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Abstract

Common prior type spaces in which for each agent the agent’s payoff type and
the agent’s belief type are independent deserve attention as the polar opposites
of common prior type spaces in which agents’ beliefs determine their preferences
- a class of type spaces whose special properties are much studied. We find a
necessary and sufficient condition for the independence of each agent’s payoff type
and belief type. Different agents’ payoff types must be independent. Agents may
hold payoff irrelevant information. The payoff irrelevant signals that agents receive
may be correlated with each other, but they must be jointly independent of all
agents’ payoff types. We conclude that type spaces with independent payoff types,
as commonly used in game theory and mechanism design, constitute, up to payoff
irrelevant information, the class of all type spaces in which payoff types and belief
types are independent for each agent.

1 Introduction
The notion of a type space is central to the analysis of games with incomplete
information (Harsanyi, 1967-68) and to mechanism design (e.g. Myerson, 1981,
Bergemann and Morris, 2005). Types describe agents’ payoff relevant as well as
other, payoff irrelevant information, and also agents’ beliefs about other agents’
types, and agents’ hierarchies of beliefs about other agents’ beliefs, agents’ beliefs
about other agents’ beliefs about other agents’ beliefs, etc. Bayesian Nash equilibria,
or, for example, correlated equilibria of games are defined with respect to a given
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type space. Type spaces are flexible modeling devices that can describe complex
belief structures.

Applied game theory often focuses on “naive” type spaces, that is, common
prior type spaces in which all information that an agent receives is payoff relevant.
If we call the payoff relevant agent of an agent that agent’s “payoff type,” 1 then
naive type spaces are characterized by the fact that types and payoff types are the
same for each agent. Two special classes of naive payoff type spaces have received
special attention. One such class consists of the naive type spaces in which different
agents’ types are independent (e.g. Myerson 1981). An assumption embedded in
this construction is that agents’ first order beliefs about other agents’ types are the
same, irrespective of their own type. This implies that agents’ first order beliefs
about other agents’ types are common knowledge among the agents.

A second special class of naive type spaces that are frequently studied in the
literature are type spaces in which no agent has two distinct types with identical
hierarchies of beliefs. Referring to an agent’s hierarchy of beliefs about another
agents’ types as the agent’s “belief type,” these type spaces are characterized by the
property that “belief types determine payoff types.” Implicit in this construction is
the assumption that the function mapping belief types into payoff types is common
knowledge among agents. In mechanism design these types spaces often allow the
construction of mechanisms that elicit agents’ beliefs about other agents, and by
doing so also elicit agents’ payoff types. Agents then earn no information rents, and
the mechanism designer can “extract the full surplus” (Crémer and McLean, 1985,
1988, Neeman, 2004). A recent line of work has examined whether the sets of type
spaces that have the “belief types determine payoff types” property, or that allow
“full surplus extraction,” are generic (Heifetz and Neeman, 2006, Chen and Xiong,
2011a, 2011b, Gizatulina and Hellwig, 2011).

The polar opposite of the condition that belief types determine payoff types
is the condition that belief types and payoff types are stochastically independent
for every agent, so that knowing the belief type of an agent does not allow any
inferences at all about that agent’s payoff type.2 In this paper we investigate the
class of type spaces for which this opposite condition, to which we shall refer as
the “independence property,” is true. We are interested in type spaces satisfying
this strong condition because an analysis of games or mechanism design problems
for such type spaces allows the modeler to exclude all effects due to correlation
between payoff and belief types. Moreover, it will turn out that large portions of
the existing game theoretic and mechanism design literature can be re-interpreted as
being concerned with exactly the class of type spaces that satisfy the independence
condition.

1We borrow the expression “payoff type” from Bergemann and Morris (2005).
2Note that the condition that we investigate is in an informal sense the opposite, but importantly by

no means the negation of the “beliefs determine preferences” condition. The negation encompasses the
condition that we study in this paper, but is far more general. “Environment 2"”in Neeman (2004) is an
example of a common prior type space in which one agent’s belief types don’t determine that agent’s
payoff types, but in which this agent’s belief and payoff types are not stochastically independent either.
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We restrict attention to type spaces in which agents’ beliefs are derived from
a common prior. We allow type spaces that are not naive, that is, in which an
agent’s type includes payoff-irrelevant information. Naive type spaces in which
types are independent obviously have the independence property because in such
type spaces all types of a given agent have the same belief types so that belief types
are constant, and constant random variables are stochastically independent of any
other random variable. Our interest is in the question whether there are other
type spaces with the independence property. We answer this question positively,
and we characterize all type spaces with the independence property. All such type
spaces can be interpreted as follows: Agents have independent payoff types. They
also receive further information that is potentially not independent among agents,
but that is independent of all agents’ payoff types. Therefore, all types of a given
agent have the same belief about other agents’ payoff types, as is the case in naive
type spaces with independent types, but different types of the same agent may hold
different beliefs about other agents’ payoff irrelevant information. Thus, the class of
type spaces with the independence property is a generalization of the class of naive
type spaces with independent types. A simple, and not surprising, implication of our
result is that common priors for which belief and payoff types are not independent
are generic in the senses considered in the literature on the genericity of the “beliefs
determine preferences” property which we mentioned earlier.3

What is remarkable about our characterization is that we begin with an inde-
pendence assumption that refers to each agent separately: each agent’s payoff type
and belief type are independent, and we show that this is equivalent to a form
of independence across agents: different agents’ payoff types are independent, and
payoff irrelevant information is independent of all agents’ payoff types. Figura-
tively speaking, independence propagates from each agent separately to the group
of agents as a whole.

Using the language of the recent literature, type spaces with the independence
property differ from naive type spaces with independent types only through the
introduction of “redundant types,” that is, multiple types that have the same payoff
types, and the same hierarchies of beliefs regarding the underlying payoff relevant
uncertainty. There is thus a connection between our main result and Theorems 1
and 2 in Liu (2011), who characterizes for general common prior type spaces the
connection between type spaces with redundant types, and the same type spaces
without redundant types. He shows for common prior type spaces that the type
space with redundant type is obtained from the corresponding type space without
redundant types by adding a common prior correlation device where the correlation
is conditional on the vector of agents’ payoff types. Our result shows in a common
prior context that the independence property holds if and only if different players’
payoff types are independent of each other, and the payoff irrelevant information is
independent of all players’ payoff types.

Our analysis is subtly related to Aumann and Brandenburger (1995). Seeking
3As this is straightforward to see, but tedious to state formally, we have not included this observation

in the main body of the paper.
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an epistemic foundation for Nash equilibrium, they infer in their Theorem B from
the assumption that beliefs are common knowledge that beliefs must be product
measures. Although their model and their motivation are entirely different from
ours, the proof of our main result includes an important step that is also included
in Aumann and Brandenburger’s proof of their Theorem B. At the end of Section
3, we shall comment further on the relation between Aumann and Brandenburger’s
result and ours.4

In the last two sections of the paper we describe the implications of our analy-
sis for game theory and mechanism design. In game theory an exploration of the
Bayesian equilibria of a strategic form game using a type space with the indepen-
dence property is equivalent to the exploration of the “strategic form correlated
equilibria” (Cotter, 1991, Forges, 1993) of the game with the type space in which
the payoff irrelevant information is omitted. This result is closely related to Lemma
2 in Liu (2011). However, Liu studies general type spaces, and therefore his result
refers to a more general version of correlated equilibrium than ours. In his version
of correlated equilibrium, before suggesting strategies to agents, the “mediator” ob-
serves the agents’ types. By contrast, in “strategic form correlated equilibrium” the
“mediator” does not observe agents’ types before recommending strategies.

In mechanism design we show for a wide variety of possible objectives of the
mechanism designer, that mechanisms that are optimal for a type space with the
independence property are essentially the same as the mechanisms that are opti-
mal for the corresponding type space in which no payoff irrelevant information is
provided.

2 Framework
There are agents. We write for the set of agents. For each agent
there is a finite set of possible “payoff types” of agent . We borrow the
expression “payoff type” from Bergemann and Morris (2005), where payoff types are
the possible realizations of a signal that agent observes, and whose realizations
potentially affect ’s own or other agents’ payoffs in a game. The payoff type is
the only signal that observes that may affect payoffs. Agent may make other
observations, but these don’t affect payoffs. In this and the next section, payoff
types are in fact completely abstract. In these sections it is irrelevant whether there
is an underlying game. In Sections 4 and 5, the interpretation of the elements of
as payoff types will, by contrast, be important. For concreteness, we shall even in
Sections 2 and 3 occasionally interpret payoff types as payoff relevant information,
and the reader may have this interpretation in mind throughout.

Throughout the paper, we use notations such as , and
. Also, for any non-empty, finite set , we denote by the set

of all probability distributions on .
4We are very grateful to Qingmin Liu for pointing out the relation between our result and Aumann

and Brandenburger’s result.

4



We use type spaces to describe the agents’ beliefs about their own and others’
payoff types, their beliefs about these beliefs, etc. The modeling device of type
spaces is due to Harsanyi (1967-68). The focus of this paper is on type spaces with a
common prior. The analysis does not apply to type spaces with subjective priors.To
keep our analysis straightforward, we restrict attention to finite type spaces where
the common prior has full support.

Definition 1. A type space is a list such that:

1. for every , is a non-empty, finite set;

2. for every , is a function of the form: ;

3. where ;

4. for all .

Here, a (standard) implicit assumption is that the type space is common knowledge,
and that each agent observes her own type , but not other agents’ types .

Without loss of generality, we assume that the range of is . Writing
for the conditional probability of where we condition on ’s type being , we
define next:

Definition 2. For a given type space , agent ’s belief func-
tion

(1)

is defined by:
(2)

for every .

Thus, is the belief about other players’ types that agent holds if her type is
. This belief is derived from the prior by conditioning on . We shall refer to

also as agent ’s “belief type.” We write for the range of . is thus the
set of all belief types. We shall write for the probability assigned by to
the set of all type vectors such that agent ’s preference is and agent ’s belief is

, and similarly use notation such as , , etc.

We make throughout the following assumption which says in words that there
are no “duplicate types:”

Assumption 1. For every , if and , then or
.

Duplicate types, that we rule out, are thus types with identical payoff types and with
identical beliefs.5 To apply our main result to type spaces in which duplicate types

5Our Assumption 1 is the same as Assumption 1 in Liu (2011).
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exist, one has to successively “merge” duplicate types into a single type.Assumption
1 means that every type is uniquely identified by ’s payoff type and ’s
belief type . Without loss of generality we therefore relabel the type space
from now on as follows:

for all (3)

Note that Assumption 1 does not rule out what the literature refers to as “re-
dundant types,” that is, multiple types with identical payoff types and hierarchies
of beliefs about other players’ payoff types. This is because a players’ type may
encode more information than just the player’s payoff type and the players’ beliefs
about other players’ payoff types. This point is crucial for our paper. The potential
importance of redundant types for the analysis of incomplete information games
has been emphasized by Forges (1993, pp. 284/5). The following discussion of the
role of redundant types is taken from Liu (2009, p. 2117):

“..., if the analyst knows only the payoff structures - he is unaware of (or
unable to specify) some other variables that the players know, ... , but
he is aware of his unawareness (or misspecification) - then a redundant
type structure is a “safe” modeling choice: the players “reason” within a
redundant structure as if they were reasoning about some parameters
unknown to the analyst. In other words, the analyst should not make
use of a redundant structure unless he is not sure of the players’ space
of basic uncertainties.”

Liu (2009, 2011) provides formal results that support this interpretation of re-
dundant types, and that apply to our model. When allowing redundant types in
our model it is Liu’s interpretation that we have in mind, and thus we allow that
the type space is constructed by an analyst who is aware that he is unaware of some
variables that players may have beliefs about.

The property of type spaces in which we are interested in this paper is the
following:

Definition 3. A type space has the independence property
if for every the random variables and are independent.

As explained in the Introduction, we view this property as the polar opposite of
the “beliefs determine payoff types” property. In type spaces with the independence
property, knowing an agent’s beliefs provides no information about that agent’s
preferences.

3 Result
Before stating our result, we give an example that illustrates the result. We observed
already in the Introduction that every naive type space with independent types
has the independence property trivially because each agent’s beliefs are constants.
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Type spaces with independent types, however, embed a very restrictive common
knowledge assumption: each agent’s first order beliefs are common knowledge. We
therefore give an example in which agents beliefs about the other agents’ types are
not constant, and the agents’ first order beliefs are not common knowledge.

Example 1. . For every , the set of payoff types is ,
and the set of types is . Payoff types are given by

and for . The common prior
is described in Figure 2. Conditional on agent 1’s payoff type being ,

his beliefs about agent 2’s types are with probability , and
with probability . This probability does not depend on

. Therefore, for agent 1, beliefs and payoff types are independent. A similar
calculation shows that also for agent 2 beliefs and payoff types are independent.

Figure 1: The common prior in Example 1

There is an equivalent representation of the type space in Example 1. Note
that in Example 1 the pair of the agents’ payoff types, , is independent of
the pair of the agents’ belief types, . This is a stronger property than the
independence property which only requires independence of payoff types and belief
types agent by agent. In Example 1 one can then imagine types being determined by
two independent draws: one draw determines , and another draw determines

. We describe these draws in Figure 2, where the left square represents the
common prior for the draw of , and the right square represents the common
prior for the pair . We denote the common prior distribution of payoff types
by , the two possible belief types of each agent by and (in the order that they
were listed in the description of Example 1), and the common prior distribution of
belief types by .

Now note a further independence: the distribution of payoff types is a product
distribution, that is, payoff types are independent across agents. This implies that
agents’ beliefs about other agents’ payoff types are in fact constant in the model,
and therefore common knowledge, as they are when types are drawn independently.
The variation in agents’ beliefs stems from the variation in their beliefs about other
variables, that are not payoff related. These are captured by the belief distribution
in Figure 2. Note that this distribution is not a product distribution.
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Figure 2: An equivalent representation of the common prior in Example 1: .

The main result of this paper is that a similar representation as the one in Figure
2 can be given for any type space with the independence property.

Proposition 1. A type space has the independence property if and only if

(4)

for all .

Proof. It is immediate that (4) implies that and are independent for each agent.
We prove that (4) is necessary for the independence property in three claims.

Claim 1: For all :

(5)

Proof.

(6)

Here, the fifth and sixth line follow from the definition of belief types.

Claim 2: For all :

(7)
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Proof.

(8)

The second line follows from the independence property, and the third line follows
from Claim 1.

Claim 3:6 If for all :

(9)

then for all :

(10)

Proof. We prove this by induction over , beginning with the case . By
assumption:

(11)

Therefore, we can complete the proof by showing:

(12)

By assumption:
(13)

Summing (13) over all , we obtain (12).

Now suppose the claim had been shown for all numbers of agents up to some
number . We prove the claim for . By assumption:

(14)

Therefore, we can complete the proof by showing:

(15)

We prove this using the inductive assumption. For this, it is sufficient to show that
the “if-condition” of Claim 3 holds for :

(16)

for all . This is implied by the “if-condition” of Claim 3 for :

(17)

if we sum over all .
6Claim 3 and its proof are identical to Lemma 4.6 and its proof in Aumann and Brandenburger

(1995), except that the type space in Aumann and Brandenburger’s model does not include a component
that is analogous to the component “ ” in our type space. We comment further on the relation between
our work and that of Aumann and Brandenburger in the paragraph following the proof of Proposition 1.
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Proposition 1 is subtly related to Theorem B in Aumann and Brandenburger
(1995). In Aumann and Brandenburger’s model a type space describes hierarchies
of beliefs over strategies, not over payoff types. However, one can reinterpret their
model, replacing strategies by payoff times. Aumann and Brandenburger then in-
vestigate the assumption that beliefs about other players’ payoff types are common
knowledge. They infer that beliefs have to be product measures.7 Their assump-
tion is stronger than ours, as the assumption that beliefs are common knowledge
implies that they are independent of payoff types, but it is in another sense weaker,
because it only refers to beliefs about payoff types, not to beliefs about types per se.
Their conclusion is similar to ours, except that their conclusion does not address
the possible existence of redundant types.

We can translate Aumann and Brandenburger’s result into our setting. Suppose
we say that a fact is common knowledge in our model if it is true for every .8
In particular, let us say that agent ’s beliefs are common knowledge if there is some

such that for all . Then Aumann and Brandenburger’s
proof of their Theorem B shows:

Remark 1. All agents’ beliefs are common knowledge if and only if for all
:

(18)

The proof of this remark is essentially the same as the proof of Proposition
1. In particular, to show that (18) is necessary for beliefs to be common knowl-
edge, one begins with the observation that the constancy of belief types implies:

for all , which is the analog of Claim 1. The proof contin-
ues with analogs of Claims 2 and 3, omitting, as in the analog of Claim 1, the
conditioning on belief types, as belief types are the same everywhere in the type
space.

We mentioned already in the Introduction and at the beginning of this section
that type spaces with independent types are important in the literature, yet ex-
tremely special. We noted at the beginning of this section that independent types
imply that beliefs about others’ types are common knowledge. Remark 1 adds to
this the observation that the reverse is also true: common knowledge of beliefs im-
plies that types are independent. Remark 1 thus characterizes the most prominent
special case of type spaces with the independence property.9

7Combining this with the assumption of mutual knowledge of rationality, they obtain that beliefs
form a Nash equilibrium.

8Our assumption of full support beliefs for every type implies that the standard definition of a fact
being common knowledge reduces in our model to the condition that the fact is true for all .

9A small caveat is that Remark 1, unlike our earlier comments, covers type spaces in which types and
payoff types are not the same.
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4 Implications for Game Theory
Now we introduce a game played by the agents whom we have also considered
so far. The (finite) sets of pure actions in this game are: . Also, for
each player a utility function R is given. If we
combine a type space with the action sets and utility functions, then we obtain a
game of incomplete information. We shall refer to this game as “the incomplete
information game generated by the type space.” A pure strategy of player is a
mapping: . Denote the set of all pure strategies of player by . We
define: .

Our goal is to find a connection between the Bayesian equilibria of a game
generated by a type space that has the independence property and the equilibria,
for an appropriate equilibrium concept, of the game in which we have dropped the
payoff irrelevant component from the type space. If we find such a relation, it will be
possible to analyze games with independent payoff and belief types without taking
account of the possibility of payoff irrelevant information, and yet at the same time
capture the results that an analysis of the Bayesian equilibria of all incomplete
information games generated by a type space with independent payoff and belief
types would yield.

It turns out that for our purposes the relevant equilibrium concept for the anal-
ysis of the game without payoff irrelevant information is a version of correlated
equilibrium. Care is needed regarding the precise definition of a correlated equilib-
rium. Cotters (1991, 1994), Forges (1993, 2006), Liu (2011), and others distinguish
different notions of correlated equilibria of incomplete information games. In this
paper the appropriate notion is what Forges refers to as “strategic form correlated
equilibrium” (Cotters, 1991, and Forges, 1993). A “strategic form correlated equi-
librium” is a probability distribution on that is a correlated equilibrium in the
sense of Aumann (1974, 1987) of the strategic form of the incomplete information
game. A Bayesian equilibrium is a strategic form correlated equilibrium that is
the product of its marginals on the pure strategy sets .10

To conduct our analysis formally, we next need to be precise about what it
means to drop the sets from a type space, and what it means to re-introduce
them. This is done in the following definition.

Definition 4. (i) For given type space with the independence property
such that: , the corresponding reduced type space
is: where: for all ,

for all and , and for all
.

(ii) For given type space with the independence property
where for all , a corresponding augmented type space

is a type space with the independence property such that the corre-
sponding reduced space is .

10To simplify our notation, we use Milgrom and Weber’s (1985) distributional approach to the repre-
sentation of mixed strategies.
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Next, we introduce a correspondence between a vector of mixed strategies for
an incomplete information game generated by a type space with the independence
property and a correlated strategy for the incomplete information game generated
by the type space for which the payoff irrelevant information is dropped.

Definition 5. Let be a product distribution on the set of pure strategy combi-
nations in the incomplete information game generated by a type space with
the independence property. Then the equivalent probability distribution on the
set of pure strategy combinations in the game generated by the corresponding
reduced type space is defined by:

for all and

(19)
for all .

Our result is:

Proposition 2. (i) Let be a Bayesian equilibrium of the incomplete infor-
mation game generated by a type space with the independence property. Then
the equivalent probability distribution on the set of pure strategy combina-
tions in the incomplete information game generated by the corresponding
reduced type space is a strategic form correlated equilibrium of that incomplete
information game.

(ii) Let be a strategic form correlated equilibrium of the incomplete in-
formation game generated by a type space with the independence property in
which for all . Then there are a corresponding augmented type
space, and a product distribution on the space of pure strategies in the in-
complete information game generated by the augmented type space such that
is equivalent to , and such that is a Bayesian equilibrium of that incomplete
information game.

Proposition 2 is a re-statement of the revelation principle for our model. We
therefore omit a formal proof. Cotter (1991, p. 54) and Forges (1993, p. 289)
observed that the revelation principle applies to the strategic form correlated equi-
librium. An appropriately phrased version of part (i) of Proposition 2 remains true
if one replaces strategic form correlated equilibrium by agent normal form correlated
equilibrium, because, roughly speaking, every strategic form correlated equilibrium
is also an agent normal form correlated equilibrium (Forgers, p. 290). It is not
true, however, that every agent normal form correlated equilibrium is a strategic
form correlated equilibrium (see Example 3 in Forges (1993)), and thus part (ii) of
Proposition 2 does not hold for agent normal form correlated equilibria.

The question answered by Proposition 2 for Bayesian equilibria can also be asked
for other game theoretic solution concepts. An alternative to Bayesian equilibria is
in particular the concept of rationalizability. Several notions of rationalizability for
incomplete information games have been proposed in the literature. If we employ
the concept of “interim correlated rationalizability” as defined by Dekel, Fudenberg
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and Morris (2007), then the result is simple. According to Proposition 1 in Dekel,
Fudenberg and Morris (2007), the set of interim correlated rationalizable strategies
of a player only depends on that player’s hierarchy of beliefs about payoff relevant
information. It is not affected by payoff irrelevant information included in the
type space. Therefore, it is without loss of generality in our context, in which
we postulate the independence property, to analyze the set of interim correlated
rationalizable strategies using the reduced type space in which only payoff types
are included.

5 Implications for Mechanism Design
Next, we examine the implications of our analysis for mechanism design. We con-
sider the same agents as in the previous sections, as well as a mechanism designer.
There are a (finite) set of possible outcomes , and for every agent a utility func-
tion R. The mechanism designer supposes that the agents’ information
is described by a type space with the independence property. The mechanism de-
signer chooses a game form, consisting of strategy sets for each agent, a mapping
of strategies into outcomes, and a Bayesian equilibrium of the incomplete infor-
mation game defined by the game form, the utility functions, and the type space.
We leave the mechanism designer’s objective function unspecified except that we
assume that it only depends on the implied mapping between agents’ payoff types
and probability distributions over outcomes. By the revelation principle we can
restrict attention to direct game forms such that truth telling is a
Bayesian equilibrium in the corresponding incomplete information game. We refer
to such direct game forms as “incentive compatible.”

Our objective is to find a correspondence between the direct and incentive com-
patible mechanisms for a type space with the independence property and the direct
and incentive compatible mechanisms for the corresponding reduced type space.
Here, we use the terminology for type spaces introduced in the previous section.
We shall find such a correspondence if we focus on the mapping between payoff
types and probability distribution over outcomes. As we have postulated that the
mechanism designer’s objective depends only on that mapping, our result implies
that mechanisms that are optimal for a type space with the independence property
and mechanisms that are optimal for the the corresponding type space in which
all payoff irrelevant information has been removed can achieve exactly the same
values of the mechanism designer’s objective function. It is therefore without loss
of generality to study the mechanism designer’s maximization problem only for the
reduced type space, as the literature has mostly done.

We first define how we relate direct mechanisms for a type space with the inde-
pendence property to direct mechanisms for the same type space but without payoff
irrelevant information.

Definition 6. (i) Consider a direct mechanism for a type space
with the independence property. The equivalent direct mechanism for the corre-
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sponding reduced type space is the mechanism where for every
and we have:

(20)

Here denotes the probability that a direct mechanism assigns to outcome
when the vector of types is .
(ii) Consider a type space with the independence property where for

all , and a corresponding augmented type space. Let be a
direct mechanism for the first type space. Then the equivalent direct mechanism
for the augmented type space is the mechanism where for every

and we have:

(21)

Our result is:

Proposition 3. (i) If a direct mechanism for a type space with
the independence property is incentive compatible, then the equivalent direct
mechanism for the corresponding reduced type space is incentive compatible.

(ii) If a direct mechanism for a type space with the inde-
pendence property and with for all is incentive compatible, then
the equivalent direct mechanism for a corresponding augmented type space is
incentive compatible.

Part (ii) is immediate, as in the augmented type space agents simply ignore
the payoff irrelevant information which then is strategically irrelevant as well.
Like Proposition 2, part (i) of Proposition 3 is a version of the revelation principle.
In particular, suppose the true type space were the reduced type space, but the
mechanism designer provided the payoff irrelevant information to agents as part of
an extensive form mechanism. By the standard revelation principle, the mechanism
could collapse such an extensive form mechanism into a direct mechanism in which
truth-telling is an equilibrium. This is essentially what part (i) of Proposition 3
says. We omit the proof of Proposition 3.

Propositions 2 and 3 together indicate that a mechanism designer’s range of
possibilities does not expand if the mechanism designer is allowed to suggest a
strategic form correlated equilibrium to agents rather than a Bayesian equilibrium.
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