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1. Overview and Motivation
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1. Overview and Motivation

MRP is a statistical method

5 / 32



1. Overview and Motivation

What problems does MRP address?

1 Poststratification adjustment for selection bias. Correct for imbalances in sample
composition, even when these are severe and can involve a large number of variables.

2 Multilevel Regression for small area estimation (SAE). Can provide stabilized estimates
for subgroups over time (such as states, counties, etc.)
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1. Overview and Motivation

Two key assumptions under MRP

1 Equal inclusion probabilities of the individuals within cells.

2 The included individuals are similar to those excluded within cells.
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2. Methodology and practice

Unify design-based and model-based inferences

The underlying theory is grounded in survey inference: a combination of small area
estimation (Rao and Molina 2015) and poststratification (Holt and Smith 1979).
Motivated by R. Little (1993), a model-based perspective of poststratification.
Suppose units in the population and the sample can be divided into J poststratification
cells with population cell size Nj and sample cell size nj for each cell j = 1, . . . , J , with
N =

∑J
j=1 Nj and n =

∑J
j=1 nj .

Let Y j be the population mean and ȳj be the sample mean within cell j . The proposed
MRP estimator is,

θ̃mrp =
J∑

j=1

Nj
N θ̃j ,

where θ̃j is the model-based estimate of Ȳj in cell j .
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2. Methodology and practice

Compare with unweighted and weighted estimators

1 The unweighted estimator is the average of the sample cell means,

ȳs =
J∑

j=1

nj
n ȳj . (1)

2 The poststratification estimator accounts for the population cell sizes as a weighted average
of the sample cell means,

ȳps =
J∑

j=1

Nj
N ȳj . (2)
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2. Methodology and practice

Bias and variance
Let the poststratification cell inclusion probabilities, means for respondents and nonrespondents
be ψj , ȲjR and ȲjM , respectively.

bias(ȳs) =
∑ Nj

N ȲjR(ψj − ψ̄)
ψ̄

+
∑ Nj

N (1− ψj)(ȲjR − ȲjM) .= A + B

bias(ȳps) =
∑ Nj

N (1− ψj)(ȲjR − ȲjM) = B

Var(ȳs |~n) =
∑

j

nj
n2S2

j

Var(ȳps |~n) =
∑

j

N2
j

N2 (1− nj/Nj)
S2

j
nj
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2. Methodology and practice

Partial pooling with MRP

Introduce the exchangable prior, θj ∼ N(µ, σ2θ).

The approximated MRP estimator is given by

θ̃mrp =
J∑

j=1

Nj
N

ȳj + δj ȳs
1 + δj

, where δj =
σ2j

njσ2θ
, (3)

as a weighted combination of ȳs and ȳps , where the weight is controlled by (nj , σ
2
θ , σ

2
j ).

The bias and variance trade-off for the MRP estimator (Si 2020, under review)
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2. Methodology and practice

The key steps

1 Multilevel regression Fit a model relating the survey outcome to covariates across
poststratification cells to estimate θj ;

2 Poststratification Average the cell estimates weighted by the population cell count Nj ; or
Prediction Impute the survey outcomes for all population units.
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2. Methodology and practice

A unified MRP framework

“Survey weighting is a mess” (Gelman 2007).

It depends on the goal of weighting adjustments (Bell and Cohen 2007; Breidt and
Opsomer 2007; R. J. A. Little 2007; Lohr 2007; Pfeffermann 2007)

Our goal is to unify design-based and model-based inference approaches as data integration
to

Combine weighting and prediction
Unify inferences from probability- and nonprobability-based samples

Key quantities : j = 1, . . . , J , θj and Nj
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2. Methodology and practice

Bayesian Nonparametric Weighted Sampling Inference (Si, Pillai,
and Gelman 2015)

Consider independent sampling with unequal inclusion probabilities.

The externally-supplied weight is the only information available.

Assume the unique values of unit weights determine the
poststratification cells via a 1-1 mapping.

Simultaneously predict wj[i]’s and yi ’s for N − n nonsampled units.
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2. Methodology and practice

Incorporate weights into modeling

1 We assume nj ’s follow a multinomial distribution conditional on n,

~n = (n1, . . . , nJ) ∼ Multinomial
(

n; N1/w1∑J
j=1 Nj/wj

, . . . ,
NJ/wJ∑J
j=1 Nj/wj

)
.

Here Nj ’s are unknown parameters.
2 Let xj = log wj . For a continuous survey response y , by default

yi ∼ N(µ(xj[i]), σ2),

where µ(xj) is a mean function of xj .
3 We introduce a Gaussian process (GP) prior for µ(·)

µ(x) ∼ GP(xβ,Σxx ),

where Σxx denotes the covariance function of the distances for any xj , xj′ .
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2. Methodology and practice

Estimates of cell means and cell size proportions

0.00

0.25

0.50

0.75

4 5 6 7 8
log(w) in cells

E
st

im
at

ed
 P

r(
Y

=
1)

 in
 c

el
ls

nj 1 2 3 4 5 7 9 10

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

4 5 6 7 8
log(w) in cells

E
st

im
at

ed
 c

el
l s

iz
e 

pr
op

or
tio

n 
N

_p
j

nj 1 2 3 4 5 7 9 10

Proportion estimation of individuals with public support based on the Fragile Families and Child Wellbeing Study.
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2. Methodology and practice

Bayesian inference under cluster sampling with probability
proportional to size (Makela, Si, and Gelman 2018)

Bayesian cluster sampling inference is essentially outcome prediction for
nonsampled units in the sampled clusters and all units in the
nonsampled clusters.

However, the design information of nonsampled clusters is missing, such
as the measure size under PPS.

Predict the unknown measure sizes using Bayesian bootstrap and
size-biased distribution assumptions.

Account for the cluster sampling structure by incorporation of the
measure sizes as covariates in the multilevel model for the survey
outcome.

Integrate into one estimation procedure and propagate all sources of
uncertainty.
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2. Methodology and practice

Bayesian hierarchical weighting adjustment and survey inference
(Si et al. 2020)

Handle deep interactions among weighting variables
The population cell mean θj is modeled as

θj = α0 +
∑

k∈S(1)

α
(1)
j,k +

∑
k∈S(2)

α
(2)
j,k + · · ·+

∑
k∈S(q)

α
(q)
j,k , (4)

where S(l) is the set of all possible l-way interaction terms, and α(l)
j,k represents the

kth of the l-way interaction terms in the set S(l) for cell j.
Introduce structured prior distribution to account for the hierarchical structure and
improve MrP under unbalanced and sparse cell structure.
Derive the equivalent unit weights in cell j that can be used classically

wj ≈
nj/σ2y

nj/σ2y + 1/σ2
θ

·
Nj/N
nj/n

+
1/σ2θ

nj/σ2y + 1/σ2
θ

· 1, (5)

19 / 32



2. Methodology and practice

Model-based weights and predictions
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The model-based weights are stable and yield efficient inference. Predictions perform better
than weighting with the capability to recover empty cells.1

1Greg-tree is based on the tree-based method in McConville and Toth (2017)
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2. Methodology and practice

Stan fitting under structured prior in rstanarm

fit <-stan_glmer(formula =
Y ~ 1 + (1 | age) + (1 | eth) + (1 | edu) + (1 | inc) +
(1 | age:eth) + (1 | age:edu) + (1 | age:inc) +
(1 | eth:edu) + (1 | eth:inc) +
(1 | age:eth:edu) + (1 | age:eth:inc),

data = dat_rstanarm, iter = 1000, chains = 4, cores = 4,
prior_covariance =

rstanarm::mrp_structured(
cell_size = dat_rstanarm$n,
cell_sd = dat_rstanarm$sd_cell,
group_level_scale = 1,
group_level_df = 1

),
seed = 123,
prior_aux = cauchy(0, 5),
prior_intercept = normal(0, 100, autoscale = FALSE),
adapt_delta = 0.99

)
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2. Methodology and practice

Generated model-based weights

cell_table <- fit$data[,c("N","n")]
weights <- model_based_cell_weights(fit, cell_table)
weights <- data.frame(w_unit = colMeans(weights),

cell_id = fit$data[["cell_id"]],
Y = fit$data[["Y"]],
n = fit$data[["n"]]) %>%

mutate(w = w_unit / sum(n / sum(n) * w_unit), # model-based weights
Y_w = Y * w

)
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2. Methodology and practice

Bayesian raking estimation (Si and Zhou 2020)

Often the margins of weighting variables are available, rather than
the crosstabulated distribution
The iterative proportional fitting algorithm suffers from convergence
problem with a large number of cells with sparse structure
Incorporate the marginal constraints via modeling
Integrate into the Bayesian paradigm, elicit informative prior
distributions, and simultaneously estimate the population quantity
of interest
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3. Recent developments and challenges

3. Recent developments and challenges
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3. Recent developments and challenges

Structural, spatial, temporal prior specification

We developed structured prior distributions to reflect the hierarchy in deep interactions (Si
et al. 2020)

Sparse MRP with LassoPLUS (Goplerud et al. 2018)

Use Gaussian Markov random fields as a prior distribution to model certain structure of the
underlying categorical covariate (Gao et al. 2019)

Using Multilevel Regression and Poststratification to Estimate Dynamic Public Opinion
(Gelman et al. 2019)
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3. Recent developments and challenges

Data integration and inferences with probability and
nonprobability samples
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3. Recent developments and challenges

More formally
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3. Recent developments and challenges

MRP framework for data integration (Si 2020, under review)

1 Under the quasi-randomization approach, we assume the respondents within poststratum h
are treated as a random sample of the population stratum cases,

~n = (n1, . . . , nJ)′ ∼ Multinomial((cN1ψ1, . . . , cNJψJ), n), (6)

where c = 1/
∑

j Njψj , and the poststratification cell inclusion probabilities ψj = g−1(Zjα).
With noninformative prior distributions, this will be equivalent to Bayesian bootstratp.

2 Under the super-population modeling, we assume the outcome follows a normal distribution
with cell-specific mean and variance values, and the mean functions are assigned with a
flexible class of prior distributions

yij ∼ N(θj(ψj), σ2j )
θj(ψj) ∼ f (µ(ψj),ΣΨ) (7)
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3. Recent developments and challenges

Manuscripts in preparation

Noncensus variables in poststratification

Adjust for selection bias in analytic modeling

Compare MRP estimator with doubly robust estimators

. . . . . . . . .
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3. Recent developments and challenges

Challenges

Robust model specification for complicated data

Multiple (types of) survey variables

Missing not at random/non-ignorable/informative selection

External validation

Incorporate substantive knowledge
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3. Recent developments and challenges

Thank you

yajuan@umich.edu
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3. Recent developments and challenges

References
Bell, Robert M., and Michael L. Cohen. 2007. “Comment: Struggles with Survey Weighting and Regression Modeling.” Statistical Science 22 (2): 165–67.

Breidt, F. Jay, and Jean D. Opsomer. 2007. “Comment: Struggles with Survey Weighting and Regression Modeling.” Statistical Science 22 (2): 168–70.

Gao, Yuxiang, Lauren Kennedy, Daniel Simpson, and Andrew Gelman. 2019. “Improving Multilevel Regression and Poststratification with Structured Priors.”
https://arxiv.org/abs/1908.06716.

Gelman, Andrew. 2007. “Struggles with Survey Weighting and Regression Modeling.” Statistical Science 22 (2): 153–64.

Gelman, Andrew, Jeffrey Lax, Justin Phillips, Jonah Gabry, and Robert Trangucci. 2019. “Using Multilevel Regression and Poststratification to Estimate Dynamic
Public Opinion.” http://stat.columbia.edu/ gelman/research/unpublished/MRT(1).pdf.

Goplerud, Max, Shiro Kuriwaki, Marc Ratkovic, and Dustin Tingley. 2018. “Sparse Multilevel Regression and Poststratification.”
https://scholar.harvard.edu/files/dtingley/files/sparsemultilevel.pdf.

Holt, D., and T. M. F. Smith. 1979. “Post Stratification.” Journal of the Royal Statistical Society Series A 142 (1): 33–46.

Little, R. J. A. 1993. “Post-Stratification: A Modeler’s Perspective.” Journal of the American Statistical Association 88: 1001–12.

Little, Roderick J. A. 2007. “Comment: Struggles with Survey Weighting and Regression Modeling.” Statistical Science 22 (2): 171–74.

Lohr, Sharon L. 2007. “Comment: Struggles with Survey Weighting and Regression Modeling.” Statistical Science 22 (2): 175–78.

Makela, Susanna, Yajuan Si, and Andrew Gelman. 2018. “Bayesian Inference Under Cluster Sampling with Probability Proportional to Size.” Statistics in Medicine
37 (26): 3849–68.

McConville, Kelly S., and Daniell Toth. 2017. “Automated Selection of Post-Strata Using a Model-Assisted Regression Tree Estimator.”
https://arxiv.org/abs/1712.05708.

Pfeffermann, Danny. 2007. “Comment: Struggles with Survey Weighting and Regression Modeling.” Statistical Science 22 (2): 179–83.

Rao, J.N.K., and Isabel Molina. 2015. Small Area Estimation. John Wiley & Sons, Inc.

Si, Yajuan, and Peigen Zhou. 2020. “Bayes-Raking: Bayesian Finite Population Inference with Known Margins.” Journal of Survey Statistics and Methodology
Forthcoming.

Si, Yajuan, Natesh S. Pillai, and Andrew Gelman. 2015. “Bayesian Nonparametric Weighted Sampling Inference.” Bayesian Analysis 10 (3): 605–25.

Si, Yajuan, Rob Trangucci, Jonah Sol Gabry, and Andrew Gelman. 2020. “Bayesian Hierarchical Weighting Adjustment and Survey Inference.” Survey
Methodology (accepted); https://arxiv.org/abs/1707.08220.

32 / 32


	1. Overview and Motivation
	2. Methodology and practice
	3. Recent developments and challenges

