# **BHK** Duality

#### Ursula Whitcher

Math Reviews (American Mathematical Society)

July 2019



Starting with a vector  $(x_0, \ldots, x_n)$ , we can consider the symmetries  $GL(n+1, \mathbb{C})$ .

- ▶ Starting with a vector  $(x_0, ..., x_n)$ , we can consider the symmetries  $GL(n + 1, \mathbb{C})$ .
- ▶ These are invertible  $(n+1) \times (n+1)$  matrices with coefficients in  $\mathbb C$  (because polynomials are so much nicer when you allow complex roots!)

- Starting with a vector  $(x_0, \ldots, x_n)$ , we can consider the symmetries  $GL(n+1, \mathbb{C})$ .
- ▶ These are invertible  $(n+1) \times (n+1)$  matrices with coefficients in  $\mathbb{C}$  (because polynomials are so much nicer when you allow complex roots!)
- ▶ Within  $GL(n+1,\mathbb{C})$ , we can consider the diagonal matrices, with diagonal elements  $(\lambda_0,\ldots,\lambda_n)$
- Also within  $GL(n+1,\mathbb{C})$ , we have the special linear group  $SL(n+1,\mathbb{C})$  of invertible  $(n+1)\times(n+1)$  matrices with determinant 1.

- ▶ Starting with a vector  $(x_0, ..., x_n)$ , we can consider the symmetries  $GL(n+1, \mathbb{C})$ .
- ▶ These are invertible  $(n+1) \times (n+1)$  matrices with coefficients in  $\mathbb C$  (because polynomials are so much nicer when you allow complex roots!)
- ▶ Within  $GL(n+1,\mathbb{C})$ , we can consider the diagonal matrices, with diagonal elements  $(\lambda_0,\ldots,\lambda_n)$
- Also within  $GL(n+1,\mathbb{C})$ , we have the special linear group  $SL(n+1,\mathbb{C})$  of invertible  $(n+1)\times(n+1)$  matrices with determinant 1.
- ▶ The intersection of  $SL(n+1,\mathbb{C})$  and the diagonal matrices consists of diagonal matrices of determinant 1.

# Diagonal Polynomial Symmetries

#### Definition

Let  $F_A$  be an invertible polynomial. The group  $\operatorname{Aut}(F_A)$  consists of diagonal matrices  $M \in GL(n+1,\mathbb{C})$  such that

$$F_A(M\vec{x}) = F_A(\vec{x})$$

for all  $\vec{x} \in \mathbb{C}^{n+1}$ .

# Diagonal Polynomial Symmetries

#### Definition

Let  $F_A$  be an invertible polynomial. The group  $\operatorname{Aut}(F_A)$  consists of diagonal matrices  $M \in GL(n+1,\mathbb{C})$  such that

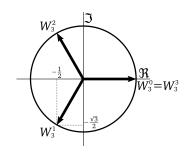
$$F_A(M\vec{x}) = F_A(\vec{x})$$

for all  $\vec{x} \in \mathbb{C}^{n+1}$ .

#### Exercise

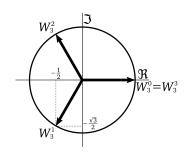
- 1. Find  $Aut(x^2 + y^2)$ .
- 2. Find  $SL(x^2 + y^2)$ .
- 3. Find Aut( $x^4 + y^4 + z^4 + w^4$ ).

## Digression: Roots of Unity



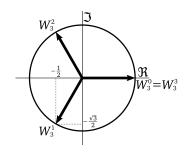
We can write a complex number in polar form as  $re^{i\theta}$ , where r is the distance to the origin and  $\theta$  is the angle from the positive x axis (in radians).

## Digression: Roots of Unity



- We can write a complex number in polar form as  $re^{i\theta}$ , where r is the distance to the origin and  $\theta$  is the angle from the positive x axis (in radians).
- Numbers on the unit circle are of the form  $e^{i\theta}$ .

## Digression: Roots of Unity



- We can write a complex number in polar form as  $re^{i\theta}$ , where r is the distance to the origin and  $\theta$  is the angle from the positive x axis (in radians).
- Numbers on the unit circle are of the form  $e^{i\theta}$ .
- ► The n complex solutions to x<sup>n</sup> = 1 are called roots of unity.

## Roots of Unity and Diagonal Symmetries

- 1. Write the cube roots of unity in the form  $e^{i\theta}$ . (Hint:  $1=e^{2\pi i}$ .)
- 2. Find Aut $(x^3 + y^3 + z^3)$ .
- 3. Find  $SL(x^3 + y^3 + z^3)$ .
- 4. Find Aut $(x_0^{n+1} + \cdots + x_n^{n+1})$ .
- 5. Find Aut( $x^2y + xy^2$ ).

# Diagonal Symmetry Facts

- ightharpoonup Aut( $F_A$ ) is a finite abelian group.
- ▶ The coordinates of each element of  $Aut(F_A)$ , written in the form  $(\lambda_0, \ldots, \lambda_n)$ , are roots of unity.

# Diagonal Symmetry Facts

- ightharpoonup Aut( $F_A$ ) is a finite abelian group.
- ▶ The coordinates of each element of  $Aut(F_A)$ , written in the form  $(\lambda_0, \ldots, \lambda_n)$ , are roots of unity.
- ▶ The product of the coordinates of any element of  $SL(F_A)$ , written in the form  $(\lambda_0, \ldots, \lambda_n)$ , is 1.

### A Matrix Shortcut

#### **Fact**

 $\operatorname{Aut}(F_A)$  is generated by the columns  $\rho_0, \ldots, \rho_n$  of  $A^{-1}$ :

$$\begin{bmatrix} r_0 \\ \vdots \\ r_n \end{bmatrix} \mapsto (e^{2\pi i r_0}, \dots, e^{2\pi i r_n})$$

### A Matrix Shortcut

#### **Fact**

 $\operatorname{Aut}(F_A)$  is generated by the columns  $\rho_0, \ldots, \rho_n$  of  $A^{-1}$ :

$$\begin{bmatrix} r_0 \\ \vdots \\ r_n \end{bmatrix} \mapsto (e^{2\pi i r_0}, \dots, e^{2\pi i r_n})$$

#### Exercise

- 1. Find  $Aut(x^2y + y^3)$ . What is the order of this group?
- 2. Find  $Aut(x^2 + xy^3)$ . What is the order of this group?

### **Trivial Symmetries**

#### Definition

Let  $F_A$  be an invertible polynomial. The trivial diagonal symmetries  $J(F_A)$  are the elements of the subgroup of  $SL(F_A)$  generated by  $(e^{2\pi i q_0/d}, \ldots, e^{2\pi i q_n/d})$ .

## Trivial Symmetries

#### Definition

Let  $F_A$  be an invertible polynomial. The trivial diagonal symmetries  $J(F_A)$  are the elements of the subgroup of  $SL(F_A)$  generated by  $(e^{2\pi i q_0/d}, \ldots, e^{2\pi i q_n/d})$ .

#### Exercise

1. Find  $J(x^3 + y^3 + z^3)$ .

### Our First Mirror

### Input

- ▶ An invertible polynomial F<sub>A</sub> satisfying the Calabi-Yau condition
- ▶ The trivial diagonal symmetry group  $G = J(F_A)$ .

### Output

- ► Take the transpose matrix A<sup>T</sup>.
- ▶ Consider the polynomial  $F_{A^T}$ .
- ▶ Let  $G^T = SL(F_{A^T})$ .
- ▶ Our mirror is given by the invertible polynomial  $F_{A^T}$  and the group  $G^T$ .

### Mirror Practice

#### Exercise

Find the mirror of  $F_A$  with the trivial symmetry group.

1. 
$$F_A = x^3 + y^3 + z^3$$

2. 
$$F_A = x^4 + y^4 + z^4 + w^4$$

3. 
$$F_A = x^2y + xy^2$$

## More Symmetry Groups

Question How can we describe  $Aut(F_{A^T})$ ?

# More Symmetry Groups

#### Question

How can we describe  $Aut(F_{A^T})$ ?

Inverse and Transpose are Friends!

 $\operatorname{Aut}(F_A)$  is generated by the columns of  $(A^T)^{-1}$ , which correspond to the rows of  $A^{-1}$ . We'll write these generators as  $\rho_0^T, \ldots, \rho_n^T$ .

### A Dual Group

Fix a group G such that  $J(F_A) \subset G \subset SL(F_A)$ .

#### **Definition**

 $G^T$  is the subgroup of  $Aut(F_{A^T})$  given by

$$\{\prod_{j=0}^{n}(\rho_{j}^{T})^{m_{j}}\mid g(\prod_{j=0}^{n}x_{j}^{m_{j}})=\prod_{j=0}^{n}x_{j}^{m_{j}} \text{ for all } g\in G\}.$$

### A Dual Group

Fix a group G such that  $J(F_A) \subset G \subset SL(F_A)$ .

#### **Definition**

 $G^T$  is the subgroup of  $Aut(F_{A^T})$  given by

$$\{\prod_{j=0}^{n}(\rho_{j}^{T})^{m_{j}}\mid g(\prod_{j=0}^{n}x_{j}^{m_{j}})=\prod_{j=0}^{n}x_{j}^{m_{j}} \text{ for all } g\in G\}.$$

### Row and column description

The row vector  $[m_0, \ldots, m_j]$  satisfies

$$[m_0,\ldots,m_j]A^{-1}\begin{bmatrix}c_0\\\vdots\\c_n\end{bmatrix}\in\mathbb{Z}$$

for all 
$$\prod_{j=0}^n \rho_j^{c_j} \in G$$
.



# **Dual Group Practice**

### Row and column description

The row vector  $[m_0, \ldots, m_j]$  satisfies

$$[m_0,\ldots,m_j]A^{-1}\begin{bmatrix}c_0\\\vdots\\c_n\end{bmatrix}\in\mathbb{Z}$$

for all 
$$\prod_{j=0}^n \rho_j^{c_j} \in G$$
.

#### Exercise

1. Let 
$$F_A = x^3 + y^3 + z^3$$
 and let  $G = SL(F_A)$ . Find  $G^T$ .

# **BHK Mirrors for Polynomials**

### Input

- ► An invertible polynomial *F*<sub>A</sub> satisfying the Calabi-Yau condition
- ▶ A group G with  $J(F_A) \subset G \subset SL(F_A)$ .

### Output

▶ Our mirror is given by the invertible polynomial  $F_{A^T}$  and the group  $G^T$ .

### The Mirror of the Mirror

$$(A^T)^T = A$$

### The Mirror of the Mirror

$$(A^T)^T = A$$

$$(G^T)^T = G.$$

## **Toward Geometry**

We'd like to associate some geometric meaning to our invertible polynomials.

### Naive Solution

Set  $F_A = 0$ .

#### Exercise

1. Describe the solutions to  $x^2 + y^2 = 0$ .

# Quasihomogeneous Polynomials

- $\triangleright$   $(0,\ldots,0)$  is a solution to any invertible polynomial.
- Any invertible polynomial  $F_A$  is quasihomogeneous:

$$F_A(\lambda^{q_0}x_0,\ldots,\lambda^{q_n}x_n)=\lambda^d(x_0,\ldots,x_n).$$

Consider the solutions  $(x_0, \ldots, x_n)$  to  $F_A = 0$ .

1. Throw away the trivial solution,  $(0, \ldots, 0)$ .

Consider the solutions  $(x_0, \ldots, x_n)$  to  $F_A = 0$ .

- 1. Throw away the trivial solution,  $(0, \ldots, 0)$ .
- 2. Take the subset of the remaining solutions where one coordinate is nonzero. Set this coordinate equal to a constant using the quasihomogeneity property. For example, we could take  $\lambda = x_0^{-q_0}$ .

Consider the solutions  $(x_0, \ldots, x_n)$  to  $F_A = 0$ .

- 1. Throw away the trivial solution,  $(0, \ldots, 0)$ .
- 2. Take the subset of the remaining solutions where one coordinate is nonzero. Set this coordinate equal to a constant using the quasihomogeneity property. For example, we could take  $\lambda = x_0^{-q_0}$ .
- 3. Consider the resulting points in  $\mathbb{C}^n$ .

Consider the solutions  $(x_0, \ldots, x_n)$  to  $F_A = 0$ .

- 1. Throw away the trivial solution,  $(0, \ldots, 0)$ .
- 2. Take the subset of the remaining solutions where one coordinate is nonzero. Set this coordinate equal to a constant using the quasihomogeneity property. For example, we could take  $\lambda = x_0^{-q_0}$ .
- 3. Consider the resulting points in  $\mathbb{C}^n$ .
- 4. Or, for the sake of visualization, in  $\mathbb{R}^n$ .

Consider the solutions  $(x_0, \ldots, x_n)$  to  $F_A = 0$ .

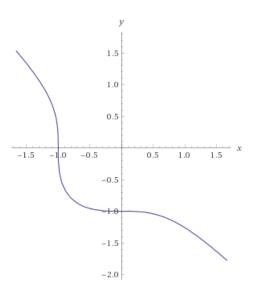
- 1. Throw away the trivial solution,  $(0, \ldots, 0)$ .
- 2. Take the subset of the remaining solutions where one coordinate is nonzero. Set this coordinate equal to a constant using the quasihomogeneity property. For example, we could take  $\lambda = x_0^{-q_0}$ .
- 3. Consider the resulting points in  $\mathbb{C}^n$ .
- 4. Or, for the sake of visualization, in  $\mathbb{R}^n$ .

#### Exercise

Visualize the solutions to  $x^2 + y^2 = 0$  in  $\mathbb{C}$  and  $\mathbb{R}$ .

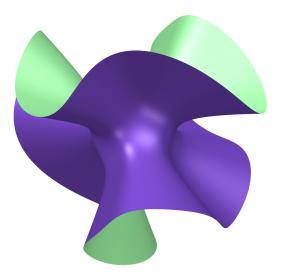
### A Curve

We can visualize  $x^3 + y^3 + z^3$  by setting z = 1:



### A Surface

We can visualize  $x^3y + y^3z + z^3x + w^4$  by setting w = i:



### A Threefold

To visualize  $x^5 + y^5 + z^5 + v^5 + w^5$ , we have to take a lower-dimensional slice.

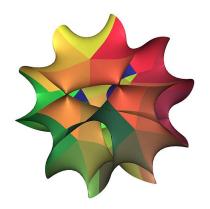


Figure: Slice of a Calabi-Yau threefold

We can formalize the procedure we used for visualization using the notion of a weighted projective space.

▶ Start with  $\mathbb{C}^{n+1}$ . Fix a list of weights  $q_0, \ldots, q_n$ .

We can formalize the procedure we used for visualization using the notion of a weighted projective space.

- ▶ Start with  $\mathbb{C}^{n+1}$ . Fix a list of weights  $q_0, \ldots, q_n$ .
- ▶ Throw away  $(0, \ldots, 0)$ .

We can formalize the procedure we used for visualization using the notion of a weighted projective space.

- ▶ Start with  $\mathbb{C}^{n+1}$ . Fix a list of weights  $q_0, \ldots, q_n$ .
- ▶ Throw away  $(0, \ldots, 0)$ .
- Glue the remaining points according to the equivalence relation

$$(x_0,\ldots,x_n)\sim(\lambda^{q_0},\ldots,\lambda^{q_n})$$

for  $\lambda \in \mathbb{C} - \{0\}$ .

We can formalize the procedure we used for visualization using the notion of a weighted projective space.

- ▶ Start with  $\mathbb{C}^{n+1}$ . Fix a list of weights  $q_0, \ldots, q_n$ .
- ▶ Throw away  $(0, \ldots, 0)$ .
- Glue the remaining points according to the equivalence relation

$$(x_0,\ldots,x_n)\sim(\lambda^{q_0},\ldots,\lambda^{q_n})$$

for 
$$\lambda \in \mathbb{C} - \{0\}$$
.

▶ The resulting space is the weighted projective space  $\mathbb{WP}(q_0,\ldots,q_n)$ .

# Compactifying

- ▶ We think of an invertible polynomial  $F_A$  as defining a subset  $X_A$  of  $\mathbb{WP}(q_0, \ldots, q_n)$ .
- ▶ As a topological space,  $X_A$  is compact.
- ▶ This is nice from both math and physics perspectives!

## **Quotient Groups**

#### Definition

For any group G such that  $J(F_A) \subseteq G \subseteq SL(F_A)$ , we define  $\widetilde{G} = G/J(F_A)$ .

## **Quotient Groups**

#### Definition

For any group G such that  $J(F_A) \subseteq G \subseteq SL(F_A)$ , we define  $\widetilde{G} = G/J(F_A)$ .

Geometrically, if  $J(F_A) \subset G \subset \operatorname{Aut}(F_A)$ , we can think of  $\widetilde{G}$  as symmetries of the geometric space  $X_A$ .