Anosov representations of cubulated hyperbolic groups

Teddy Weisman University of Michigan

> STDC March 6, 2025

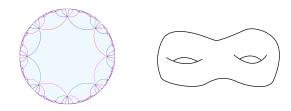
joint with Sami Douba, Balthazar Flechélles, Feng Zhu

Definition

A discrete faithful representation $\rho: \Gamma \to SL(2, \mathbb{R})$ is *convex* cocompact if $\rho(\Gamma)$ acts with compact quotient on a nonempty convex subset of \mathbb{H}^2 .

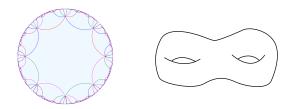
Definition

A discrete faithful representation $\rho: \Gamma \to \mathrm{SL}(2,\mathbb{R})$ is *convex* cocompact if $\rho(\Gamma)$ acts with compact quotient on a nonempty convex subset of \mathbb{H}^2 .



Definition

A discrete faithful representation $\rho: \Gamma \to SL(2,\mathbb{R})$ is *convex* cocompact if $\rho(\Gamma)$ acts with compact quotient on a nonempty convex subset of \mathbb{H}^2 .



Theorem

Let Γ be a finitely generated group. Then $\rho: \Gamma \to \mathrm{SL}(2,\mathbb{R})$ is convex cocompact if and only if an orbit map $x \mapsto \rho(\gamma)x$, $x \in \mathbb{H}^2$, is a quasi-isometric embedding.

In particular, Γ is always Gromov-hyperbolic.

Let $\mathbb{X} = \operatorname{SL}(n, \mathbb{R}) / \operatorname{SO}(n)$.

Let $\mathbb{X} = \operatorname{SL}(n, \mathbb{R}) / \operatorname{SO}(n)$.

Claim

There is a unique $SL(n,\mathbb{R})$ -invariant Riemannian metric on \mathbb{X} , making it a Hadamard manifold (in particular, a CAT(0) space).

Any discrete $\Gamma < \mathrm{SL}(n,\mathbb{R})$ acts properly discontinuously on \mathbb{X} .

Let $\mathbb{X} = \operatorname{SL}(n, \mathbb{R}) / \operatorname{SO}(n)$.

Claim

There is a unique $SL(n,\mathbb{R})$ -invariant Riemannian metric on \mathbb{X} , making it a Hadamard manifold (in particular, a CAT(0) space).

Any discrete $\Gamma < \mathrm{SL}(n,\mathbb{R})$ acts properly discontinuously on \mathbb{X} .

Possible notions of "convex cocompactness" when n > 2:

 Γ is QI embedded in $\mathbb X$

 Γ acts cocompactly on convex $C \subseteq X$.

Let $\mathbb{X} = \operatorname{SL}(n, \mathbb{R}) / \operatorname{SO}(n)$.

Claim

There is a unique $SL(n,\mathbb{R})$ -invariant Riemannian metric on \mathbb{X} , making it a Hadamard manifold (in particular, a CAT(0) space).

Any discrete $\Gamma < \mathrm{SL}(n,\mathbb{R})$ acts properly discontinuously on \mathbb{X} .

Possible notions of "convex cocompactness" when n > 2:

 Γ is QI embedded in $\mathbb X$

 Γ acts cocompactly on convex $C \subseteq X$.

These do *not* agree!

Let $\mathbb{X} = \operatorname{SL}(n, \mathbb{R}) / \operatorname{SO}(n)$.

Claim

There is a unique $SL(n, \mathbb{R})$ -invariant Riemannian metric on \mathbb{X} , making it a Hadamard manifold (in particular, a CAT(0) space).

Any discrete $\Gamma < \mathrm{SL}(n,\mathbb{R})$ acts properly discontinuously on \mathbb{X} .

Possible notions of "convex cocompactness" when n > 2:

 Γ is QI embedded in X Badly behaved (X contains flats)

 Γ acts cocompactly on convex $C \subseteq \mathbb{X}$.

These do not agree!

Let
$$\mathbb{X} = \operatorname{SL}(n, \mathbb{R}) / \operatorname{SO}(n)$$
.

Claim

There is a unique $SL(n, \mathbb{R})$ -invariant Riemannian metric on \mathbb{X} , making it a Hadamard manifold (in particular, a CAT(0) space).

Any discrete $\Gamma < \mathrm{SL}(n,\mathbb{R})$ acts properly discontinuously on \mathbb{X} .

Possible notions of "convex cocompactness" when n > 2:

 Γ is QI embedded in X Badly behaved (X contains flats)

 Γ acts cocompactly on convex $C \subseteq \mathbb{X}$. Very few examples with Γ hyperbolic

These do not agree!

Anosov representations

Let $M \in \mathrm{SL}(n,\mathbb{R})$. Then $\sigma_k(M)$ is the kth largest singular value of M.

Anosov representations

Let $M \in \mathrm{SL}(n,\mathbb{R})$. Then $\sigma_k(M)$ is the kth largest singular value of M.

Definition

Let Γ be a finitely generated group. A representation $\rho:\Gamma\to \mathrm{SL}(n,\mathbb{R})$ is k-Anosov if there are A,B>0 such that

$$\alpha_k(\rho(\gamma)) := \log\left(\frac{\sigma_k(\rho(\gamma))}{\sigma_{k+1}(\rho(\gamma))}\right) \ge A|\gamma| - B$$

for all $\gamma \in \Gamma$.

Anosov representations

Let $M \in SL(n, \mathbb{R})$. Then $\sigma_k(M)$ is the kth largest singular value of M.

Definition

Let Γ be a finitely generated group. A representation $\rho: \Gamma \to \mathrm{SL}(n,\mathbb{R})$ is k-Anosov if there are A,B>0 such that

$$\alpha_k(\rho(\gamma)) := \log\left(\frac{\sigma_k(\rho(\gamma))}{\sigma_{k+1}(\rho(\gamma))}\right) \ge A|\gamma| - B$$

for all $\gamma \in \Gamma$.

Fix a basepoint $x_0 \in \mathbb{X}$. For any $g \in SL(d, \mathbb{R})$, we have

$$\alpha_k(g) \le d_{\mathbb{X}}(x_0, gx_0).$$

So, a k-Anosov representation induces a quasi-isometric embedding $\Gamma \to \mathbb{X}$.

Suppose that Γ is a finitely generated group and $\rho: \Gamma \to \mathrm{SL}(d,\mathbb{R})$ is k-Anosov. Then Γ is Gromov-hyperbolic.

Suppose that Γ is a finitely generated group and $\rho: \Gamma \to \mathrm{SL}(d,\mathbb{R})$ is k-Anosov. Then Γ is Gromov-hyperbolic.

Question

Which hyperbolic groups admit Anosov representations?

In particular, is it all of them?

Suppose that Γ is a finitely generated group and $\rho: \Gamma \to \mathrm{SL}(d,\mathbb{R})$ is k-Anosov. Then Γ is Gromov-hyperbolic.

Question

Which hyperbolic groups admit Anosov representations?

In particular, is it all of them? (No.)

Suppose that Γ is a finitely generated group and $\rho: \Gamma \to \mathrm{SL}(d,\mathbb{R})$ is k-Anosov. Then Γ is Gromov-hyperbolic.

Question

Which hyperbolic groups admit Anosov representations?

In particular, is it all of them? (No.)

Question

Which linear hyperbolic groups admit Anosov representations?

Is it all of them?

Suppose that Γ is a finitely generated group and $\rho: \Gamma \to \mathrm{SL}(d,\mathbb{R})$ is k-Anosov. Then Γ is Gromov-hyperbolic.

Question

Which hyperbolic groups admit Anosov representations?

In particular, is it all of them? (No.)

Question

Which linear hyperbolic groups admit Anosov representations?

Is it all of them? (Nobody knows.)

 $Which\ linear\ hyperbolic\ groups\ admit\ Anosov\ representations?$

 $Which\ linear\ hyperbolic\ groups\ admit\ Anosov\ representations?$

Some answers:

► Groups acting convex cocompactly on negatively curved symmetric spaces

Which linear hyperbolic groups admit Anosov representations?

- ► Groups acting convex cocompactly on negatively curved symmetric spaces
- ► Hyperbolic Coxeter groups (Danciger-Guéritaud-Kassel, Lee-Marquis)

Which linear hyperbolic groups admit Anosov representations?

- Groups acting convex cocompactly on negatively curved symmetric spaces
- ► Hyperbolic Coxeter groups (Danciger-Guéritaud-Kassel, Lee-Marquis)
- ► Amalgams (Dey-Kapovich-Leeb, Danciger-Guéritaud-Kassel)

Which linear hyperbolic groups admit Anosov representations?

- Groups acting convex cocompactly on negatively curved symmetric spaces
- ► Hyperbolic Coxeter groups (Danciger-Guéritaud-Kassel, Lee-Marquis)
- ► Amalgams (Dey-Kapovich-Leeb, Danciger-Guéritaud-Kassel)
- Other sporadic constructions (e.g. Kapovich, Douba-Tsouvalas)

Theorem (Douba-Flechélles-W.-Zhu)

Let Γ be a hyperbolic group. If Γ acts properly discontinuously and cocompactly on a CAT(0) cube complex, then Γ admits an Anosov representation.

Theorem (Douba-Flechélles-W.-Zhu)

Let Γ be a hyperbolic group. If Γ acts properly discontinuously and cocompactly on a CAT(0) cube complex, then Γ admits an Anosov representation.

A few examples of cubulated hyperbolic groups:

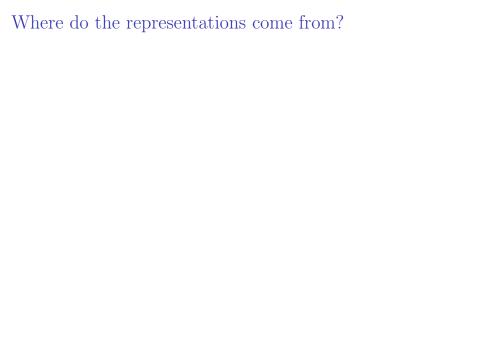
 \triangleright Random groups at density < 1/6 (Ollivier-Wise)

Theorem (Douba-Flechélles-W.-Zhu)

Let Γ be a hyperbolic group. If Γ acts properly discontinuously and cocompactly on a CAT(0) cube complex, then Γ admits an Anosov representation.

A few examples of cubulated hyperbolic groups:

- \triangleright Random groups at density < 1/6 (Ollivier-Wise)
- ▶ Output of "strict hyperbolization" process (Lafont-Ruffoni), allows for many examples with "exotic" Gromov boundary.



Where do the representations come from?

Theorem (Agol, Haglund-Wise)

Let Γ be a hyperbolic group. Then Γ is cubulated if and only if it is virtually a quasiconvex subgroup of a right-angled Coxeter group.

Where do the representations come from?

Theorem (Agol, Haglund-Wise)

Let Γ be a hyperbolic group. Then Γ is cubulated if and only if it is virtually a quasiconvex subgroup of a right-angled Coxeter group.

Right-angled Coxeter groups admit (many) discrete faithful representations generated by *linear reflections*.

Definition

An involution $g \in GL(d, \mathbb{R})$ is a reflection if its 1-eigenspace is a hyperplane.

Where do the representations come from?

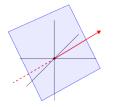
Theorem (Agol, Haglund-Wise)

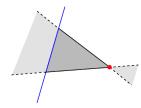
Let Γ be a hyperbolic group. Then Γ is cubulated if and only if it is virtually a quasiconvex subgroup of a right-angled Coxeter group.

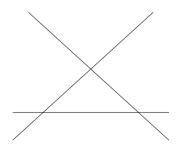
Right-angled Coxeter groups admit (many) discrete faithful representations generated by *linear reflections*.

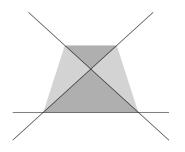
Definition

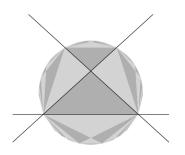
An involution $g \in \mathrm{GL}(d,\mathbb{R})$ is a reflection if its 1-eigenspace is a hyperplane.

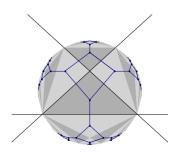




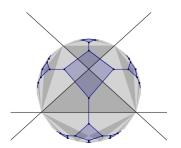








Any Coxeter group C has a faithful representation into $\operatorname{PGL}(d,\mathbb{R})$ generated by reflections, which preserves a convex domain Ω in $\mathbb{P}(\mathbb{R}^d)$, with fundamental domain a simplex.



The dual graph is Cay(C), the 1-skeleton of a CAT(0) cube complex D(C).

Some important ideas:

Generalized ping-pong in real projective space

Some important ideas:

- Generalized ping-pong in real projective space
- ► "Bottlenecking" for geodesics in quasiconvex hyperbolic subgroups

Some important ideas:

- Generalized ping-pong in real projective space
- ► "Bottlenecking" for geodesics in quasiconvex hyperbolic subgroups
- ▶ Hierarchical nature of C

Some important ideas:

- Generalized ping-pong in real projective space
- ► "Bottlenecking" for geodesics in quasiconvex hyperbolic subgroups
- ▶ Hierarchical nature of C
- ► Higher-rank Morse lemma, local-to-global principle for quasigeodesics in symmetric space X (Kapovich-Leeb-Porti)