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Abstract

This paper derives the optimal strategy for a two armed bandit problem

under the constraint that the strategy must be implemented by a finite au-

tomaton with an exogenously given, small number of states. The idea is to

find learning rules for bandit problems that are optimal subject to the con-

straint that they must be simple. Our main results show that the optimal

rule involves an arbitrary initial bias, and random experimentation. We also

show that the probability of experimentation need not be monotonically in-

creasing in the discount factor, and that very patient decision makers suffer

almost no loss from the complexity constraint.
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1. Introduction

The two-armed bandit problem is a classical models in which optimal learn-

ing can be studied. The specific characteristic of bandit problems is that

experimentation is crucial for optimal learning. To learn about the payoff to

some action, the decision maker has to experiment with this, or a correlated,

action.

Optimal Bayesian behavior in two-armed bandit problems is well-under-

stood (Berry and Fristedt (1985)). The purpose of this paper is to begin the

development of an alternative to the Bayesian hypothesis. The alternative

theory assumes that people use strategies for two-armed bandits which are

optimal subject to the constraint that they need to be simple. We model sim-

plicity by requiring that the strategy be implementable by a finite automaton

with a small number of states. It seems plausible that real people’s behavior

might be affected by constraints that limit the complexity of behavior.

We develop our alternative hypothesis for the simplest example for which

interesting results can be obtained. For this example, our main findings are:

• An initial bias in favor of some arbitrarily selected action, such as

“always try out first the alternative to your right” may be optimal.

• The decision maker may find a randomized experimentation strategy

strictly better than any deterministic experimentation strategy.

• The willingness to experiment need not be monotonically increasing in

the discount factor.

• A decision maker with a discount factor very close to one may be able

to choose his experimentation probability so that the payoff loss caused

by the complexity constraint is almost zero.
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To understand why we obtain the result in the first two bullet points one

needs to note first that the requirement that an automaton with a very small

number of states implement the decision maker’s strategy implies that the

decision maker is “absent-minded.” Here we use this term in the same sense

as Piccione and Rubinstein (1997), that is, the decision maker has imperfect

recall, and, in particular, he cannot distinguish current decision nodes from

previous ones. In our model, when considering to abandon some current

action a, and to experiment with some alternative action a′, the decision

maker will not be able to tell whether he has already tried out a′ in the past

(and presumably received a low payoff), or whether he has not yet tried out

a′. The more general idea is that the decision maker cannot recall exactly

how many times he has already tried out an alternative.

As in Piccione and Rubinstein’s model, an implication of such absent-

mindedness is that randomized behaviour may be superior to deterministic

behavior. This explains the second bullet point above. The first bullet point

is that an initial bias in favor of some action, say A, may be optimal. Such an

initial bias implies that, whenever the decision maker plays some other action,

say B, he knows that he must have tried out A before, even if he cannot

remember doing so. This is useful because it allows the decision maker to

infer indirectly information from the fact that he currently playing B. Note

that here we interpret a “strategy” as a rule that the decision maker always

follows when he encounters similar decision problems, and we assume that the

decision maker always remembers this rule. It is only particular instances

of application of that rule that he does not remember. This assumption

underlies to our knowledge all of the literature on imperfect recall.

To see why our third bullet point above is surprising, note that in the

classical multi-armed bandit problem the willingness to experiment increases
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as the discount factor increases. Formally, it is easy to show that the Gittins-

Index of a risky arm is a monotonically increasing function of the discount

factor. The intuitive reason is that experimentation generates information,

and the value of information increases as the discount factor goes up. In our

model this intuition needs to be modified. Experimentation has downside as

well as an upside. The upside is that it may yield useful information. The

downside is that the decision maker may already have experimented before,

but does not recall this fact. If he has already experimented in the past, and

has received a low payoff, then repeated experimentation will yield this low

payoff more frequently. While a very impatient decision maker, if he experi-

ments at all, will typically need to experiment with high probability, so as to

reap the benefits of experimentation quickly, a more patient decision maker

can trade off the upside and downside of experimentation more carefully, and

this will lead him to reduce the experimentation rate in comparison to a very

impatient decision maker.

We will highlight this effect by demonstrating that asymptotically, as the

discount factor tends to one, the payoff loss that is due to the complexity

constraint in our model, tends to zero. A very patient decision maker will be

able to experiment sufficiently much to find superior action in payoff-relevant

time, and on the other hand he will experiment sufficiently infrequently so

that the negative effects of imperfect recall are avoided. This is the fourth

bullet point above.

It should be pointed out that we are assuming in this paper that random-

ization is costless. Technically, randomization is achieved by random transi-

tions of the finite automaton. Our measure of complexity is the number of

states of the finite automaton. This is a standard measure of complexity, but

it ignores the complexity of the transitions, and thus, in particular, random
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transitions are regarded as costly. Banks and Sundaram (1990) have investi-

gated complexity measures for finite automata which take the complexity of

the transition rules into account. Intuitively, our work identifies the memory

that the decision maker needs to allocate to the implementation of his strat-

egy as the main cost, and our work ignores other costs. This seems to us a

scenario that is worthwhile considering, but it is clearly not the only scenario

in which one might be interested.

Our paper is closely related to a paper by Kalai and Solan (2003) who

have presented a general study of optimal finite automata for Markov decision

problems. What we present here is an application of Kalai and Solan’s general

framework to two-armed bandit problems, although our work differs from

theirs in that we assume that there is discounting, whereas they assume that

the decision maker does not discount the future.

The superiority of randomized strategies over deterministic strategies was

already demonstrated by Kalai and Solan (2003) in a different context. They

also constructed automata with an initial bias among actions, but they obtain

this result in a model where actions are ex ante not the same, whereas in our

model actions are ex ante the same.

We mentioned already that our work is also related to Piccione and Rubin-

stein (1997). However, our framework is in one important respect different.

In our model, the particular form of imperfect recall that we study is de-

rived from an optimization problem. By constructing the optimal two state

automaton we are essentially asking how a very small amount of available

memory should optimally be used. By contrast, in Piccione and Rubinstein’s

work, which information will be stored, and which will be forgotten, is ex-

ogenously given.

Schlag (2003) has also studied several desirable properties of simple learn-
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ing algorithms for bandit problems. However, he uses minmax criteria, and

dominance criteria, whereas we use entirely orthodox Bayesian criteria to

evaluate different algorithms.

This paper is a companion paper to Börgers a nd Morales (2004). In that

paper we study an example with two perfectly negatively correlated arms

and binary random payoffs. We show that the optimal two state automaton

is extremely simple, and does not involve an initial bias, nor a stochastic

transition rule. Rather, the optimal automaton plays in each period with

probability 1 the action that was successful in the last period.

This paper is organized as follows: In Section 2 we explain the two-armed

bandit problem that we study. In Section 3 we derive the strategy that would

be optimal if complexity constraints played no role. In Section 4 we show

how the unconstrained optimal strategy can be implemented using finite

automata. We study, in particular, the minimum number of states that a

finite automaton that implements the optimal strategy has to have. It turns

out that in our example this number is three. In Section 5 we then turn

to the core of our paper: We investigate which strategy the decision maker

would choose if he had to choose a strategy that can be implemented by

an automaton with only two states. Sections 6 and 7 discuss properties of

the automaton identified in Section 5. Whereas in Section 5 the size of the

automaton which the decision maker uses is exogenous, we briefly investigate

in Section 7 the case that it is endogenous. Section 8 concludes.

2. Set-Up

There is a single decision maker. Time is discrete, and the time horizon is

infinite, so that the time periods are: t = 1, 2, 3, .... In every period t the

decision maker chooses an action a. He has two actions to choose from: A
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and B. The period payoff to each action is deterministic; that is, whenever

the decision maker chooses action a in some period, he receives payoff πa in

that period.

The decision maker does not know, however, which value the payoffs πA

and πB have. His prior beliefs are that each of the two payoffs can take one

of three values: 0, some number x ∈ (0, 1), or 1. He assigns to each of these

three possibilities the probability 1
3
. He believes the payoff of action A to be

stochastically independent of the payoff to action B.

The decision maker seeks to maximize the expected value of the present

discounted value of his per period payoffs. He uses a discount factor δ ∈ (0, 1).

3. Unconstrained Optimal Strategy

We begin by determining the optimal strategy of the decision maker assuming

that there are no complexity constraints. Clearly, as payoffs are deterministic,

the decision maker can find out in at most two periods which action yields

the best payoff, and he can then play that action forever. The question is

whether it is worthwhile for the decision maker to identify the action with

the highest payoff.

Suppose that the decision maker chooses some action a in period 1. Be-

cause our model is symmetric with respect to actions, it does not matter

which action a is. Denote the other action by a′ 6= a. If the decision maker

receives payoff 1 in period 1, then he should clearly not switch to action a′.

If the decision maker receives payoff 0, then clearly it is worth switching to

action a′ in period 2. If he then receives a higher payoff for a′, then he should

stick with that action. If he receives payoff 0 for action a′ as well, then it

does not matter any further what the decision maker does, and any strategy

is optimal.

8



This leaves the question whether the decision maker should switch to

a′ if he receives payoff x in period 1. First we note that, if he does so at

all, he should do so immediately in period 2 because he can then utilize

the information gained from the experiment for the maximum number of

periods. If the decision maker sticks with a, his payoff, calculated from

period 2 onwards, is:

1

1 − δ
x. (1)

If the decision maker tries out a′, then his expected payoff, calculated from

period 2 onwards, is:

1

3

(

δ

1 − δ
x +

1

1 − δ
x +

1

1 − δ

)

. (2)

A little bit of algebra shows that the decision maker is willing to experiment

with a′ if:

δ ≥ δ̄ ≡ 2 − 1

x
. (3)

This shows that the decision maker is willing to experiment with a′ if he

is sufficiently patient, as one would intuitively expect. Observe that the

threshold δ̄ is strictly positive if x > 0.5. For x ≤ 0.5, the decision maker is

willing to experiment for every value of the discount factor.

Figure 1 shows the threshold for the discount factor δ as a function of x.

When (x, δ) are above the line in Figure 1, the decision maker will experiment

if he receives payoff x after his initial choice. Whenever (x, δ) are below the

line, then the decision maker will not experiment if he receives x in period

1, but he will stick with his initial choice in all future periods. When (x, δ)

are on the line shown in Figure 1, the decision maker is indifferent between

experimenting and not experimenting.

An interesting feature of the optimal strategy is that it does not always

find the optimal action with probability 1. This is, of course, a well-known
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property of optimal strategies for bandit problems. In our example, if the

decision maker does not experiment following a payoff of x, and if the other

action has payoff 1, then the decision maker will never find out that the

initially chosen action is not optimal.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

δ

x

Experiment Don’t Experiment

Figure 1: The experimentation threshold.

4. Implementing the Unconstrained Optimal Strategy With a

Minimal Finite Automaton

We now bring complexity considerations into play. We assume that the

decision maker uses a finite automaton to implement his strategy, and that he

measures the complexity of this automaton by counting the number of states

of this automaton. In this section, as an intermediate step, we also assume

that the decision maker is not willing to give up material payoff in order to

reduce complexity. In other words: The decision maker is assumed in this
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section to insist on implementing the strategy that is optimal if complexity

constraints are ignored. His concern for complexity is only reflected by the

fact that he wishes to implement this strategy using an automaton with a

minimal number of states. The purpose of this section is to find the automata

which implement the optimal strategy with the smallest number of states.

Consider first the case in which the decision maker does not want to

experiment after payoff x, i.e. the case in which: δ <≤ δ̄. In this case, the

following automaton implements the optimal strategy:

A

B

π = x, 1

π = x, 1

π = 0π = 0

Figure 2: An automaton which does not experiment if π = x.

This figure should be read as follows: The circles represent states of

the automaton. The letters in the circles represent the action which the

decision maker takes if he is in these states. An arrow which begins in one

state and which ends in another state indicates a transition rule. The text

along the arrow indicates when the transition rule is applied. In this text,

the letter π refers to the payoff received. Thus, in Figure 2 we have, for

example, indicated the rule that the decision maker switches from A to B
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if the payoff received from A was zero. Loops which start and end in the

same state indicate rules which say that the decision maker does not switch

state. Thus, in Figure 2, we have indicated, for example, the rule that the

decision maker stays with action A if his payoff π is either x or 1. Finally,

an arrow which comes from the left, and which points at a state but does

not start in any state, indicates that the state pointed at is an initial state of

the automaton, i.e. a state in which the automaton starts operations. The

automaton in Figure 2 has two initial state. The initial state can be chosen

at random.

Note that the number of states in Figure 2 is clearly the minimal number

of states of an automaton that implements the optimal strategy. Such an

automaton must have at least two states, because such an automaton must

have one state corresponding to the action A, and another state correspond-

ing to the action B. On the other hand, the automaton in Figure 2 is not

the only two state automaton that implements the optimal strategy. Other

automata could be constructed which have, say, A as the initial state, and

which do not switch back from B to A if B gives payoff 0, or which switch

back stochastically in that case.

Consider now the case in which the decision maker does want to experi-

ment after payoff x, i.e. the case in which: δ > δ̄. In this case, the automaton

in Figure 3 implements the optimal strategy. This automaton has two states

for each action: one in which the action is tried out as the first choice, and

another one in which the action is played after the other action has already

been tried out. In the first type of state, a payoff of x induces the decision

maker to switch state, whereas in the second type of state, a payoff of x is

does not induce the decision maker to switch state.
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A

B

B

A

π = 1 π = x, 1

π = 1 π = x, 1

π = 0, x

π = 0, x

π = 0 π = 0

Figure 3: An automaton which experiments if π = x.

The automaton in Figure 3 is a simple extension of the automaton in

Figure 2. However, it is not optimal. A smaller automaton can implement

the unconstrained optimal strategy. It is shown in Figure 4.

A B A
π = 0, x

π = 1

π = 0

π = x, 1 π = 0, x, 1

Figure 4: An asymmetric optimal automaton which experiments if π = x.

This automaton, unlike the automaton in Figure 3, is asymmetric with

respect to actions. Action A is always tried out first. Hence, for action B

the automaton does not need two states. If B is played, then A has already

been tried out. Therefore, the behavior that in Figure 3 was assigned to the
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second ”B-state” is always optimal. In particular, if payoff x is received, the

decision maker does not experiment with A. For action A the automaton in

Figure 4, like the automaton in Figure 3, has two states: One when action

A is tried out initially, and another one for the case that B has been played

before.

The automaton in Figure 4 is minimal. No automaton with only two

states can implement the optimal strategy if δ > δ̄. If an automaton has

only two states, then one of them needs to have the action A assigned to

it, and the other one needs to have the action B assigned to it. Otherwise

the automaton could only play one action. For each state there will be some

probability with which the automaton switches state if the payoff received

is x. Consider a state which is initial state with positive probability. If the

probability of leaving this state for payoff x is zero, then the automaton

cannot find the optimal action with probability 1 if the alternative action

leads to payoff 1. On the other hand, if the probability of leaving this state

for payoff x is strictly positive, then the automaton cannot find the optimal

action if the alternative action leads to payoff 0. Thus, it cannot always

find the optimal action, and therefore it can in particular not implement the

optimal strategy.

The automaton in Figure 4 is thus optimal. It is not quite unique. Firstly,

of course, the roles of the actions A and B could be switched. Secondly, the

automaton could switch back from the final state to one of the earlier states

if payoff π = 0 is received.

Every optimal automaton, however, has to have one simple feature of the

automaton in Figure 4, that is, that it has an initial bias, and picks some

particular action as the initial action, although there is no difference ex ante

between these two actions. To see that this is needed notice that every three
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state automaton will need to have two states corresponding to one action,

and one state corresponding to the other action. The latter state can not

be initial state, because a similar argument as given in the context of the

automaton in Figure 2 would construct a contradiction involving the exit

probability from the initial state if the payoff received is π = x.

The initial bias helps the decision maker to overcome memory constraints.

If action A is chosen as the initial action whenever the decision maker en-

counters a two-armed bandit problem of the type considered here, then, if

he finds himself playing B, he will know that he must has played A before,

even if he doesn’t recall doing so. The initial bias substitutes for recollection

of the actual event.

Note the assumption that is implicit in the above argument: The decision

maker remembers his strategy, i.e. the automaton which he is using, even

though he does not remember the particular last instance when he used it.

This assumption is implicit in all of the literature on imperfect recall. It is

hard to see how one would proceed without making this assumption.

5. The Optimal Two State Automaton

Now we ask which automaton would be optimal if the decision maker wished

to use a strategy which is of lower complexity than the strategy which is

optimal without complexity constraints. Again, we measure the complexity

of a strategy by counting the number of states of a minimal finite automaton

that implements the strategy. In the previous section we showed that no

more than three states are needed to implement the strategy that is optimal

without complexity constraints. We also noted in the previous section that

it is of no interest to consider automata with only one state. Thus, the only

case that is of interest is that the decision maker is only willing to use a finite
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automaton with two states. We shall take this desire of the decision maker

in this section as exogenous. In Section 7 we shall briefly discuss the case in

which the number of states of the automaton is endogenous.

For the case that the decision maker is impatient, i. e. δ < δ̄, we showed

in the previous section that the strategy that is optimal without complexity

constraints can be implemented by a two state automaton. Thus, in this case

the constrained optimal strategy is the same as the unconstrained optimal

strategy.

We turn to the case that the decision maker is patient, i.e. that δ > δ̄.

We assume that the decision maker uses a two state automaton where the

action assigned to one state is A, and the action assigned to the other state

is B.

We shall assume that the state corresponding to action A is the initial

state. Thus, we postulate what we called above an “initial bias”. Whether

such a bias is indeed optimal follows from our analysis in the following way. If

we find for the optimal automaton with initial state A that a lower expected

payoff would result if the automaton were started in state B, leaving all

transition rules of the automaton unchanged, then it is optimal to have an

initial bias (although, of course, this bias might be in favor of B rather than

A). By contrast, if we find for the optimal automaton thus obtained that

the expected payoff that would result if state B were chosen as the initial

state equals the expected payoff that results with A as the initial state, then

the initial state can indeed be chosen at random and there is no need for an

initial bias. We shall therefore first carry out the optimization conditional

on A being the initial state, and then later below we return to the question

whether this initial bias is actually optimal.

Assuming hence for the moment that the initial state is A, we now de-
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termine the optimal transition probabilities. If in state A, or B, the decision

maker receives payoff 1, then he should remain in the state in which he is. If

in either of the two states he receives payoff 0, then he should switch to the

other state.1

The previous paragraph implies that the decision maker will reach state

B only after receiving either payoff 0 or payoff x in state A. Therefore, in

state B, it is optimal to stay in B if the payoff received is x.

We have now determined all optimal transitions with one exception: The

case that the payoff x is received in the state A. We shall investigate the

optimal transition for this case in more detail below. First, we show in Figure

5 the optimal automaton as described so far.

A B

π = 0

π = 1

π = 0

π = x, 1π = x

Figure 5: The optimal two-state automaton that experiments.

In Figure 5 we have indicated the missing transition, the transition out

of state A if the payoff received was x, by a dashed line. This indicates

that this transition has not yet been determined. We denote the probability

with which the state changes for this payoff by p. In the following we now

determine the expected payoff as a function of p.

First, we note that the value of p affects the decision maker’s expected

payoffs in only two cases, firstly the case that (πA, πB) = (x, 0), and secondly,

1If state B can only be reached after payoff 0 for action A, then it might also be optimal

to stay in state B after a payoff of 0.
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the case in which (πA, πB) = (x, 1). Both cases are equally likely. We shall

therefore choose p so as to maximize the sum of the decision maker’s expected

payoffs in the two cases.

We denote by V(πA,πB),s the decision maker’s expected payoff, conditional

on the event that the true payoffs are (πA, πB), and conditional on the current

state being s. Thus, in the cases of interest to us, (πA, πB) is either (x, 0)

or (x, 1). Because the initial state is A, we shall focus on s = A. We shall

study how to choose p so as to maximize:

V(x,0),A + V(x,1),A. (4)

Now observe that:

V(x,0),A = x + δ
(

pV(x,0),B + (1 − p)V(x,0),A

)

; (5)

V(x,0),B = δV(x,0),A. (6)

We substitute the second equation into the first one and solve for V(x,0),A to

find:

V(x,0),A =
1

1 + δp
· x

1 − δ
. (7)

Similarly, by construction we have in the case that the true payoffs are (x, 1):

V(x,1),A = x + δ
(

pV(x,1),B + (1 − p)V(x,1),A

)

; (8)

V(x,1),B =
1

1 − δ
. (9)

Substituting again the second equation into the first one, and solving for

V(x,1),A, we find:

V(x,1),A =
1 − δ

1 − δ + δp
· x

1 − δ
+

δp

1 − δ + δp
· 1

1 − δ
. (10)

The sum that we seek to maximize is thus:

V ≡ 1

1 + δp
· x

1 − δ
+

1 − δ

1 − δ + δp
· x

1 − δ
+

δp

1 − δ + δp
· 1

1 − δ
. (11)
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The first term, which represents expected payoffs in the case that (πA, πB) =

(x, 0) is decreasing in p. If πB = 0, then it is not advantageous to switch

away from A to B. The sum of the second and third terms, which represents

expected payoffs in the case that (πA, πB) = (x, 1), is increasing in p. If

πB = 1, it is advantageous to switch from A to B.

Intuitively, the trade-off that determines the optimal choice of p is as

follows: If the decision maker plays action A and has not yet tried out B,

then it is optimal to experiment if the intermediate payoff x is received. But

if the decision maker has already tried out B, then it is optimal after payoff

x to stick to B. This is because the decision maker switches back to A from

B only if B gives payoff 0. Now, if using an automaton with only two states,

the decision maker is not able to distinguish the case that B has not yet been

tried out from the case that B has already been played.

Thus, the crucial constraint imposed on the agent by the limit on the

number of states of the automaton is a constraint on his memory. The

decision maker’s has to implement a strategy which has imperfect recall.

In a more general model, the corresponding constraint would be that the

decision maker, when playing an action, cannot remember how often he has

experimented with this action before.

We now maximize V with respect to p. First, we note that maximizing

V is the same as maximizing

W ≡ (1 − δ)V =
1

1 + δp
· x +

1 − δ

1 − δ + δp
· x +

δp

1 − δ + δp
. (12)

Now:

∂W

∂p
= − δ

(1 + δp)2
· x − δ(1 − δ)

(1 − δ + δp)2
· x +

δ(1 − δ)

(1 − δ + δp)2
. (13)
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We begin by asking when this marginal derivative is strictly positive:

∂W

∂p
= − δ

(1 + δp)2
· x − δ(1 − δ)

(1 − δ + δp)2
· x +

δ(1 − δ)

(1 − δ + δp)2
> 0 ⇔

1

(1 + δp)2
· x <

1 − δ

(1 − δ + δp)2
· (1 − x) ⇔

1 − δ + δp

1 + δp
<

√

(1 − δ)
1 − x

x
⇔

(

1 −
√

(1 − δ)
1 − x

x

)

δp <

√

(1 − δ)
1 − x

x
− (1 − δ). (14)

In this inequality the right hand side is positive for the parameter values

which we are considering here:

√

(1 − δ)
1 − x

x
− (1 − δ) > 0 ⇔

√

(1 − δ)
1 − x

x
> 1 − δ ⇔

√

1 − x

x
>

√
1 − δ ⇔

1 − x

x
> 1 − δ ⇔

δ > 2 − 1

x
, (15)

which is the condition which ensures that the unconstrained optimal strategy

experiments after receiving payoff x. The factor in front of the left hand side

of our inequality for p is strictly positive if:

1 −
√

(1 − δ)
1 − x

x
> 0 ⇔

(1 − δ)
1 − x

x
< 1 ⇔

δ >
1 − 2x

1 − x
. (16)

If this inequality does not hold, then the left hand side of our inequality

is negative for all positive values of p, and hence p = 1 is optimal. The
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boundary for δ on the right hand side of (18) is positive if

1 − 2x

1 − x
> 0 ⇔

x <
1

2
. (17)

Thus, if x ≥ 1
2
, inequality (18) holds for all values of δ in (0, 1). But if x < 1

2
,

then there is a positive threshold for δ such that for δ’s below that threshold

p = 1 is optimal.

Figure 6 visualizes our findings so far. We include in this figure the ex-

perimentation threshold given by equation (3), because, as remarked above,

if δ is below that threshold the two state automaton in Figure 2 is optimal,

and hence p = 0.

0.0 0.2 0.4 0.6 0.8 1.0
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0

0.
2

0.
4

0.
6

0.
8

1.
0

x

δ

p=1 p=0

Optimal p given by

first order condition

Figure 6: The optimal experimentation probabilities.

In the intermediate area of Figure 6 we have written that the first order

condition determines p. By this we mean that the optimal p is the largest

21



value in the interval [0, 1] that satisfies (16). To determine this value, we first

re-write (16) as an equality and solve for p:
(

1 −
√

(1 − δ)
1 − x

x

)

δp =

√

(1 − δ)
1 − x

x
− (1 − δ) ⇔

p =

√

(1 − δ)1−x
x

− (1 − δ)
(

1 −
√

(1 − δ)1−x
x

)

δ
⇔

p =

√
1 − δ

√
1 − x − (1 − δ)

√
x

(√
x −

√
1 − δ

√
1 − x

)

δ
. (18)

The right hand side of this equation may be larger than one. Therefore, the

solution of the first order condition is:

p = min{
√

1 − δ
√

1 − x − (1 − δ)
√

x
(√

x −
√

1 − δ
√

1 − x
)

δ
, 1}. (19)

This is the value of the optimal experimentation probability p in the inter-

mediate area in Figure 6.

We return to the question whether an initial bias is useful to the agent.

Recall from above that we need to check whether a lower payoff would result

if B were chosen as the initial state, keeping transition probabilities fixed.

From our construction it is clear that this would be the case whenever the

optimal transition probability p is strictly positive. This is true whenever

δ > δ̄, i.e. whenever the unconstrained optimal strategy experiments after

receiving payoff x.

Recall also from footnote 1 above that it might not be necessary that the

decision maker leaves state B after receiving payoff 0. He might stay in that

state if state B can only be reached after payoff 0 was received in state A.

This is the case if p = 0, i.e. if the unconstrained optimal strategy does not

experiment after receiving payoff x.

For the parameter values in which the unconstrained optimal strategy

does experiment after receiving payoff x we thus find that there is an essen-
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tially unique optimal automaton. It is the automaton in Figure 5 with the

transition probabilities determined in this section. The only non-uniqueness

results from the fact that it is indeterminate whether the initial bias is in

favor of A or in favor of B.

6. Discussion of the Optimal Experimentation Probability

We now investigate how the optimal experimentation probability p changes

as the parameters x and δ change. In Figure 7 we show p as a function of

δ, keeping x = 0.4 fixed. We see that for low values of δ the optimal value

of p is equal to 1, but then, as δ rises beyond some threshold, p declines

continuously, and converges for δ → 1 to 0. A similar picture arises for all

x ≤ 0.5. We show in Figure 8 the same curve for five different values of x:

0.1, 0.2, 0.3, 0.4, and 0.5. Figure 8 shows that, as x rises, the area in which p is

equal to one shrinks, and the experimentation probability p shifts uniformly

downwards.

In Figure 9 we show the optimal p as a function of δ for a value of

x above 0.5. We have picked: x = 0.53. We see that the optimal p is

initially equal to 0, then, as δ exceeds some threshold, rises quickly to 1,

and finally declines continuously, and converges for δ → 1 to 0. Figure 9

shows the same curve for some other values of x that are larger than 0.5:

x = 0.51, 0.52, 0.53, 0.54, 0.55, 0.6, 0.7, 0.8, 0.9. Figure 9 shows that, as x

rises, the optimal experimentation probability shifts uniformly downwards.

Moreover, the area in which it is equal to 1 shrinks, and for sufficiently large

values of x, it disappears.
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Figure 7: The optimal experimentation probabilities for x = 0.40.
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Figure 8: The optimal experimentation probabilities for

x = 0.10, 0.20, 0.30, 0.40, 0.50.

(Arrow indicates direction of increasing x.)

24



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

δ

p

Figure 9: The optimal experimentation probabilities for x = 0.53.
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Figure 10: The optimal experimentation probabilities for

x = 0.51, 0.52, 0.53, 0.54, 0.55, 0.60, 0.70, 0.80, 0.90.

(Arrow indicates direction of increasing x.)
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Figures 7-10 show a remarkable feature of experimentation rates. While,

as x rises, the optimal experimentation probability uniformly decreases, the

variation of the optimal p as a function of δ is non-monotonic. As we men-

tioned in the Introduction, conventional intuition would suggest that exper-

imentation rates increase as δ increases because the value of information

increases with δ. However, there is a force in our model that operates in

the opposite direction. Experimentation has a downside, because it might

occur in situations where the alternative action has already been tried out,

and rejected. Decision makers with high δ can reduce their experimentation

rates to avoid this effect, and they can still be confident that they still reach

optimal actions sufficiently quickly. By contrast, impatient decision makers

need quick successes, and therefore they have to have higher experimentation

rates.

Very patient decision makers can, in fact, choose their experimentation

rates judiciously so that the loss in expected payoffs that is caused by the

restriction to a two state automaton is close to zero. This point will be

further elaborated in the next section.

7. Discussion of the Expected Payoff Loss Due to Complexity

Constraints

We now investigate the loss in expected utility which the decision maker

suffers when he uses a two-state automaton instead of implementing the op-

timal strategy. In Figure 11 we show the expected payoff loss as a function of

the discount factor δ for x = 0.1, 0.2, 0.3, 0.4, 0.5. Figure 12 is the analogous

graph for x = 0.5, 0.6, 0.7, 0.8, 0.9.
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Figure 11: The loss in expected utility for x = 0.1, 0.2, 0.3, 0.4, 0.5.

(Arrow indicates direction of increasing x.)
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Figure 12: The loss in expected utility for x = 0.5, 0.6, 0.7, 0.8, 0.9.

(Arrow indicates direction of increasing x.)
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These figures make it easy to endogenize the number of states of the au-

tomaton that the decision maker uses. Suppose that the costs of introducing

an additional state to a two state automaton are equal of c > 0. Then the

decision maker will use a two state automaton whenever the loss depicted

in Figures 11 and 12 is below c. Thus, for fixed x, a two state automaton

will be used if δ is either close to 0 or close to 1. For fixed δ, a two state

automaton will be used if x is close to 0 or 1.

We now discuss some of the intuition behind the graphs in Figures 11

and 12. We focus on the dependence of payoff losses on the discount factor

δ. It is unsurprising that, for fixed x, payoff losses are low for values of δ

that are close to 0. In Figure 12, when x ≥ 1
2
, there is no difference between

the strategy implemented by the two-state automaton and the unconstrained

optimal strategy if δ is low. In Figure 11, where x ≤ 1
2

there is a difference

in strategies, but this difference is not very important for small values of δ

because for low δ learning does not matter much.

It is more surprising that the loss in expected payoffs converges to zero

as δ tends to one. We shall demonstrate this analytically below, and, in the

course of our proof, also identify the features of the optimal experimentation

probability that are essential for the result.

We consider normalized payoffs, i.e. expected discounted payoffs mul-

tiplied by (1 − δ). As our discussion in Section 5 shows, there are only

two states of the world in which a payoff loss occurs: (πA, πB) = (x, 0) and

(πa, πB) = (x, 1). We calculate the payoff loss for each of these two states

separately. We begin with the state (πA, πB) = (x, 0). The expected payoff

from the unconstrained optimal strategy in this case is:

(1 − δ)

(

x +
δ2

1 − δ
x

)

= (1 − δ + δ2)x. (20)
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The expected payoff from the optimal two state automaton follows from

equation (9):

(1 − δ)
1

1 + δp

x

1 − δ
=

1

1 + δp
x. (21)

The limit for δ → 1 of (20) is clearly x. To show that in this limit there is no

loss from using a two state automaton, we therefore aim to show that also

the limit of (21) for δ → 1 is x. To show this it suffices to show that δp tends

to zero, and hence that the optimal p tends to zero as δ tends to one. Figure

6 shows that for every x ∈ (0, 1) for sufficiently large δ the optimal value of

p is given by (19). On the right hand side of (19), the first term tends to

zero as δ tends to 1. Therefore, for sufficiently large δ, the minimum on the

right hand side of (19) is given by the first term, and this minimum tends

indeed to zero, as we needed to show. We can conclude that in the state

(πA, πB) = (x, 0) there is no loss in expected payoffs from using a two state

automaton.

We now turn to the state (πA, πB) = (x, 1). The expected payoff from

the unconstrained strategy in this case is:

(1 − δ)

(

x +
δ

1 − δ

)

= (1 − δ)x + δ (22)

The expected payoff from the optimal two state automaton follows from

equation (10):

(1 − δ)

(

1 − δ

1 − δ + δp

x

1 − δ
+

δp

1 − δ + δp

1

1 − δ

)

=
1 − δ

1 − δ + δp
x +

δp

1 − δ + δp

=
1

1 + δ
1−δ

p
x +

δ
1−δ

p

1 + δ
1−δ

p
(23)

Clearly, for δ → 1, the expression in (22) tends to one. Thus, to show that

there is no loss in expected payoffs from using a two state automaton, we
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need to show that also the expression in (23) tends to one as δ → 1. To

clarify whether this is the case, we shall adjust our notation slightly, and

write p(δ) for the optimal p, as a function of δ. It should be understood that

we keep x ∈ (0, 1) fixed. Then (23) shows that it is necessary and sufficient

that:

lim
δ→1

δp(δ)

1 − δ
= ∞ ⇔

lim
δ→1

p(δ)
1−δ

δ

= ∞. (24)

This says that p(δ) must converge slower to zero than 1−δ
δ

. We now check

that this is the case, substituting for p(δ) the first term on the right hand

side of (19):

lim
δ→1

p(δ)
1−δ

δ

=

lim
δ→1

√
1−x√
1−δ

−√
x

√
x −

√
1 − δ

√
1 − x

= ∞ (25)

Thus, we can conclude that also in the state (πA, πB) = (x, 1) the asymptotic

loss in expected utility from using a two state automaton is zero.

Our argument shows that the crucial feature of the experimentation prob-

ability that enables a very patient decision maker to capture all feasible rents

with a two state automaton is that firstly the experimentation probability

tends to zero as δ tends to one, and that secondly, this probability tends to

zero slower than 1−δ
δ

.

8. Conclusion

Our example has illustrated several fascinating features of optimal strate-

gies for two-armed bandits in the presence of complexity constraints. Future

research should seek to explore how general these insights are. There are two
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directions into which one could generalize our investigation. One direction

is to consider more general bandit problems. The second direction is to con-

sider other measures of the complexity of a strategy, in particular measures

which take the complexity of the transition function into account. Needless

to say, another essential part of future research is that it needs to be checked

how relevant theories such as the one developed in this paper is to real world

learning behaviour.
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