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Convex cocompactness in SL(2,R)
Definition
A discrete faithful representation ρ : Γ → SL(2,R) is convex
cocompact if ρ(Γ) acts with compact quotient on a nonempty
convex subset of H2.

Theorem
Let Γ be a finitely generated group. Then ρ : Γ → SL(2,R) is
convex cocompact if and only if an orbit map x 7→ ρ(γ)x,
x ∈ H2, is a quasi-isometric embedding.

In particular, Γ is always Gromov-hyperbolic.
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Convex cocompactness in SL(n,R)

Let X = SL(n,R)/ SO(n).

Claim
There is a unique SL(n,R)-invariant Riemannian metric on X,
making it a Hadamard manifold (in particular, a CAT(0) space).

Any discrete Γ < SL(n,R) acts properly discontinuously on X.

Possible notions of “convex cocompactness” when n > 2:

Γ is QI embedded in X
Badly behaved (X
contains flats)

Γ acts cocompactly on
convex C ⊆ X.
Very few examples with
Γ hyperbolic

These do not agree!
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Anosov representations

Let M ∈ SL(n,R). Then σk(M) is the kth largest singular value
of M .

Definition
Let Γ be a finitely generated group. A representation
ρ : Γ → SL(n,R) is k-Anosov if there are A,B > 0 such that

αk(ρ(γ)) := log

(
σk(ρ(γ))

σk+1(ρ(γ))

)
≥ A|γ| −B

for all γ ∈ Γ.

Fix a basepoint x0 ∈ X. For any g ∈ SL(d,R), we have

αk(g) ≤ dX(x0, gx0).

So, a k-Anosov representation induces a quasi-isometric
embedding Γ → X.
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Theorem (Kapovich-Leeb-Porti, Bochi-Potrie-Sambarino)

Suppose that Γ is a finitely generated group and
ρ : Γ → SL(d,R) is k-Anosov. Then Γ is Gromov-hyperbolic.

Question

Which hyperbolic groups admit Anosov representations?

In particular, is it all of them? (No.)

Question

Which linear hyperbolic groups admit Anosov representations?

Is it all of them? (Nobody knows.)
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Question

Which linear hyperbolic groups admit Anosov representations?

Some answers:

▶ Groups acting convex cocompactly on negatively curved
symmetric spaces

▶ Hyperbolic Coxeter groups (Danciger-Guéritaud-Kassel,
Lee-Marquis)

▶ Amalgams (Dey-Kapovich-Leeb,
Danciger-Guéritaud-Kassel)

▶ Other sporadic constructions (e.g. Kapovich,
Douba-Tsouvalas)
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Theorem (Douba-Flechélles-W.-Zhu)

Let Γ be a hyperbolic group. If Γ acts properly discontinuously
and cocompactly on a CAT(0) cube complex, then Γ admits an
Anosov representation.

A few examples of cubulated hyperbolic groups:
▶ Random groups at density < 1/6 (Ollivier-Wise)
▶ Output of “strict hyperbolization” process (Lafont-Ruffoni),

allows for many examples with “exotic” Gromov boundary.
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Where do the representations come from?

Theorem (Agol, Haglund-Wise)

Let Γ be a hyperbolic group. Then Γ is cubulated if and only if it
is virtually a quasiconvex subgroup of a right-angled Coxeter
group.

Right-angled Coxeter groups admit (many) discrete faithful
representations generated by linear reflections.

Definition
An involution g ∈ GL(d,R) is a reflection if its 1-eigenspace is a
hyperplane.
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Theorem (Tits, Vinberg)

Any Coxeter group C has a faithful representation into
PGL(d,R) generated by reflections, which preserves a convex
domain Ω in P(Rd), with fundamental domain a simplex.

The dual graph is Cay(C), the 1-skeleton of a CAT(0) cube
complex D(C).
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Overall goal: use combinatorics of the Davis complex D(C) to
estimate log

(
σ1
σ2

)
when Γ < C is a hyperbolic quasiconvex

subgroup.

Some important ideas:
▶ Generalized ping-pong in real projective space
▶ “Bottlenecking” for geodesics in quasiconvex hyperbolic

subgroups
▶ Hierarchical nature of C
▶ Higher-rank Morse lemma, local-to-global principle for

quasigeodesics in symmetric space X (Kapovich-Leeb-Porti)
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