomenon only when n“ 100, p“m“ 100
in Figure 6(a). When n or pp,mq increased, we found that FFRM performed slightly better
than LSE in Setting I; see Figure 6(b,c). In fact, superefficiency has been observed in the
literature (Zhou et al., 2019; Lin et al., 2021) and may be attributed to the use of structural
information, that is, the estimated density function pfp¨q. Since the random error in Setting
II was not normally distributed, it was not surprising that FFRM is much better than LSE;
see Figure 6(d,e,f). Moreover, although the random error in Setting III was heteroscedastic,
which does not satisfy the assumption required by FFRM, FFRM still performed well and
was much better than LSE; see Figure 6(g,h,i). Supplementary Table S1 shows the Bias, SD
and RMSE for pΨp¨q of FFRM and LSE. Similar conclusions can be reached as shown in
Figure 6.

Setting I

n “ 100, p “ m “ 100

(a)

n “ 100, p “ m “ 500

(b)

n “ 500, p “ m “ 500

(c)

Setting II

(d) (e) (f)

Setting III

(g) (h) (i)

Fig 6: The boxplot of }pΩ´Ω0}F for Example 1 using the proposed FFRM and the estimator
based on LSE criterion.
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n “ 100, p “ m “ 100 n “ 100, p “ m “ 500 n “ 500, p “ m “ 500

Fig 7: The boxplot of PE for Example 2 using 10-SNN, 20-SNN, 30-SNN, 50-SNN, 70-SNN,
100-SNN, PFLM, PLFAM and FFRM.

6.3. Comparison with the existing models. Figure 7 shows boxplots of the PE using the
proposed FFRM, PFLM, PLFAM and d -SNN with d“ 10,20,30,50,70,100 for Example 2,
where the assumptions of the methods considered were not satisfied. In the FFRM, d“ 2 and
r “ 2 were selected based on the method described in the Suppl. S1. Figure 7 shows that the
proposed FFRM method exhibits the best or almost the best performance, particularly when
pp,mq is large. FFRM with only two component functions achieved the same prediction
accuracy as 20-SNN for a sample size of n“ 100 and outperformed every d-SNN when n“

500, indicating the importance of estimating the activation function rather than specifying it.
Furthermore, the simplicity of FFRM improved its interpretability, while simulation studies
demonstrated that the prediction accuracy of d-SNN was sensitive to sample size and did not
improve with increasing d, possibly due to the presence of latent sparse features.

Figure 8 shows a boxplot of the PEs using the proposed FFRM, 4-SNN, 10-SNN, PFLM
and PLFAM for Example 1 with Setting II, and Examples 3 and 4 with the assumptions satis-
fied in FFRM, PFLM and PLFAM, respectively. The results of Example 1 in Figure 8 shows
that our proposed FFRM outperformed PFLM, PLFAM and SNN in terms of prediction ac-
curacy, as the data aligned with the FFRM assumptions. It was not surprising that PFLM and
PLFAM performed best in Examples 3 and 4 respectively. However, FFRM showed robust-
ness to the violation of model assumptions, with similar performance to the methods that
favored Examples 3 and 4, respectively. For all examples, FFRM performed better compared
to SNN. In summary, under the scenarios examined, it is evident that the proposed FFRM
achieves the best performance when the required assumptions are satisfied. In addition, it
still delivers reasonable performance even when these assumptions are violated, suggesting
promising real-world applications.

7. Discussion. This study examines the relationship between LDL levels and both ge-
netic markers (SNPs) and longitudinal anthropometric measures. To address the methodolog-
ical challenges of modeling mixed high-dimensional scalar and functional covariates, we de-
veloped a novel FFRM approach. Our approach demonstrates superior prediction accuracy
compared to existing methods and successfully identifies 424 SNPs significantly associated
with LDL levels, several of which confirm previous research findings. We further applied
FFRM to investigate the determinants of adult BMI and revealed the significant parental and
individual characteristics influencing adult BMI, demonstrating the broader applicability of
our methodology beyond LDL prediction.

In summary, the proposed FFRM offers several advantages: (1) Computational efficiency:
By deriving closed-form expressions for the extraction of sufficient information from the
scalar and functional covariates, we avoid complex and potentially nonconvergent iterations.
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Example 1

n “ 100, p “ m “ 100 n “ 100, p “ m “ 500 n “ 500, p “ m “ 500

Example 3

Example 4

Fig 8: The boxplot of PE using the proposed FFRM, 4-SNN, 10-SNN, PFLM and PLFAM for
Examples 1, 3, 4, which satisfy the assumptions of FFRM, PFLM and PLFAM, respectively.

This results in computational efficiency. (2) High prediction accuracy: FFRM allows the num-
ber of components to diverge to infinity, enabling a universal approximation for any relation-
ship between the response and the features. Both real data analysis and simulation studies
confirm that our method achieves higher prediction accuracy compared to existing methods.
It even outperforms shallow neural networks due to the estimated activation functions. (3) In-
terpretability: Model (6) with a low-rank constraint on Ω “ pα,βq and a sparse restriction on
the columns of Ω provides simple and interpretable expressions for the relationship between
the response and covariates. (4) Efficiency and stability: We provide a framework based on
likelihood of sieves for estimating parameters and functions that enhances the efficiency,
flexibility, and stability of estimators. This is supported by numerical comparisons with es-
timators based on the least square error. (5) Theoretical assurance: We establish theoretical
properties of the proposed estimator, including selection consistency, estimation consistency,
convergence rate, and asymptotic normality.

Several extensions can be considered for future research. We currently focus on continuous
responses, but our method can be easily extended to handle discrete responses using a gen-
eralized framework. Additionally, the model can be extended to handle multiple responses,
taking into account the correlation among them. Furthermore, exploring the FFRM approach
in the context of high-dimensional discrete covariates is an avenue for future investigation.
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SUPPLEMENTARY MATERIAL

S1: Selection of initial values and tuning parameters

S2: Conditions for the asymptotic property of pζi
S3: Conditions for the asymptotic property of pFi

S4: Conditions for the asymptotic property of pγ

S5: Notations
In Supplementary Material S5, we define the directional derivatives and the asymptotic vari-
ances of the estimator.

S6: Identifiablity of the FFRM
In Supplementary Material S6, we establish the identifiability of model (6) accompanying
with (1) and (4).

S7: Theoretical Properties
In Supplementary Material S7, we establish the theoretical properties, including the estima-
tion and selection consistency, and the asymptotic normality.

S8: Lemmas
In Supplementary Material S8, we establish five lemmas, e.g., the covergence rate of the
extracted features and the kernel density estimates, for the proofs of the main theorems.

S9: Proofs of the main results
In Supplementary Material S9, we provide detailed proofs of the theoretical results in Sup-
plementary Material S7.

S10: Other results in numerical studies
In Supplementary Material S10, we show the Bias, SD and RMSE for pΨp¨q of the proposed
FFRM method and LSE.

S11: The transformation from the regression relationships between LDL and scores
to functioanl covariates for analyzing the effects of functional covariates on LDL
In Supplementary Material S11, we show the transformation of αζi to

ş

ηTptqXiptqdt in
Section 4.

S12: Other results of the analysis of the BMI outcomes with the ALSPAC data
In Supplementary Material S12, we present the feature selection process in the analysis of
BMI, along with introductions to the functional and scalar covariates.
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