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Convex cocompactness in SL(2,R)
Definition

A discrete faithful representation p : I' — SL(2, R) is convex
cocompact if p(T") acts with compact quotient on a nonempty
convex subset of H?2.

Theorem

Let T be a finitely generated group. Then p : T'— SL(2,R) is
convex cocompact if and only if an orbit map x — p(v)x,
x € H?, is a quasi-isometric embedding.

In particular, I' is always Gromov-hyperbolic.
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convex C C X.

Very few examples with
I" hyperbolic

I' is QI embedded in X
Badly behaved (X
contains flats)

These do not agree!
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Anosov representations

Let M € SL(n,R). Then o3 (M) is the kth largest singular value
of M.

Definition

Let I" be a finitely generated group. A representation
p:T'— SL(n,R) is k-Anosov if there are A, B > 0 such that

a(p() 1= log ("’f(’(’(”)))) > Al - B

for all vy € T'.
Fix a basepoint xy € X. For any g € SL(d,R), we have
ax(g) < dx(zo, go).

So, a k-Anosov representation induces a quasi-isometric
embedding I' — X.
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Theorem (Kapovich-Leeb-Porti, Bochi-Potrie-Sambarino)

Suppose that T is a finitely generated group and
p: T — SL(d,R) is k-Anosov. Then T is Gromov-hyperbolic.

Question

Which hyperbolic groups admit Anosov representations?

In particular, is it all of them? (No.)

Question
Which linear hyperbolic groups admit Anosov representations?

Is it all of them? (Nobody knows.)
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Question
Which linear hyperbolic groups admit Anosov representations?

Some answers:

» Groups acting convex cocompactly on negatively curved
symmetric spaces

» Hyperbolic Coxeter groups (Danciger-Guéritaud-Kassel,
Lee-Marquis)

» Amalgams (Dey-Kapovich-Leeb,
Danciger-Guéritaud-Kassel)

» Other sporadic constructions (e.g. Kapovich,
Douba-Tsouvalas)
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Theorem (Douba-Flechélles-W.-Zhu)

Let T' be a hyperbolic group. If I' acts properly discontinuously
and cocompactly on a CAT(0) cube complez, then T' admits an
Anosov representation.

A few examples of cubulated hyperbolic groups:
» Random groups at density < 1/6 (Ollivier-Wise)

» Output of “strict hyperbolization” process (Lafont-Ruffoni),
allows for many examples with “exotic” Gromov boundary.
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The dual graph is Cay(C'), the 1-skeleton of a CAT(0) cube
complex D(C).
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estimate log (—1> when I' < C'is a hyperbolic quasiconvex
subgroup.

Some important ideas:
» Generalized ping-pong in real projective space

» “Bottlenecking” for geodesics in quasiconvex hyperbolic
subgroups

» Hierarchical nature of C

» Higher-rank Morse lemma, local-to-global principle for
quasigeodesics in symmetric space X (Kapovich-Leeb-Porti)



