
Intro to Etale Morphisms

Adam Holeman

1 Intro:

The purpose of this lecture is to introduce the notion of an etale morphism of schemes,
state some of their properties, and give a few examples. There’s far more to cover than is
possible in a single lecture, so this is necessarily sketchy.

We’ll begin by introducing the definitions of smooth, unramified, and etale morphisms
from the functor of points perspective, and establish a few basic properties. From this
perspective, the fact that etale morphisms organize into a Grothendieck topology will be
essentially immediate from the definition. We’ll then establish a key motivating property
of etale morphisms: they induce isomorphisms on tangent spaces, which is one of many
possible justifications for the intuition that etale morphisms are the algebraic analogue of
’local isomorphisms’.

Following this, we’ll compare the functorial definitions to more ’algebraic’ definitions, and
give several examples.

2 The Functorial Perspective:

Recall, any closed immersion of schemes Z
i−→ X is induced by a sheaf of ideals IZ . We’ll

say a closed immersion Z → X is a nilpotent thickening if IZ is a nilpotent ideal. If IZ is
a square-zero ideal, we’ll say Z → X is a first-order thickening.

Definition: A morphism f : X → S of schemes is said to be formally etale (respectively,
formally unramified, formally smooth) if and only if for each diagram

T X

T ′ S

f

q

where T → T ′ is a first-order thickening, there exists a unique lift of q to X (respectively,
if such a lift exists it’s unique, there exists a not-necessarily unique lift).
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If we impose the additional condition that f be locally of finite type, then formally etale
is the same as etale (similarly for smooth and unramified). Looking towards the future,
we eventually want to organize certain collections of etale morphisms into a Grothendieck
topology. The following properties ensure that these collections verify the definition:

Lemma 2.1. Formally etale morphisms are stable under base change and composition.

Proof. There’s essentially nothing to check, thanks to our nice definition. We’ll verify base
change, and leave composition as an exercise.

Fix morphisms f : X → S and Y → S such that f is formally etale. We must verify that
X ×S Y → Y is formally etale. Fix a test diagram

T X ×S Y X

T ′ Y S

f
(1)(2)

and observe that the lift labelled (1) exists since f is formally etale. Since the rightmost
square is a pullback, the first lift induces the lift labelled (2). Uniqueness is obvious.

The basic tenet of etale morphisms is that they’re the algebraic analogue of local isomor-
phisms. There are many ways to provide evidence for this analogy, but we’ll focus on
the differential-geometric motivation for this claim: namely that etale morphisms induce
isomorphisms on tangent spaces. We’ll begin by recalling the construction of the relative
tangent space to an S-scheme.

Given an S-scheme X
f−→ S and a point x ∈ X, let s = f(x) and denote by k(x), k(s)

their residue fields. For any field k, we’ll denote by k[ε] the dual numbers over k (i.e.
k[ε] ' k[t]/(t2)). Then, the relative tangent space at x, denoted TX/S,x, consists of those
morphisms Spec(k(x)[ε])→ X fitting into the diagram

Spec(k(x)) Spec(k(x)[ε]) X

Spec(k(s)) S

x

f

s
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This set inherits a canonical k(x)-vector space structure. Roughly, this structure is given
as follows: for θ1, θ2 ∈ TX/S,x, we define θ1 + θ2 ∈ TX/S,x as the composite

Spec(k(x)[ε])→ Spec(k(x)[ε1, ε2])
(θ1,θ2)−−−−→ X

where k(x)[ε1, ε2] is given by ε2i = 0 = ε1ε2 (one can verify that Spec(k(x)[ε1, ε2]) is
the pushout of two copies of Spec(k(x)[ε])). Scaling is given by the automorphisms of
Spec(k(x)[ε]) given by scaling ε.

Observe that for any map f : X → Y of S-schemes, f induces a canonical linear map

df : TX/S,x → TY/S,f(x) ⊗k(f(x)) k(x)

where the right-hand tensor product can be identified with those maps Spec(k(x)[ε])→ Y
fitting into the appropriate diagram.

Here, we verify the basic tenet of etale morphisms.

Lemma 2.2. Let f : X → Y be a formally etale morphism of S-schemes. Then the
differential

df : TX/S,x → TY/S,f(x) ⊗k(f(x)) k(x)

is an isomorphism.

Proof. Observe that any element θ ∈ TY/S,f(x) ⊗k(f(x)) k(x) induces a diagram

Spec(k(x)) X

Spec(k(x)[ε]) Y

x

f

θ

Since Spec(k(x))→ Spec(k(x)[ε]) is a first-order thickening, there exists a unique lift of θ
to X. So df is bijective.

Exercise: Suppose X
f−→ Y

g−→ S are morphisms of schemes such that g ◦ f is formally
etale and g is formally unramified. Prove that f is formally etale.
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3 Other Definitions and Examples:

One property of etale and unramified morphisms is that they’re local (both on the source
and the target). This isn’t immediately clear given our previous definition, but the defini-
tions we give now make this important property manifest. We begin with the corresponding
definitions for commutative rings.

Definition: A map of local rings f : A→ B is said to be unramified if

f(mA)B = mB,

and k(B) is a finite separable extension of k(A).

Any time we’re given a property of morphisms of local rings, we can upgrade it to a
property of schemes by requiring a morphism of schemes to satisfy the property on stalks.
The resulting geometric property is manifestly local.

Definition: A morphism of schemes f : X → Y is unramified if it is locally of finite type
and for all x ∈ X, the map of local rings

f#x : OY,f(x) → OX,x

is unramified.

Example 1: Consider a quasi-compact morphism f : X → Spec(k) for some field k. The
unramified condition on local rings forces X to be zero-dimensional, which, together with
quasi-compactness, forces X to affine. Appealing to Noether normalization, we see that
X = Spec(A) for some finite A-algebra, which is thus a product of field extensions of k.
The separability condition insures that each such extension is a separable extension, so
A '

∏n
i=1 ki, where ki is separable.

Example 2: Let L/K be an extension of number fields, and let OL,OK be the corre-
sponding rings of integers. When is the inclusion i : OK → OL unramified? There are
two things to check. First, for q ∈ Spec(OL), and p := q ∩ OK , I claim that the extension
of residue fields k(p) ⊂ k(q) is always a finite separable extension. Indeed, since the ring
of integers inside a number field is always 1-dimensional, the primes p and q are either 0
(in which case the claim trivially follows), or maximal, in which case the residue fields can
simply be computed as k(p) = OK/p and k(q) = OL/q. But the natural map

OK/p→ OL/q

is an integral extension of perfect fields, and thus finite and separable.

Thus, OK → OL is unramified if and only if for each p = q∩OK , the map on localizations
satisfies

pOL,q = q
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which is equivalent to requiring that the ramification index of p in L is 1. So the algebro-
geometric notion of ramification generalizes the notion from algebraic number theory.

There are lots of properties of unramified morphisms that deserve mention here - we’ll only
mention a couple, without proof. The first connects the notion of unramified morphisms
with the differential study of morphisms, and will be of use in verifying that the previous
definition agrees with the functorial definition given in section 1.

Lemma: A morphism f : X → Y is unramified at x ∈ X if and only if Ω1
X/Y,x = 0.

The next result is a (one of many) strong topological property enjoyed by unramified
morphisms.

Lemma: Any section of an unramified morphism is an open immersion. Any section
of a separated morphism is a closed immersion. Thus, if f : X → Y is separated and
unramified, any section of f is an isomorphism onto a connected component (provided Y
is connected).

The next notion we need is that of flatness.

Definition: A map of rings f : A→ B is flat if the functor of abelian categories

−⊗A B : Mod(A)→Mod(B)

is exact.

A key, but easily verified, property is that flatness is a local property of rings. In other
words, A→ B is flat if and only if the maps Ap → Bq are flat for all primes p, q satisfying
p = f−1(q).

Definition: A morphism of schemes f : X → Y is flat if for all x ∈ X, the map of local
rings

f#x : OY,f(x) → OX,x
is flat.

We could have equivalently defined a flat morphism to be one such that the pullback
functor f? : QCoh(Y ) → QCoh(X) is an exact functor. We won’t say much about flat
maps, except to mention a key topological property.

Lemma: Flat morphisms are open.

Finally, we arrive at etale morphisms.

Definition: A morphism of schemes f : X → Y is etale if it is both flat an unramified (so
in particular, it’s locally of finite type).

We now present some examples. The second example is particularly important, as locally
all etale morphisms are of this form.
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Example 1: Consider the inclusion R[t] → C[t]. I claim the induced map Spec(C[t]) →
Spec(R[t]) is etale. Clearly, R[t] → C[t] is flat and of finite type, so really all we need to
worry about is ramification. At the zero ideal, there’s not much to check. The non-zero
prime ideals of C[t] are exactly those of the form q = 〈t− λ〉 for some λ ∈ C, and so we
split our analysis in to two cases.

The first case is λ ∈ R. In this case p := q ∩ R[t] = 〈t− λ〉, and thus on the level of
localizations, the map R[t]p → C[t]q takes t− λ to t− λ, and thus

pC[t]q = q

proving that the map is unramified at the prime q.

The second case is λ 6∈ R. Here we see that p =
〈
(t− λ)(t− λ)

〉
, and so the map on

localizations sends the generator of p to (t − λ)(t − λ) in C[t]q. But in C[t]q, the element
t− λ is invertible, and thus

pC[t]q = q

which proves the claim.

Thus, Spec(C[t])→ Spec(R[t]) is etale.

Example 2: (Standard etale morphisms) The previous example is a particularly
simple case of a more general class of examples. Locally, every etale morphism is of the
form described below.

Let A be a ring, P (t) ∈ A[t] be a monic polynomial, and define B = A[t]/ 〈P (t)〉. We’ll
say P (t) is separable if P ′(t) is a unit in B. The reasoning for the terminology is that P
is separable as above if and only if for each prime p ∈ Spec(A), the image P in k(p)[t] is
separable in the sense that it has no repeated roots. One can verify this using standard
results from field theory.

Notice that as an A-module, B is free of rank deg(P ), so in particular, A→ B is flat. Now,
for any prime ideal p ∈ Spec(A), we see that B ⊗A k(p) ' k(p)[t]/

〈
P
〉
, where P . So in

particular the fiber of the morphism

Spec(B)→ Spec(A)

over p is a product of extensions of k(p), and these extensions are separable if and only if P
itself is a separable polynomial. Combined with the fact that we can check unramified-ness
over each fiber individually, we conclude:

Lemma: With A,B, P (t) as above, the morphism Spec(B)→ Spec(A) is etale if and only
if P (t) is a separable polynomial. Moreover, if b ∈ B is an element such that P ′(t) is a unit
in the localization Bb, then Spec(Bb)→ Spec(A) is etale. Morphisms of this last type are
called standard etale morphisms.
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Standard etale morphisms are extremely important due to the following classification re-
sult:

Theorem: Let Y be a locally Noetherian scheme. Given a morphism f : X → Y etale in
a neighborhood of x ∈ X, then there exist affine open neighborhoods V and U of x and
y = f(x) respectively such that

f
∣∣
V

: V → U

is a standard etale morphism.
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