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Abstract— A methodology for parameterizing polymer elec-
trolyte membrane (PEM) fuel cell models is presented. The
procedure starts by optimal experimental design (OED) for
parameter identification. This is done by exploring output
sensitivities to parameter variations in the space of operating
conditions. Once the optimal operating conditions are deter-
mined, they are used to gather synthetic experimental data. The
synthetic data are then used to identify 7 model parameters in a
step-by-step procedure that involves grouping the parameters
for identification based on the preceding sensitivity analysis.
Starting from the kinetic region of the polarization curve
and continuing with the ohmic and mass transport regions,
the parameters are identified in a cumulative fashion using a
gradient-based nonlinear least squares algorithm. The impact of
the OED for parameter identification is explored by comparing
the results with another set of synthetic data obtained by Latin
Hypercube Sampling (LHS) of the operating space. The results
indicate improved identification with OED compared to LHS
and point to the utility of the systematic approach, presented
herein, for identifying the parameters of PEM fuel cell models.

I. INTRODUCTION

As PEM fuel cells draw near a more widespread use in
the automotive industry, developing models for the fuel cell
stacks becomes more critical. Fuel cell models can be used
to understand the details of various transport phenomena
inside each individual cell, study different aspects of cell
degradation, and develop on-board model-based monitoring
and control methodologies for improved performance and
durability [1]. Therefore, having representative models for
each application and proper model parameterization are of
great significance. Even though a number of mathematical
models are available in the literature for fuel cell systems
with different levels of fidelity, model parameterization is
a topic that has remained relatively understudied. Having
identified this as a crucial gap in the fuel cell literature, here
we report on our first steps to systematically address this
challenge, utilizing a recently developed model of PEM fuel
cells.

The topic of model parameterization for electrochemical
energy systems has gained some popularity in recent years,
mostly due to the battery research community. In particular,
the question of parameter identifiability in various lithium ion
battery models has been investigated using the Fisher infor-
mation matrix [2], [3], [4], [5] and bounds on the parameter
estimates have been investigated [6]. More recently, there
has been a shift towards optimally designing experiments
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for the purpose of parameter identification by maximizing
some metric of identifiability. Zhang et al. designed optimal
experiments based on the sensitivity of the terminal voltage
and shell temperature to parameter variations [7]. Others
have mostly resorted to maximizing a scalar metric of the
Fisher information matrix for this purpose [8], [9], [10].
Overall, the battery literature offers promising approaches
for systematic model parameterization.

In the fuel cell literature, the problem of parameterizing
mathematical models is mostly treated as material charac-
terization. That is, the parameters are usually obtained by
often costly ex-situ component characterization methods and
the models are expected to reproduce in-situ experimental
data from a fuel cell stack. This not only requires being
able to take the cells apart and investigate their components
individually, but also often results in the models’ representa-
tion capabilities not being fully utilized and most literature
citing only qualitative agreement with experimental data as
a validation of the models (e.g. see [11]). There are some
exceptions to this general trend, the most notable of which
are perhaps the works of Dobson et al. [12] and Carnes
et al. [13], who use nonlinear least squares to identify
model parameters. Nevertheless, such optimization based
parameterization approaches are not common in the fuel
cell community, which is most likely due to the significant
computational requirements of many of the available fuel cell
models that inhibit the use of these techniques.

Recognizing the need for systematic model parameteriza-
tion approaches, here we use a model of PEM fuel cell that
we have recently developed for online estimation [14], [15],
and propose a methodology for identifying its parameters. In
particular, we start by optimally designing the experiments
with the goal of parameter identification in mind. This is
then followed by a procedure that involves grouping the
parameters based on their sensitivity and identifying the
parameter groups in three steps using synthetic experimental
data; i.e. data obtained through simulations. The results
are compared against those obtained with experimental de-
sign using LHS. Moreover, we compare the results of the
systematic procedure with those of identifying all of the
parameters in a single optimization problem. The OED and
systematic procedure proposed here, which are independent
of the model in use and constitute the major contributions of
this paper, differentiate this work from prior art [12], [13].

The rest of the paper is organized as follows. We briefly
describe the OED adapted from [7] in Section II. The
three-step parameter identification procedure is explained in
Section III. Identification results and discussions are provided
in Section IV, followed by concluding remarks in Section V.
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TABLE I
MODEL PARAMETERS TO BE IDENTIFIED

Parameter Description
ω Energy parameter for Temkin isotherm [J/mol]
αca ORR∗ transfer coefficient [-]
i0,ca ORR exchange current density [A/cm2]
δmb Membrane thickness [µm]
Rohm Ohmic resistance of cell layers [Ω · cm2]
δGDL,an Anode GDL† thickness [µm]
δGDL,ca Cathode GDL thickness [µm]
Kabs,MPL MPL‡ absolute permeability [m2]
∗ Oxygen Reduction Reaction
† Gas Diffusion Layer
‡ Microporous Layer

II. OPTIMAL EXPERIMENTAL DESIGN (OED) FOR
PARAMETER IDENTIFICATION

A. Model Parameters to be Identified

The model used in this work is a computationally efficient
pseudo-2D model of the PEM fuel cell that solves, along the
flow channels, the heat and mass transport problems across
the thickness of a single cell. The details of this model
have been presented previously [14], [15] and are omitted
here for brevity. The model has many geometrical, kinetic,
and thermodynamic parameters as well as fitting coefficients
used to fit some of the sub-models to ex-situ experimental
characterization data. For the demonstration purposes of this
paper, we have selected 8 parameters for identification. The
selected parameters are provided in Table I along with their
descriptions.

B. Sensitivity Analysis and Parameter Identifiability

As a first step towards optimally designing experiments for
parameter identification, the sensitivity of the model outputs
to parameter variations should be studied. In this work,
we assume that only voltage measurements are available.
Therefore, we start by investigating the sensitivity of the
voltage prediction to variations in the selected parameters
described above. However, it is important to note that other
signals, such as high frequency resistance, may be easily
measured in a fuel cell system with standard equipment.
Therefore, these peripheral signals can be used to further
improve the identification process and render more of the
model parameters identifiable. Nevertheless, identification
based on voltage measurement alone serves as a good starting
point to develop a systematic framework.

The sensitivity analysis is conducted by discretizing the
space of operating conditions as follows:

Pressure ∈ {1.5, 2.0, 2.5, 3.0 } bar
Stoichiometric Ratio ∈ {1.5, 2.5, 3.5 }
Relative Humidity ∈ {30, 60, 90}%
Temperature ∈ {60, 70, 80} ◦C

The above discretization results in 108 unique operating con-
ditions using a full factorial design. The parameter sensitivi-
ties at each of these conditions are investigated by perturbing
each parameter from its nominal value within some bounds.
In particular, for every parameter, 9 simulated polarization
curves are obtained at each operating condition; one baseline
curve with the nominal parameter value, and 8 perturbed
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Fig. 1. Effect of variations in δmb on the polarization curve (the operating
conditions are given on top of the figure). Simulated voltages for 12 points
are obtained for each polarization curve.

curves with the perturbed parameter values as illustrated in
Fig. 1. The resulting polarization curve is divided into 3
regions: low, medium, and high current density, representing
the kinetic, ohmic, and mass transport (MT) regions of the
curve, respectively. 4 points are simulated in each region of
the curve for each parameter set. The sensitivity of the output
voltage to parameter variations in each region is obtained
by computing the average standard deviation of simulated
voltage values among the 9 polarization curves:

SKinetic = mean(σ1, σ2, σ3, σ4),
SOhmic = mean(σ5, σ6, σ7, σ8),
SMT = mean(σ9, σ10, σ11, σ12),

(1)

where σi denotes the standard deviation of the i−th point
on the 9 simulated polarization curves. More specifically:

σi =

√√√√[

9∑
j=1

(Vi,j −
1

9

9∑
k=1

Vi,k)]/8, i = {1, 2, ..., 12}, (2)

where Vi,j is the i-th voltage value on the j-th polarization
curve (Fig. 1).

Once the sensitivities are calculated, we can determine
parameter identifiability. Here, we use the approach adopted
by Zhang et al. [7] and specify a sensitivity threshold, below
which a parameter is deemed unidentifiable. In particular,
any parameter with a maximum sensitivity below 0.006 is
labeled unidentifiable and removed from the identification
process. In this work, only Kabs,MPL was determined to be
unidentifiable. Other parameters are labeled as having “High
Sensitivity” if their average sensitivity is above 0.01, and
“Low Sensitivity” otherwise. Alternatively, one can group the
parameters and study the linear dependence between them
based on the QR factorization of the sensitivity matrix [10],
[16]. Nevertheless, we use the sensitivity thresholding as a
first step in this paper due to its simplicity. The complete
results of the sensitivity analysis are provided in Table II.



TABLE II
PARAMETER SENSITIVITIES

Parameter Smax Savg Sensitivity Group
ω 0.0536 0.0223 High Kinetic
αca 0.1578 0.1009 High Kinetic
i0,ca 0.1620 0.1101 High Kinetic
δmb 0.1327 0.0238 High Ohmic
Rohm 0.0222 0.0074 Low Ohmic
δGDL,an 0.0198 0.0011 Low MT
δGDL,ca 0.0509 0.0066 Low MT
Kabs,MPL 0.0045 0.00003 Insensitive N/A

Another important step is to group the parameters that
should be identified together using data from a specific region
of the polarization curve. The goal of this step is to find
regions on the polarization curve that are only sensitive to
variations in a specific subset of the parameters. Doing so
will allow us to develop a step-by-step identification process,
which can begin by identifying a subset of parameters in a
region that is not significantly affected by the errors in the
other, yet unidentified parameters.

Accordingly, we define three groups aligned with the three
regions that we have previously specified on the polarization
curve (Fig. 1): the first parameter group consists of those pa-
rameters that are identifiable in the low current density region
of the polarization curve, while the second and third groups
include the parameters that become identifiable at medium
and high current densities, respectively. The general idea is
that the voltage sensitivity to parameter variations typically
increases as the current is increased. Therefore, it is helpful
to start the identification process by only using the data at
low current densities and as our confidence in the parameter
estimates increases, move along the polarization curve to
higher currents and identify the remaining parameters. It
is conceivable that there is some benefit in increasing the
number of parameter groups, especially if more parameters
are to be identified.

In this work, the grouping is done based on the average
voltage sensitivities in each region of the polarization curve.
As can be seen in Fig. 2, parameters whose average sensitiv-
ity in a particular region of the polarization curve is above a
certain threshold, belong to the same group. Therefore, three
parameters can be identified using low current or kinetic
region data (ω, αca, i0,ca), two parameters can be identified
using medium current or ohmic region data (δmb, Rohm),
and two other parameters can only be identified using high
current or mass transport region data (δGDL,an, δGDL,ca).

As a final note, we acknowledge that these sensitivity
results are local and depend on the nominal parameter values
used in this work. There is no doubt that with a global
sensitivity analysis the proposed framework will be more
robust. However, the computational cost of such an analysis
renders it infeasible at this point.

C. Selection of Optimal Experiments for Parameter Identifi-
cation

With Kabs,MPL removed from the identification process
due to its low sensitivity, there remains 7 parameters to

Fig. 2. Average voltage sensitivities to parameter variations in various
regions of the polarization curve. Longer bars show higher sensitivities.
Red bars denote parameters that satisfy the sensitivity threshold and can be
identified using data in the specified region. Blue bars denote parameters
that are yet to be grouped, and gray bars show parameters that are already
labeled as belonging to a group. The sensitivity threshold for parameter
grouping is 0.1955=-1/log(0.006), i.e., the sensitivity threshold is the same
as that used to determine identifiability of parameters.

be identified. Here, we seek to find the optimal operating
conditions that maximize identifiability of these parameters
with a small number of experiments. This is especially
important, since some operating conditions may render a
parameter unidentifiable, while others can result in high
sensitivity to the parameter variations. Fig. 3 illustrates this
by plotting the normalized voltage sensitivities to variations
in δmb at different operating conditions. It can be seen
that generally drier conditions, higher temperatures, and
higher flow rates are more suitable for identification of this
parameter. While this observation is rather intuitive for the
membrane thickness, such simple physical insights are rarely
available for other parameters due to the complex interactions
between various transport phenomena.

The process for selecting optimal experiments for param-
eter identification is as follows:

1) Specify the Best Conditions for Identification (BCI)
[7] of each parameter. This can be done by ranking
the operating conditions based on the particular pa-
rameter’s sensitivity and choosing the corresponding
top 10 operating conditions, which yields a total of
70 BCIs (e.g. in Fig. 3, the three largest dots indicate
three BCIs for δmb).

2) Remove any repeated operating condition from the list.
3) Find the smallest subset of these operating conditions

that includes at least one BCI for each parameter
and maximizes the weighted sum of the sensitivities.
The weights are used to prioritize maximizing the
sensitivity of parameters with lowest sensitivity.

The last step can be formulated as an integer program:

minimize
ni

−wTSθ

subject to Sθ,j =
Ntot∑
i=1

nibi,jsi,j 6= 0,

Ntot∑
i=1

ni = N,

ni ∈ {0, 1},

(3)



Fig. 3. Normalized voltage sensitivity to variations in δmb (larger dots
indicate higher sensitivity).

TABLE III
OPTIMAL EXPERIMENTS FOR PARAMETER IDENTIFICATION

P [bar] T [◦C] Stoich RH Parameter BCIs
2.5 80 2.5 90 δGDL,an, δGDL,ca
1.5 80 3.5 30 i0,ca, δmb, Rohm
1.5 60 1.5 30 αca
3.0 80 3.5 90 ω

where w is a weighting vector used to promote the pa-
rameters with low sensitivity, Sθ ∈ IR7×1 is a vector of
sensitivities, Ntot is the total number of operating conditions
from which a subset of size N is to be selected, bi,j is
an indicator function that is identity if the i-th operating
condition is a BCI for the j-th parameter, and ni’s are
the optimization variables that determine whether or not an
operating condition should be included in the experiments.
One should note that if two BCIs for a parameter are included
in the selected subset, only the largest sensitivity should be
used in forming Sθ. This integer program may be relaxed
into a convex program [10]. However, this particular instance
of the problem can be readily solved by simply testing all
of the possibilities due to the small size of the search space.
It is thus determined that at least 4 experiments are needed
to cover BCIs for all 7 parameters. Furthermore, we use
a weight of 10 for parameters with low sensitivity and a
weight of 1 for those with high sensitivity. This results in
the particular choice of operating conditions that is presented
in Table III.

D. Experimental Design Using LHS

To investigate the utility of OED, another set of exper-
iments are designed by taking Latin hypercube samples of
the space of operating conditions. The resulting experimental
designs are given in Table IV.

III. THE 3-STEP PARAMETER IDENTIFICATION
METHOD

A. Identification Steps

After the sensitivity analysis is conducted and parameters
are grouped accordingly, the optimal experiments specified
in Section II-C can be used for the purpose of parameter
identification. In this paper, we use the optimal experiments
to generate synthetic data using simulations with a known set
of parameters. The parameters under investigation are then

TABLE IV
EXPERIMENTAL DESIGN USING LHS

P [bar] T [◦C] Stoich RH
2.2 63.7 2.9 63.7
1.6 68.5 1.8 68.5
2.7 71.9 3.2 71.9
2.5 78.7 2.4 78.7

perturbed from their nominal values and treated as unknown
parameters to be identified.

The identification algorithm has three steps as follows:
1) Parameters in the first group are identified using low

current density data in the kinetic region. All the other
parameters are kept at their initial value during this
step and are not updated.

2) Parameters in the second group are identified using
medium current density data in the ohmic region. It
is important to note that parameters in the third group
are kept constant at their initial value during this step,
while those in the first group that were identified
earlier, are allowed to vary in a smaller region, i.e.,
the search space for the parameters in the first group
is contracted.

3) The third group of parameters is identified using high
current density data in the mass transport region.
During this step, parameters in the first and second
groups are allowed to vary, but their respective search
space is contracted. In particular, the search space for
first group of parameters is even smaller than their
search space in the second step of the algorithm.

Allowing previously identified parameters to be further re-
fined as the algorithm moves along the polarization curve
is critical for successful identification. This is due to the
fact that in most cases parameter sensitivities increase with
current density, and so does their identifiability. Therefore,
we can obtain more accurate parameter values by allowing
for such cumulative fitting [7], [10]. Finally, as we move to
higher currents, we disregard lower current data points in
this work. Alternatively, one may use low current data at
later stages of the identification algorithm along with larger
weights for the higher current measurements (i.e. weighted
least squares).

B. Parameter Scaling

Proper scaling of the parameters is also critically im-
portant, especially if first-order numerical algorithms are to
be utilized. Similar to [10], here we use min-max scaling,
where parameters are scaled either linearly or logarithmically
depending on their respective range. Parameter ranges and
the scaling method are given in Table V.

This yields a set of parameters that vary between 0 to
1. This parameter scaling is repeated after each step of the
algorithm is completed and the search space for the identified
parameters is contracted. In particular, after the first step
of the algorithm, the search space for the first group of
parameters is limited to ±0.2 of the identified normalized
parameter values. As we move to the second step of the



TABLE V
PARAMETER BOUNDS AND SCALING

Parameter Lower Bound Upper Bound Scaling
ω 102 105 Logarithmic
αca 0.4 1.0 Linear
i0,ca 10−9 10−5 Logarithmic
δmb 8 30 Linear
Rohm 10−4 10−2 Logarithmic
δGDL,an 140 240 Linear
δGDL,ca 140 240 Linear

algorithm, the first group of parameters are again scaled to
lie between 0 and 1. As the algorithm proceeds to later
stages, this search space is shrunken further. For instance,
during the third step, the search space for the first group of
parameters is limited to ±0.1 of the normalized parameter
values identified in the second step. This successive shrinking
of the search space enables a more accurate parameter
identification. Nevertheless, one has to be careful not to
shrink the search space too much after each step to make
sure that it includes the optimal value. One may use the
confidence intervals as a more robust guideline for shrinking
the search space for the identified parameters.

C. Nonlinear Least Squares Algorithm

Any nonlinear least squares algorithm may be used for
parameter identification in conjunction with the steps laid
out earlier. Here we use the Levenberg-Marquardt algorithm
that hybridizes Gauss-Newton with gradient descent updates
[17]. This algorithm is chosen to demonstrate the utility of
OED in improving the gradients used in a gradient-based
method. However, we note that in practice when the number
of parameters to be identified is large and the cost function
is rather noisy, both of which are common for models of
electrochemical energy systems, a hybrid approach utilizing
both gradient-free and gradient-based algorithms may be the
best choice.

D. Calculation of Confidence Intervals

The 95% confidence intervals (CI) for parameter estimates
can be calculated by [18]:

θ̂ − t(0.95,n−p)σθ ≤ θ ≤ θ̂ + t(0.95,n−p)σθ, (4)

where t(0.95,n−p) is the critical value for t-distribution with
n − p degrees of freedom, with n being the number of
data points and p being the number of estimated parameters.
Moreover:

σθ =

√
R2diag([JTJ ]

−1
), (5)

where J is the Jacobian calculated at the final parameter es-
timates and R is the scaled vector of residuals. In particular:

J =
∂E

∂θ

∣∣∣∣
θ=θ̂

, andR =
‖E‖√
n− p

, (6)

where θ denotes the vector of parameters, θ̂ denotes the
final parameter estimates, and E denotes the vector of
residuals, i.e., the error between the model predictions and
measurements.

Fig. 4. Relative error in parameter estimates and their corresponding 95%
confidence intervals using OED and LHS design. Note that for the LHS
design the confidence intervals of some of the parameters extend beyond
the relative error range shown.

TABLE VI
IDENTIFICATION RESULTS USING OED

Parameter True Value Estimated Value 95% CI
ω 1000 936.4 1010
αca 0.7 0.698 0.0067
i0,ca 3× 10−7 3.07× 10−7 2.88× 10−8

δmb 15 15.02 0.14
Rohm 8.0× 10−3 7.6× 10−3 5.5× 10−4

δGDL,an 190 201.5 8.36
δGDL,ca 190 188.5 1.23

IV. RESULTS AND DISCUSSION

We start the identification process with perturbed param-
eter values. Specifically, the initial point for the normalized
parameter values is given by:

θ0 = [ω̄, αca, ī0,ca, δ̄mb, R̄ohm, δ̄GDL,an, δ̄GDL,ca]T

= [0.5, 0.3, 0.75, 0.5, 0.7, 0.7, 0.7]T

This particular set was chosen arbitrarily from various pa-
rameter sets available in the literature that yield reasonable
polarization curves. The algorithm presented in Section III
is then used to identify these parameters using synthetic data
generated with both the optimal conditions (Table III) as well
as the conditions from the LHS design (Table IV).

The identification results with OED and LHS are presented
in Tables VI and VII, respectively. We observe that identi-
fication with OED consistently results in tighter confidence
intervals and better parameter estimates in the case of high
sensitivity parameters. This is also illustrated in Fig. 4 that
shows relative error in the parameter estimates using the two
methods. We observe that relative parameter errors are below
7% in all of the cases when using OED. It is also worthwhile
to note that when using OED, the identification algorithm
converged in 36 iterations, while 61 iterations were required
using the LHS data. Therefore, both the speed and accuracy
of parameter estimation is improved with OED.

To underline the importance of the step-by-step identifi-
cation method presented in Section III, identification results



TABLE VII
IDENTIFICATION RESULTS USING LHS

Parameter True Value Estimated Value 95% CI
ω 1000 747.6 2.04× 106

αca 0.7 0.689 0.0958
i0,ca 3× 10−7 3.32× 10−7 8.14× 10−7

δmb 15 14.62 4.51
Rohm 8.0× 10−3 8.05× 10−3 6.45× 10−3

δGDL,an 190 187.6 56.36
δGDL,ca 190 191.0 22.62

TABLE VIII
SINGLE STEP IDENTIFICATION RESULTS

Parameter True Value OED LHS
ω 1000 1014.1 1581.3
αca 0.7 0.693 0.703
i0,ca 3× 10−7 1.14× 10−7 3.30× 10−7

δmb 15 23.4 18.19
Rohm 8.0× 10−3 2.6× 10−4 6.07× 10−3

δGDL,an 190 233.9 212.4
δGDL,ca 190 216.3 173.7

without such an approach (i.e., identifying all of the param-
eters using the entire dataset similar to [12], [13]) are given
in Table VIII. It is observed that the quality of estimates
degrade substantially compared to those in Tables VI and
VII.

Overall, the results highlight the significance of the sys-
tematic identification approach presented in this paper and
underscore the necessity of optimal experimental design for
the purpose of parameter identification in fuel cells. As the
fuel cell market continues to grow, so does the need for
real-time model-based monitoring and control systems that
will rely on accurate parameter estimates. It is under such
circumstances that the results of this paper and a myriad
of related works in the battery literature become even more
critical.

V. CONCLUSIONS

A method to optimally design experiments for the purpose
of identifying PEM fuel cell model parameters is adapted
from the battery literature. The method utilizes the results
of local sensitivity analysis to choose a set of experimental
operating conditions that maximize the output sensitivity to
parameter variations. This, in effect, maximizes the gradient
of the residuals that are to be minimized, thereby improving
convergence of typical gradient-based least squares algo-
rithms. In addition, a systematic approach for parameterizing
models of PEM fuel cells is presented. To identify the model
parameters in a step-by-step process, the approach relies on
the preceding sensitivity analysis and the fact that different
regions of the polarization curve for a fuel cell exhibit
different sensitivities to parameter variations. In particular,
model parameters are first grouped based on their impact
on different regions of the polarization curve. Next, the
parameters are identified starting from the data in the kinetic
region, and moving towards higher current density data in
the mass transport region, allowing for cumulative fitting of

already identified parameters in the process. The framework
is tested with a recently developed model and synthetic data
generated with the model with known parameter values. The
results show that the proposed framework can help with both
the accuracy and speed of parameter identification in physics-
based PEM fuel cell models.
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