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A. VALUE FUNCTIONS FOR EXPERIMENTS

Proposition 1. A function v : I's — R is finitely convex if and only if there exists a
decision problem (A,u) such that v is the value function for this decision problem.

Proof. The “if” direction of this claim is standard. We omit the proof. We prove the
“only if” direction. That is, we prove that if v is finitely convex, then there exists a
decision problem (A, u) such that v is the value function for this decision problem.
The proof describes how to construct such a decision problem. Define £ to be the
convex hull of the epigraph of v:

E=co{(v,z)ly €Ts Ar > v(7)}.

The set £ is finitely generated in the sense of Rockafellar (1970, p. 170) because it is
the convex hull of the points (,v(7y)) for v € I's, and of the direction (0,1) where 0
denotes the zero vector in RYl. By Theorem 19.1 in Rockafellar (1970, p. 171) the
set £ is polyhedral, which means that it equals the set of solutions of a finite system
of inequalities of the form:

a’y +br <c,
where a € R and b, c € R.

Note that every such inequality must satisfy b < 0. This is because £ is not bounded
from above in its last component, and therefore, if b > 0, we could always find an
element of £ where the last component is so large that the inequality is violated.
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We can thus distinguish between inequalities for which b = 0 and inequalities for
which b < 0. Consider inequalities for which b = 0. They are of the form:

any <ec

These inequalities must be satisfied for all v € co(I's). Thus, we can drop these
inequalities, and instead describe the set £ as the set of all pairs (v, z) such that
v € co(I's), and such that a finite set of inequalities of the form

aly 4+ bx < c,
hold, where now for each such inequality we have: b < 0.

Now consider any point (7, v(7)) where 4 € I's. Clearly, this point is an element
of £, and therefore satisfies all inequalities that describe £. We now claim that this
point satisfies at least one inequality with equality. Suppose not. Then there would
be an x € R with (7,z) € £ and x < v(¥). But this contradicts the definition of €
together with the finite convexity of v. Any element (7, x) of £ can be written as a

convex combination of the form:

(¥,7) = Z A'y('Yax“/)

v€l's
where A, > 0 for all v € I's, > p Ay =1, and @, > v(y) for all v € I's. We thus
have:
’7 = Z )\’777
v€l's
and

But the finite convexity of v now implies that the right hand side of this expression
is not less than v(¥), and thus we have: x > v(%), which contradicts our initial

assumption.

Now consider any point (7, v(¥)) where 4 € I's. Clearly, this point is an element
of £, and therefore satisfies all inequalities that describe £. We now claim that this
point satisfies at least one inequality with equality. Suppose not. Then there would
be an x € R with (7,z) € £ and x < v(¥). But this contradicts the definition of €
together with the finite convexity of v. Any element (7, x) of £ can be written as a
convex combination of the form:

(¥,7) = Z Av(%x'y)

v€l's
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where A\, > 0 for all v € I's, > Ay =1, and z, > v(7y) for all v € I's. We thus

yels 7Y
have:
Y= 2{: Awﬁ@
v€l's
and
x> Z A 0(7)
v€l's

But the finite convexity of v now implies that the right hand side of this expression
is not less than v(%), and thus we have: x > v(%), which contradicts our initial

assumption.

We thus conclude that for every v € I's one of the inequalities that describe &
holds as equality:

ay+b(y) = ce
T
a c
Tty (7)
Denote by g the vector that consists of || repetitions of . Then, because the

components of v add up to 1, we can write this as:

(-2 +5) 5=

Thus, if the decision maker with beliefs v chooses an action where the utility in each

state in € is given by the corresponding entry in —3 + §, then this decision maker’s

expected utility is payoff is v(7).

We can repeat this construction for every v € I's. For each v we obtain a corre-
sponding action where the vector of utilities corresponding to these actions in each
state is given by:

a(y) | &)

b(y)  b(7)’
where a(7), b(7y) and ¢(v) are the coefficients of the inequality that v and v(y) satisfy

as equalities. We thus obtain a finite decision problem.

To prove the claim we now claim that for each v € I's the decision maker maximizes
expected utility by choosing the action that we have constructed that corresponds

to 7. Once we have proven this claim, we may conclude that v is the value function
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corresponding to this decision problem. But because every element of £ satisfies all the
inequalities that describe &£, we have for all v € I'g, and for all relevant inequalities:

adv+b(y) < ce

a’ c

v+ - < w
71ty s v()
This last inequality holds for all actions included in the finite decision problem. This
implies that choosing an action that yields v(7y) is indeed expected utility maximizing

if the decision maker’s beliefs are given by ~. 0

Proposition 2. A function v : U's — R is strictly finitely convex if and only if there
exists a decision problem (A,u) such that v is the value function for this decision

problem, and for each v € I's, there is a unique and distinct optimal action.

Proof. The “if” direction of this claim is standard. We omit the proof. We prove the
“only if” direction. The proof describes how to construct such a decision problem.
Define the set £ as in the proof of Proposition 1. The following observation will be

crucial:

Lemma 1. If v is strictly finitely convex, then every (v,v (7)) where v € T's is an
extreme point of £.

Proof. Suppose one (7, v (7)) where 7 € I's is not an extreme point. Then there exist
distinct (v;,2;) € € and weights \; > 0,7 =1,--- ,nsuch that n > 2, 3" \; = 1,
and:

(Y, v(¥) = Z i (73, i) -

Observe that it is without loss of generality to assume that ; € I's for all 7. If
vi ¢ I's then we can write (;, ;) as a convex combination of pairs (v, x) where v € I's
for each pair. This is because (7;,z;) € £ and &£ is the convex hull of the set of pairs

(v, ) where v € T's.

We now distinguish two cases. The first case is that 7; = 4 for all ?. The proof
of Proposition 1 shows that we must have x; > v (%) for all i. (v, z;) being distinct
implies moreover that there exists at least one ¢ such that z; > v (§). This implies:
o A > v(7), a contradiction.



The second case is that there exists at least one i such that ; # 4. Then:

Z iy 2 Z Aiv(yi) > v(9),
=1 =1

which is again a contradiction. Here, the first inequality follows as in the first case
from the proof of Proposition 1, and the second inequality follows from strict finite

convexity of v. O

According to Theorem 2.3 in Bertsimas and Tsitsiklis (2008), (¥, v (%)) being an
extreme point of the polyhedron £ implies that there exists a supporting hyperplane
whose intersection with € is {(¥,v (%))}. That is, for every (7,v (%)) with ¥ € L,
there exists a (7) € R and b (%), c(5) € R such that

a(y) v+b(FH) r <)
for all (v,z) € E\{(7,v (%))}, and
a3 F+0F ) =c(7).
Note that such inequality must satisfy b(7) < 0. This is because £ is not bounded
from above in its last component, and therefore, if b (%) > 0, we could always find
an element of £ where the last component is so large that the inequality is violated.
Furthermore, if b (y) = 0, then all (3, ) in £ make the inequality binding, which

leads to a contradiction. So we have b (%) < 0. Note that the above conditions imply
that a different hyperplane corresponds to every extreme point.

Similarly to the construction in the proof of Proposition 1 we now construct the
decision problem that has as many actions as there are elements v of I's, and where
the vector of payoffs for the action corresponding to v € I's is:

_am 2
b(v) ~ b(v)
By construction then:
c(v)
by~
for every v € I's, and, if 4/ € I's #  then:

a()' , e

) The <0

As a result, for every v € I's, the action corresponding to 7 yields expected utility

v(7y) and is the only utility maximizing action among all available actions. 0



B. FISHBURN’S SEPARATING HYPERPLANE THEOREM

As we note in the main text, Separating Hyperplane Theorem 2 in the proof of
Theorem 2 is Lemma 5 in Fishburn (1975). In Fishburn (1975) Lemma 5 was not
explicitly proven. Instead, Fishburn referred the reader to a similar proof in an earlier
paper, the proof of Lemma 5 in Fishburn (1974). In the following we explain Fish-
burn’s proof using language and notation that does not refer to the specific application
that Fishburn was considering.

Theorem 1 (Separating Hyperplane Theorem 2:). Let C' C R"™ be non-empty and
convex and suppose C NR™ = (). Then there exists \ € {)\ SNADPHEP 1} such
that - ¢ >0 for allc € C and A -c > 0 for at least one c € C.

This theorem would an easy implication of the textbook separating hyperplane
theorem due to Minkowski (Ok, 2007, p. 483) were it not for the assertion that
A-c > 0 for at least one ¢ € C'. The following proof shows why this assertion is true.

Proof. Define A = {X € R}|>" , X\; = 1}. We prove the contrapositive: if for all
A € A we either have: \-c¢ < 0 for some ¢ € C or A-¢ = 0 for all ¢ € C, then
CNR"™ #0.

There are two cases in which the assumptions of the contrapositive are satisfied.
The first case is that for all A € A we have: X\ -¢ < 0 for some ¢ € C'. The second
case is that there is at least one A € A such that A -c = 0 for all ¢ € C, and, for all
A € A for which this does not hold, A - ¢ < 0 for some ¢ € C.

In the first case the claim follows from a standard separating hyperplane theorem.
If there exists no A € A such that A\ - ¢ > 0 for all ¢ € C, then we cannot have
CNR"™ = (). This would contract the Minkowski separating hyperplane theorem (Ok,
2007, p. 483) applied to the case that one of the sets is R™.

We focus on the second case. We prove the claim by induction over n, the dimension
of the Euclidean space that we are considering. The claim is trivial if n = 1. In this
case A consists of the single vector A = 1, and X - ¢ = 0 implies that we must have
¢ = 0. Thus, obviously, ¢ € R_. Now suppose we had proved the claim for all

dimensions 1,2, -+ ,n — 1. We want to prove it for dimension n.

Pick some A € A such that A - ¢ =0 for all ¢ € C. Some components of A\ may be
zero. Without loss of generality we assume that, if there are such components, they



are the last components of ), i.e. that we can write A as follows:
A=A, Am,0,0,...,0)  where 1 <m <n.

Consider the set S of all elements of R™ such that the first m —1 components are zero,
all components starting from component m + 1 are non-positive, and component m

can have arbitrary sign. Formally:
S={ceR"¢=0fori=1,2,....m—1and ¢; <Ofori=m+1,2,...,n}.
We will show that:
CNS#0.

First we observe that this claim in fact implies what we have to show: C N R"™ # ().
This is because ¢ € S implies A-¢ = \,¢p. By assumption A-c = 0, and \,,, # 0, and
thus ¢, = 0 follows, and therefore ¢ € R". Hence it suffices to prove that C' NS # 0.

Foralln=0,1,...m—1, and for all Kk =n+1,7+2,...,m define S to be the set
of all ¢ € R™ such that the first 7 components of ¢ are zero, all remaining components,
except the k-th component are non-positive, and there is no constraint on the s-th
component. Formally:

Sl={ceR"¢;=0fori=1,--- mpand ¢; <O0fori=n+1,...,n with ¢ # K} .

Obviously, S = S™~1. We shall prove the assertion by showing that C' N S” # () for
allp=0,1,...m—1,and forall k =n+1,n+2,...,m.
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TABLE 1. The combinations of  and  for which the set S} has been
defined



To begin with we visualize in a table the combinations of n and x for which the
sets S) have been defined. This is done in Table 1. The table is for the case m = 7.
The rows indicate the value of 7, i.e. the number of initial entries of the vectors in
S that have to be zero. The columns indicate which entry x among the remaining
entires is allowed to be positive. Checkmarks indicate that the set S7 is well defined.

The inductive assumption of our proof implies that the claim is true for all entries
that correspond to the first row in Table 1, i.e. that CNSY # () for all k = 1,2, ..., m.
Indeed, the stronger claim is true: the inductive assumption implies that for any
k = 1,2,...,n there exists an element ¢ of C' such that all components of ¢ other
than possibly the xk-th component are non-positive. To see this suppose that we drop
the k-th component from all vectors in C' so that we obtain a subset of R"~!. Because
C satisfies the assumptions of the contrapositive of this theorem, this new set satisfies
the assumptions, too. Therefore, it has non-empty intersection with R"*. Take any
element of this intersection, and insert back the k-th component. Then we have an
element of C' N SY.

The proof now shows that if the claim is true for all entries in one row 7, then it is
also true for all entries in the row 7 4+ 1 in the table. We demonstrate the argument
by an example. Suppose in the case illustrated in Table 1 we wanted to prove that
the claim holds for all entries in row 3 having proved it for all entries in rows 0, 1, and
2. As an example, let us show that C'N S is non-empty. We are going to construct
an element of C'N Si. Pick any r € C' N S3 and ¢t € C'NSE. Our argument will be
that there is a convex combination of r and ¢ that is in S§. Because C' is convex, this

will be sufficient to prove the claim.

Now r is of the form (0,0, 73,74, 75,76,77,...,7,) where all entries except rs are
non-positive. A -r = 0 implies 73 > 0. t is of the form (0,0, 3, t4,ts5,t6,t7, ..., 1)
where all entries except tg are non-positive. r3 > 0 and t3 < 0 implies there exists
a convex combination of r and t, say h, such that hy = 0. Moreover, the first two
components of h are also obviously zero, and all remaining components, except hg
must be non-positive. Therefore, h € S§.

By iterating this argument, we can conclude that C'N S™~1 £ () which completes
the proof.
0]
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