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1. Definition

Consider any topological vector space. Interior and closure of a set are typically

defined using the topological structure, but they can also be defined using the al-

gebraic structures instead. In the context of finite-dimensional Euclidean spaces, if

attention is restricted to convex sets, the two approaches coincide.1 But in infinite

dimensional topological vector spaces they don’t. Therefore, the following results are

mostly of interest if the underlying vector space is infinite dimensional.

In the context of the interior, the relative interior is often of most interest. There-

fore, we focus on the relative interior. The following definitions are taken from (Ok,

2007, p. 438 and p. 448).

Definition 1. The “algebraic relative interior” of a subset S of a vector space X is

defined as:

ri(S) = {x ∈ S|∀y ∈ aff(S) ∃ᾱ ∈ (0, 1) ∀α ∈ [0, ᾱ] : (1− α)x+ αy ∈ S}.

Definition 2. The “algebraic closure” of a subset S of a vector space X is defined

as:

cl(S) = {x ∈ X|∃y ∈ S ∀α ∈ (0, 1] : (1− α)x+ αy ∈ S}

Some of our results below extend results in (Rockafellar, 1970) where they are

proved for finite-dimensional Euclidean spaces, using the topological notions of inte-

rior and closure. We prove versions of these results for potentially infinite dimensional

vector spaces, using the algebraic notions of interior and closure. Specifically, Lemma
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2 extends Theorem 6.1, Proposition 4 extends Theorem 6.3, Corollary 1 extends

Corollary 6.3.1, and Propositions 5 and 6 extend Theorem 6.6 in (Rockafellar, 1970).

Our proofs sometimes incorporate ideas from Rockafellar’s proofs.

2. Basic Properties

Lemma 1. For all subsets S, S1, S2 of a vector space X:

(a) ri(S) ⊆ S ⊆ cl(S) ⊆ aff(S).

(b) If S1 ⊆ S2 and aff(S1) = aff(S2) then ri(S1) ⊆ ri(S2).

(c) If S1 ⊆ S2 then cl(S1) ⊆ cl(S2).

(d) aff(ri(S)) ⊆ aff(S) ⊆ aff(cl(S)).

(e) aff(cl(S)) ⊆ aff(S)).

(f) If S is convex and ri(S) ̸= ∅ then aff(S) ⊆ aff(ri(S)).

Remark: The condition aff(S1) = aff(S2) in (b) cannot be dropped. For example,

in R2, ri([0, 1] × {0}) = (0, 1) × {0} but ri([0, 1]2) = (0, 1)2. In (f) we do not know

whether the condition that S is convex can be dropped.

We offer proofs only for those parts of Lemma 1 for which we suspect that the

proofs might not be obvious.

Proof. (a) Proof of cl(S) ⊆ aff(S): If x ∈ cl(S) then either x ∈ S, in which

case x ∈ aff(S) is obvious, or x /∈ S and there is some y ∈ S such that:

z ≡ 0.5x + 0.5y ∈ S. By the definition of affine hull: −y + 2z ∈ aff(S), and

notice that −y + 2z = x.

(f) Consider any x ∈ S. We are going to argue that x can be written as an affine

combination of elements of ri(S). This obviously implies the claim. We are

going to use Lemma 2 below. By Lemma 2, (1− α)x + αy ∈ ri (S) for all

y ∈ ri(S) and all 0 < α ≤ 1. Because we have assumed ri(S) is non-empty,

at least one y ∈ ri(S) exists. Then, z ≡ 0.5x + 0.5y ∈ ri(S). But note that

x = −y + 2z, and thus x is an affine combination of y and z.

□
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3. Algebraic Relative Interior and Algebraic Closure Of Convex

Sets

Proposition 1. For all subsets S of a vector space X:

(a) If S is convex, then ri(S) is convex.

(b) If S is convex, then cl(S) is convex.

Proof. (a) Consider x, y ∈ ri (S) and z ∈ aff (S). Then there exist αx ∈ (0, 1)

such that for all α ∈ [0, αx], (1− α)x + αz ∈ S and αy ∈ (0, 1) such that

for all α ∈ [0, αy], (1− α) y + αz ∈ S. Now consider λx + (1− λ) y for any

λ ∈ [0, 1]. Note that:

(1− α) [λx+ (1− λ) y] + αz

= λ [(1− α)x+ αz] + (1− λ) [(1− α) y + αz] .

For all α ∈ [0,min {αx, αy}], (1− α)x+ αz ∈ S and (1− α) y + αz ∈ S. The

convexity of S implies (1− α) [λx+ (1− λ) y] + αz ∈ S. So λx+ (1− λ) y ∈
ri (S).

(b) Let x, y ∈ cl (S) and λ ∈ [0, 1]. We want to prove that λx+ (1− λ)y ∈ cl(S),

that is, that there there exists z ∈ S such that (1−α)[λx+(1−λ)y]+αz ∈ S

for all α ∈ (0, 1]. Because x, y ∈ cl (S) there exist zx, zy ∈ S such that

(1 − α)x + αzx ∈ S and (1 − α)y + αzy ∈ S for all α ∈ (0, 1]. We set

z = λzx + (1− λ)zy. Note that:

(1− α)[λx+ (1− λ)y] + αz

= (1− α)[λx+ (1− λ)y] + α[λzx + (1− λ)zy]

= λ[(1− α)x+ αzx] + (1− λ)[(1− α)y + αzy]

and this is contained in S for all α ∈ (0, 1] because S is convex.

□

Lemma 2. If S is a convex subset of a vector space X, and if y ∈ cl (S), then

(1− λ)x+ λy ∈ ri (S) for all x ∈ ri(S) and all 0 ≤ λ < 1.

Proof. Step 1: We first show (1− λ)x+ λy ∈ S. y ∈ cl (S) means that there exists

x1 ∈ S such that (1− α)y + αx1 ∈ S for all α ∈ (0, 1]. Also, x ∈ ri (S) implies that

(1− α)x+ α (2x− x1) ∈ S for all α ∈ [0, ᾱ] for some ᾱ ∈ (0, 1). This holds because
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2x−x1 ∈ aff(S). Now pick any α ∈ (0, ᾱ) and note that (1−λ)x+λy can be written

as the convex combination:

λ+ α

1 + α

{[
1− (1− λ)α

λ+ α

]
y +

(1− λ)α

λ+ α
x1

}
+

(
1− λ+ α

1 + α

)
{(1− α)x+ α (2x− x1)}

The two vectors in curled brackets are contained in S. By the convexity of S, therefore

also their convex combination is contained in S. Hence, (1− λ)x+ λy ∈ S.

Step 2: We next show (1− λ)x + λy ∈ ri(S). Let z ∈ aff(S). We have to show

that there exists ᾱ ∈ (0, 1) such that for all α ∈ [0, ᾱ]:

(1− α) [(1− λ)x+ λy] + αz ∈ S.

y ∈ cl (S) means that there exists x1 ∈ S such that (1 − α)y + αx1 ∈ S for all

α ∈ (0, 1]. x ∈ ri (S) implies that there exists ᾱ ∈ (0, 1) such that for all α ∈ (0, ᾱ],

(1− α)x+ α

[
− λ

1− λ
x1 +

1

1− λ
z

]
∈ S.

This is because − λ
1−λ

x1 +
1

1−λ
z ∈ aff(S). Now pick any α ∈ (0, ᾱ) and note that

(1− α) [(1− λ)x+ λy] + αz can be written as the convex combination:

λ {(1− α)y + αx1}+ (1− λ)

{
(1− α)x+ α

[
− λ

1− λ
x1 +

1

1− λ
z

]}
.

The two vectors in curled brackets are contained in S. By the convexity of S, therefore

also their convex combination is contained in S. Hence, (1− α) [(1− λ)x+ λy]+αz ∈
S. □

4. Iterating Operators

Proposition 2. If S is a convex subset of a vector space X then ri(ri(S)) = ri(S).

Remark: The condition that S be convex can not be dropped from this Proposition.

The set S in Figure 6 on page 441 in Ok (2007) is a counterexample. The origin is in

ri(S) but not in ri(ri(S)), because the affine hull of ri(S) is in this example R2, but

for x = (0, 0) and y = (1, 0) there is no ᾱ > 0 such that (1 − α)x + α(1, 0) ∈ ri(S).

This point is also made in Exercise 22 in Ok (2007).
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Proof. Step 1: First we prove ri (riS) ⊆ ri(S). The claim is obviously true if ri(S)

is empty. Therefore, we now assume that ri(S) is not empty. x ∈ ri (ri(S)) implies

that for every y ∈ aff (ri(S)), there exists ᾱ ∈ (0, 1) such that for all α ∈ [0, ᾱ]:

(1− α)x+ αy ∈ ri(S).

Recall from part (f) in Lemma 1 that convexity of S and non-emptiness of ri (S)

imply: aff (S) ⊆ aff (ri(S)) and that according to part (a) in Lemma 1: ri(S) ⊆ S.

Therefore we can conclude that for every y ∈ aff (S) there exists ᾱ ∈ (0, 1) such that

for all α ∈ [0, ᾱ]:

(1− α)x+ αy ∈ S,

and hence x ∈ ri(S).

Step 2: Next we prove ri(S) ⊆ ri (ri(S)).The claim is obviously true if ri(S) is

empty. Therefore, we now assume that ri(S) is not empty. x ∈ ri (S) implies that

for every y ∈ aff (S) there exists ᾱ ∈ (0, 1) such that for all α ∈ [0, ᾱ]:

(1− α)x+ αy ∈ S.

Because S is convex, we can appeal to Lemma 2 and conclude that for all λ with

0 < λ ≤ 1 and for all α ∈ [0, ᾱ]:

(1− λ)[(1− α)x+ αy] + λx ∈ ri(S).

But this means that for all α ∈ (0, ᾱ):

(1− α)x+ αy ∈ ri(S).

This argument applies to all y ∈ aff (S). But now recall part (d) in Lemma 1 implies:

aff (ri(S)) ⊆ aff (S)). So x ∈ ri (ri(S)). □

Proposition 3. If S is a convex subset of a vector space X and ri(S) ̸= ∅ then

cl(cl(S)) = cl(S).

Remark: The condition that S be convex can not be dropped from this Proposition.

Here is a counterexample.

S = (Q \ {0} × (0,+∞)) ∪ (R \Q× (−∞, 0)) .

On the one hand, (0, 0) /∈ cl (S). On the other hand, for all t ̸= 0, (t, 0) ∈ cl (S) and

thus (0, 0) ∈ cl (cl (S)).
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Proof. Parts (a) and (c) of Lemma 1 imply that for any set S we have: cl(S) ⊆
cl(cl(S)). It remains to show that x ∈ cl(cl(S)) implies x ∈ cl(S). Since ri (S) ̸= ∅,
take any y ∈ ri (S) ⊆ S. By Proposition 4 below we have: ri(S) = ri(cl(S)). So

y ∈ ri(cl(S)). Because S is convex, we know from part (b) in Proposition 1 that cl(S)

is convex. Applying Lemma 2 to cl (S), we get (1−λ)y+λx ∈ ri(cl(S)) = ri (S) ⊆ S

for all 0 ≤ λ < 1. So x ∈ cl (S). □

5. Swapping the Order of Operators

Proposition 4. If S is a convex subset of a vector space X and ri(S) ̸= ∅ then

cl(ri(S)) = cl(S) and ri(cl(S)) = ri(S).

Proof. Step 1: cl (ri (S)) ⊆ cl (S) follows directly from (a) and (c) in Lemma 1.

To prove cl (S) ⊆ cl (ri (S)) we consider any x ∈ cl (S). Since ri (S) ̸= ∅, take any

y ∈ ri (S). Then Lemma 2 implies(1 − λ)y + λx ∈ ri (S) for all 0 ≤ λ < 1 and thus

x ∈ cl (ri (S)).

Step 2: ri (S) ⊆ ri (cl (S)) follows directly from (b), (d) and (e) in Lemma 1. It

remains to show: ri (cl (S)) ⊆ ri (S). Suppose x ∈ ri (cl (S)). Since ri (S) ̸= ∅, take
y ∈ ri (S). If x = y, then the claim holds trivially. So we focus on the case where

x ̸= y. Note that x ∈ cl (S) and y ∈ cl (S). So 2x − y ∈ aff (cl (S)). x ∈ ri (cl (S))

implies that there exists ᾱ ∈ (0, 1) such that for all α ∈ [0, ᾱ],

x+ α (x− y) = (1− α)x+ α (2x− y) ∈ cl (S) .

Pick any α ∈ (0, ᾱ). Note that

x =
1

1 + α
[x+ α (x− y)] +

(
1− 1

1 + α

)
y.

Lemma 2 then implies x ∈ ri (S). □

Corollary 1. Let S1 and S2 be two subsets of a vector space X and suppose ri(S1) ̸= ∅
and ri(S2) ̸= ∅. Then ri(S1) = ri(S2) if and only if cl(S1) = cl(S2).

Proof. If ri(S1) = ri(S2), we have: cl(ri(S1)) = cl(ri(S2)), and therefore, by Lemma

4, cl(S1) = cl(S2). If cl(S1) = cl(S2), we have: ri(cl(S1)) = ri(cl(S2)), and therefore,

by Lemma 4, ri(S1) = ri(S2). □
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6. 6. Linear Mappings

In this section we fix two vector spaces X and Y and a linear mapping f : X → Y .

Proposition 5. For all sets S ⊆ X: f(cl(S)) ⊆ cl(f(S)).

Proof. Suppose y ∈ f(cl(S)). We need to show y ∈ cl(f(S)). Note that y ∈ f(cl(S))

means that there is some x ∈ cl(S) for which y = f(x). Moreover, x ∈ cl(S)) means

that there is some z ∈ S such that λz + (1− λ)x ∈ S for all λ ∈ (0, 1]. Because f is

linear, we obtain: λf(z) + (1− λ)f(x) ∈ f(S) for all λ ∈ (0, 1]. Because f(z) ∈ f(S)

this means that f(x) ∈ cl(f(S)), which is what we had to prove. □

Proposition 6. For all convex sets S ⊆ X with ri(S) ̸= ∅: f(ri(S)) = ri(f(S)).

Proof. We first prove that y ∈ f(ri(S)) implies y ∈ ri(f(S)). Note that y ∈ f(ri(S))

means that there is some x ∈ ri(S) for which y = f(x). Moreover, x ∈ ri(S)

means that for every z ∈ aff(S) there is some ᾱ ∈ (0, 1) such that for all α ∈ [0, ᾱ]:

(1− α)x+ αz ∈ S. Because f is linear, we obtain: (1− α)f(x) + αf(z) ∈ f(S). Now

f (z) ∈ f(aff(S)) (by definition) and f(aff(S)) = aff(f(S)) (which one can easily

verify) imply f(z) ∈ aff(f(S)). Thus, we can conclude f(x) ∈ ri(f(S)).

Next we prove: ri(f(S)) ⊆ f(ri(S)). A slightly stronger claim is: ri(f(S)) =

ri (f(ri(S))). This is what we shall show. In the argument that follows, we employ

Corollary 1 as well as Propositions 3, 4, and 5. We postpone checking the assumptions

of these results until the end of the proof.

By Corollary 1 what we have to show is equivalent to: cl(f(S)) = cl (f(ri(S))).

Now cl (f(ri(S))) ⊆ cl(f(S)) is obvious because f(ri(S)) ⊆ f(S). It thus remains to

show that cl(f(S)) ⊆ cl (f(ri(S))). By Proposition 3 this is equivalent to: cl(f(S)) ⊆
cl(cl (f(ri(S)))). This follows from: f(S) ⊆ cl (f(ri(S))) . By Proposition 5 this is

implied by: f(S) ⊆ f(cl(ri(S))). By Proposition 4 this is the same as: f(S) ⊆
f(cl(S)), which is obviously true.

We now verify that the assumptions of Corollary 1 and Propositions 3, 4 and 5 hold.

This amounts to verifying that the sets f(S) and f(ri(S)) are both convex and have a

non-empty relative interior. Convexity of the two sets follows from the convexity of S

and ri(S) (by part (a) in Proposition 1) and the linearity of f . To prove ri(f(S)) ̸= ∅
we note that we showed in the first step of this proof that f(ri(S)) ⊆ ri(f(S)). By

assumption ri(S) ̸= 0. Therefore, f(ri(S)) ̸= ∅, and the claim follows. To show
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that ri(f(ri(S))) ̸= ∅ we note again that we showed in the first step of this proof

that f(ri(ri(S))) ⊆ ri(f(ri(S))). By Lemma 2: f(ri(ri(S))) = f(ri(S)), and this is

non-empty because ri(S) ̸= ∅, by assumption. □
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