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A Additional Robustness Checks

In this appendix I study how the main results change in the following extensions of the model: (i)

shutting down domestic trade, (ii) allowing for costless domestic trade, (iii) introducing oligopolistic

traders, and (iii) measurement errors in ηi,k.

A.1 No Domestic Trade

In this section, I explore the role of domestic trade in generating my results. A concern is that Pe-

ruvian agriculture is overwhelmingly oriented towards exports markets. In that case, the additional

computational burden stemming from allowing domestic trade might be unjustified.

In this section, I show that not allowing for domestic trade substantially degrades the perfor-

mance of the model. As an example of the consequences of taking this stance, I also show that the

welfare impacts of the shock to foreign prices change substantially. Note that, for the preferences I

use, the only way to induce zero consumption of a crop is to set its price to infinity. To avoid that

problem, whenever region i cannot produce crop k in my baseline calibration (i.e, Ai,k = 0), I give

that region a small endowment of that crop, setting Qi,k = Q̄min exogenously. In my calibrations,

I set Q̄min = 100 tons, as a small value that allows for utility to be well-defined, but representing

that, in fact, the crop is scarce in that region.

First, Figure A.1 displays the fit of prices and land shares in a calibration in which I shut

down domestic trade, and allow only for international trade (this is the equivalent of Figure 4

in the main body of the paper.) The figure reveals that the model requires domestic trade to

rationalize the data: in panel (a) the fit of within-crop variation in prices drops dramatically, while

the model predicts substantially more specialization (both compared to the data and to the baseline

calibration) as evidenced by the cluster of land shares simulated to be almost equal to one shown

in panel (b).
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Figure A.1: No Domestic Trade (Baseline Fit)

(a) Prices (b) Agricultural welfare

Next, Figure A.2 compares the changes in real farmer income and real income of non-agricultural

workers induced by the international price shock in this calibration, relative to the baseline calibra-

tion. First, for each variable, there is a low correlation between the changes in the two calibrations.

Second, on average, under the no-domestic-trade calibration the range in farmer income changes

is wider than in the baseline. Third, non-farmer income in the no-domestic-trade calibration de-

creases more than under the baseline calibration.The reason is that if regions cannot trade with

each other, the only relevant comparative advantage is relative to the rest of the world, and hence

regions do trade with ROW. Once this happens, unlike in my baseline, most regions are directly

affected by the foreign price changes in prices. Since the shock tends to increase crop prices, farmers

benefit more, but the rise in the cost of living hurts non-agricultural workers. Moreover, since some

farmer do specialize in this calibration in crops whose international price decreases, we observe

more pronounced losses.
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Figure A.2: Real Income Changes in the Baseline and No Domestic Trade Calibration

(a) Real Agricultural Income (b) Real Non-Agricultural Income

A.2 Costless domestic trade

This section investigates the role of domestic trade costs by studying a different extreme version

of the model. In this calibration, I set domestic trade costs in agriculture to zero, dni,k = 1,

∀n, i = 1, . . . , I, ∀k = 1, . . . ,K. By construction, this version of the model is unable to replicate

the spatial dispersion of prices we observe in the data, since in the equilibrium arbitrage imposes a

unique domestic price for each crop. Furthermore, the fit of land shares also worsens: as Figure A.3

shows, the data do not cluster around the 45-degree line, as they do in the baseline calibration (and

a regression of data on simulation yields a slope of 0.21, with R2 = 0.25, compared with a slope

of 0.34 with an R2 = 0.28 in the baseline). As I discussed in Section 7 land shares (and revenue

shares) determine the first-order impact of any shock, and therefore condition the effects we infer

from these shocks.

A.3 Oligopolistic traders

In this section, I show how to extend the framework to include oligopolistic traders (similar to

Asturias, 2018). The results show how to suitably extend the no-arbitrage conditions that char-

acterize the equilibrium (i.e., the corresponding complementarity slackness constraints) and points

out how data on numbers of competitors can inform the model.

Suppose there is a set of potential firms, indexed by j, that can ship good k from i to n. Firms

are heterogeneous in their transportation costs, given by d
(j)
ni,k, and compete a la Cournot. Firm j’s

profit-maximization problem is:

max
z

(j)
ni

pn,k (Cn,k) z
(j)
ni,k − d

(j)
ni,kz

(j)
ni,kpi,k,
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Figure A.3: Costless Domestic Trade (Fitting Land Shares)

where the price at the destination depends on total consumption of good k there, and where the

demand of good k at n aggregates total shipments from all regions i:

Cn,k = ak

(
pn,k
Pn

)1−σ
E (1)

=

I∑
i=1

∑
j

z
(j)
ni,k.

The FOC of the firm is

∂pn,k
∂Cn,k

∂Cn,k

∂z
(j)
ni,k

z
(j)
ni,k + pn,k = d

(j)
ni,kpi,k.

Using equation (1) and the fact that Cn,k =
∑

i,j zni,k, the FOC becomes:

pn,kz
(j)
ni,k

−σCn,k
+ pn,k = d

(j)
ni,kpi,k.

Finally, defining s
(j)
ni,k ≡ z

(j)
ni,k/Cn,k as the market share of firm j in market n, we obtain

pn,k

1−
s

(j)
ni,k

σ

 = d
(j)
ni,kpi,k

⇒ pn,k =
σ

(j)
ni,k

σ
(j)
ni,k − 1

d
(k)
ni,kpi,k,
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where

σ
(j)
ni,k ≡

σ

s
(j)
ni,k

.

Firm j’s elasticity of demand, σ
(j)
ni,k is always larger than one, if σ > 1. The expression above

shows that the wedge in prices between regions i and n will reflect not only the physical cost of

shipping goods, but also the markup charged by the firms transporting the goods. The larger firm

j’s market share in the destination market and the lower σ, the lower firm j’s effective elasticity

(and the higher the markup). The total number of entrants in each origin-destination pair, Nni,k,

is determined endogenously by profitability.

To obtain the new no-arbitrage condition, suppose there are Nni,k entrants. Then, adding up

the first-order conditions above across firms j, we obtain:

Nni,k∑
j=1

pn,k

σ − s(j)
ni,k

σ

 =
N∑
j=1

d
(j)
ni,kpi,k

pn,k

Nni,k∑
j=1

1−
s

(j)
ni,k

σ

 = pi,k

N∑
j=1

d
(j)
ni,k

pn,k

[
1−

Sni,k
Nni,kσ

]
= pi,kd̄ni,k,

which implies

pn,k =
σNni,k

σNni,k − Sni,k
d̄ni,kpi,k,

where Sni,k ≡
∑Nni

j=1 s
(j)
ni,k is the aggregate share of region i in n’s consumption of k.

Therefore no-arbitrage conditions can be now re-written as:

pn,k ≤
σNni,k

σNni,k − Sni,k
d̄ni,kpi,k ∧ zni,k = 0

at Nni,k = 1, or

pn,k =
σNni,k

σNni,k − Sni,k
d̄ni,kpi,k ∧ zni,k > 0

for an equilibrium number of entrants, Nni,k, which make positive profits in equilibrium. If in the

equilibrium Nni →∞, this condition converges to the usual no-arbitrage condition.

A.4 Measurement error in ηi,k

A potential problem with my strategy for estimating θ is that ηi,k, the regressor in equation (10),

be measured with error. In the case of classical measurement error, this will bias the coefficient

downward, which would bias θ upwards. As discussed in Section 7, θ controls the substitutability
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across crops in production, and therefore regulates the strength of price responses to shocks. If the

estimate of θ is biased upwards, one would expect that regional crop supplies are too elastic, thus

generating too small variation in prices (when these are determined by local equilibrium).

To study the robustness of my results to this threat, I provide an alternative estimate of θ and

compare the results of using this estimates with those in my benchmark calibration. I start by

re-estimating equation (10) with an IV strategy. I bring in an independent measure of land shares,

ηcensusi,k , coming from the Agricultural Census of 2012, and use it as an instrument for ηi,k. This

strategy will yield a consistent estimate of θ, as long as the measurement errors are not correlated.2

This strategy yields a lower estimate of θ = 1.22, consistent with a degree of measurement error.

Next, I compare the results of using this value of θ to conduct my counterfactuals. Figure

A.4, Panels (a) and (b) compare the baseline changes in agricultural real income to those in these

alternative counterfactuals. The Figures show that the results are qualitatively unaffected and

are quantitatively very similar to those of the baseline. I conclude that, given the values of other

parameters and initial trade patterns, reducing the value of θ in the magnitude I propose has

relatively small effects on my results.

Figure A.4: Real Income Changes using θ = 1.22

(a) Paving Roads: Changes in Agricultural
Real Income

(b) Paving Roads: Changes in
Non-agricultural Real Income

(a) Foreign Price Shock: Changes in
Agricultural Real Income

(b) Foreign Price Shock: Changes in
Agricultural Real Income

Notes: All panels display the 45-degree line (dashed) and a regression line (solid).

2See, for example, Cameron and Trivedi (2005) p. 908.

6



A.5 Farm size and revenue per unit of land

In this section I check whether non-market production, when interacted with distortions in land

and labor markets, can explain the differences I observe in revenue per unit of land.

First, a canonical model of household production and consumption in development economics shows

that, with complete markets, a household that maximizes its welfare will act as profit-maximizing

on the production side. From that point of view, non-market production by itself does not pose

a threat to inference, unless accompanied by market imperfections. Along those lines, in Online

Appendix B.4 I show that in a version of the model where land owners make cropping decisions my

analytic results remain unchanged.

A leading case where this separation breaks is that in which there are no land markets and house-

holds cannot supply labor freely outside of the farm (Bardhan and Udry, 1999, Ch 2). In that case,

the basic model predicts that smaller farms will have higher labor to land ratios and, therefore,

higher revenue per unit of land. As I show next, the evidence suggests that this mechanism cannot

explain the variation in revenue per unit of land within regions that I observe in the data.

Using data from the agricultural census of 2012, in which I observe farms, I construct Rfi =∑
k η

f
i,k × (rev per unit of landk), a measure of revenue per unit of land for each farm f in region

i. Rfi averages averages revenue per unit of land across crop k using farm-specific land shares as

weights.3 I then regress this measure, Rfi , on farm size, hfi , controlling for region fixed effects (as

in Fact 3). Table A.1 show that regressing Rfi on farm sizes either does not statistically explain

farm-specific revenue per unit of land (column 1, regressing on log hfi ) or quantitatively has no

impact (column 2, regressing on hfi ).4

Table A.1: Weighted Revenue per Unit of Land and Farm Size

(1) (2)

log farm size -0.00124
(-0.59)

farm size 0.0000191∗

(2.40)

N farms 1295026 1295026
R-sq 0.396 0.396

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

3The Census does not collect information on crop prices and therefore it is not possible to measure revenues using
that data set. Therefore, for this calculation, I measure revenue per unit of land using the national statistics in
agriculture described in Section 2.

4Given the coefficient in column 2, a one standard deviation increase in farm size hfi leads to a 0.007 standard
deviation increase in revenue per unit of land.
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B Proofs and Derivations

B.1 Optimal Farmer Behavior

In this section I characterize the optimal choices of farmers. I discuss the optimal choices of farmers

for a plot ω, conditional on allocating a positive fraction of plot ω to the production of crop k,

(φi,k (ω) > 0), an event I denote ω ∈ Ωi,k.

Then I move on to prove the three main Propositions in the paper. Using Assumptions #1

and #2, I first show how to calculate the fraction of land allocated to crop k. In equilibrium,

ω ∈ Ωi,k implies φi,k (ω) = 1, so each plot ω is fully specialized in one crop k. Second, I derive the

distributions of land quality, yields, revenue per unit of land, and rents, conditional on ω ∈ Ωi,k.

Third, I derive the optimal relation between land shares and revenue shares for a given region.

B.1.1 Basic Properties of Random Land Heterogeneity

The distribution of Λi,k(ω) is

Fi,k (Λ) = e−γ̃
θAθi,kΛ−θ ,

which means that Λi,k (ω) is distributed like a Fréchet r.v with parameters (γ̃Ai,k, θ). Using the

properties of the Fréchet distribution, the unconditional expectation of Λi,k (ω) is:

E [Λi,k (ω)] = γ̃Ai,kΓ

(
1− 1

θ

)
= Ai,k

where in the last line we use the normalization γ̃−1 = Γ
(
1− 1

θ

)
. We will exploit this normalization

throughout the paper.

B.1.2 The Farmer’s Cost Minimization Problem

The farmer seeks to maximize profits, expression (3) in the main body, by choosing {φi,k (ω), li,k (ω),

xi,k (ω), ω ∈ Ωi, all k}:

max

{
K∑
k=1

pi,kqi,k −
∫

Ωi

K∑
k=1

[wi,Ali,k (ω) + ρixi,k (ω) + ri (ω)φi,k (ω)] dω

}
,

where total output of crop k is

qi,k =

∫
Ωi

[
(li,k (ω))αk (xi,k (ω))βk (φi,k (ω) Λi,k (ω))γk

]
dω.
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An equivalent problem for the farmer is to maximize the profits obtained in each plot ω, and then

add up the profits across those plots. The profits in plot ω are:

K∑
k=1

[
pi,k (li,k (ω))α (xi,k (ω))β (φi,k (ω) Λi,k (ω))γ − wi,Ali,k (ω)− ρixi,k (ω)− ri (ω)φi,k (ω)

]
.

As is standard in trade theory, I will characterize the farmer’s problem in terms of the unit

cost function of producing each good, for a given plot ω. Suppose that ω ∈ Ωi,k, so φi,k (ω) > 0.

The cost minimization problem is to choose li,k (ω), xi,k (ω), φi,k (ω) to minimize the total cost of

production q̄k units of crop k:

min [wi,Ali,k (ω) + ρixi,k (ω) + ri (ω)φi,k (ω)]

s.t.

(li,k (ω))αk (xi,k (ω))βk (φi,k (ω) Λi,k (ω))γk ≥ q̄k

The solution to this problem is well-known, because the production function is Cobb-Douglas. This

solution consists of a cost function and the conditional demands for inputs.5

We set up a Lagrangean

L = wi,Ali,k (ω) + ρixi,k (ω) + ri (ω)φi,k (ω)− µ [qi,k (ω)− q̄]

and write down the first order conditions

[li,k (ω)] : wi,A = µαk (li,k (ω))αk−1 (xi,k (ω))βk (φi,k (ω) Λi,k (ω))γk

[xi,k (ω)] : ρi = µβk (li,k (ω))αk (xi,k (ω))βk−1 (φi,k (ω) Λi,k (ω))γk

[φi,k (ω)] : ri (ω) = µγk (li,k (ω))αk (xi,k (ω))βk (φi,k (ω))γk−1 (Λi,k (ω))γk

An easy way to solve this problem is to note that µ is the marginal cost and plug the first order

conditions in the constraint –assuming it holds with equality–, after using them to solve for input

demands.

li,k (ω) =
µαkqi,k (ω)

wi,A

xi,k (ω) =
µβkqi,k (ω)

ρi

φi,k (ω) =
µγkqi,k (ω)

ri (ω)

5Note that there is a continuum of plots of size 1 and for the constraint in the problem to be met, q̄k must be
small enough so the optimal value of φi,k (ω) ≤ 1. Consistent with price taking behavior, the farmer does not take
this constraint into account in his cost-minimization problem.

9



After substituting for input demands in the constraint, we solve for the marginal cost of producing

crop k in plot ω, which equals average cost:

ci,k (ω) = α−αkk β−βkk γ−γkk

wαki,Aρ
βk
i (ri (ω))γk

(Λi,k (ω))γk

=
c̄kw

αk
i,Aρ

βk
i (ri (ω))γk

(Λi,k (ω))γk
,

where c̄k = α−αkk β−βkk γ−γkk .

The demands for inputs per unit of land are independent of the total amount produced, and

can be written as
li,k (ω)

φi,k (ω)
=
αk
γk

ri (ω)

wi,A
(2)

for labor and
xi,k (ω)

φi,k (ω)
=
βk
γk

ri (ω)

ρi
(3)

for intermediate inputs. Note that these are also the quantities of labor and intermediates used

when the plot is completely specialized, since the size of each plot is 1.

B.1.3 The Implications of Profit Maximization

Profit Maximization Having characterized the cost function, we can return to the profit

maximization problem of the farmer. Let qi,k (ω) be the quantity produced of crop k, in region i,

using plot ω. Then the profit maximization problem in the plot is:

max
qi,k(ω)

pi,kqi,k (ω)− ci,k (ω) qi,k (ω) (4)

Since the technology exhibits constant returns to scale, we cannot determine the output by solving

this problem. All we can say is that at an optimum, pi,k ≤ ci,k (ω), with equality of qi,k (ω) > 0.

Furthermore, if qi,k (ω) > 0, we can derive a relationship between the equilibrium rental rate in

plot ri, (ω) and the price of crop k:

pi,k = c̄k
wαki,Aρ

βk
i (ri (ω))γk

(Λi,k (ω))γk

pi,k (Λi,k (ω))γk c̄−1
k = wαki,Aρ

βk
i (ri (ω))γk

pi,k (Λi,k (ω))γk c̄−1
k w−αki,A ρ−βki = (ri (ω))γk

⇒

ri,k (ω) = Λi,k (ω) p
1
γk
i,k c̄
− 1
γk

k w
−αk
γk

i,A ρ
−βk
γk

i

= λi,kΛi,k (ω)
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where λi,k = c̄
− 1
γk

k p
1
γk
i,kw

−αk
γk

i,A ρ
−βk
γk

i is an index of the profitability of production of crop k in i, ignoring

land quality.

Land Allocation The farmer behaves competitively, which ensures that all the difference

between revenues and the labor and input costs is transferred to the landowners, such that the

farmer earns zero profits. This is the same argument as one would make if there were a mass of

competitive farmers bidding to rent land from the household. Therefore, a competitive farmer will

choose crops such that the rental rate is the maximum that can be attained in that plot,

ri (ω) = max
k
{λkΛi,k (ω)} .

Note that, given our assumptions, this implies that there is complete specialization across all plots

(those where specialization is incomplete are a measure zero.)

Let us denote the probability of that event happening by ηi,k,

ηi,k = Pr

[
k = arg max

l
λlΛi,l (ω)

]
.

Proposition 1. Profit maximization, together with Assumptions 1 and 2, implies that farmers

in region i allocate a fraction ηi,k of land to crop k.

Proof. We assumed that Λi,k (ω) is drawn from a Fréchet with parameters (γ̃Ai,k, θ). It follows

that λkΛi,k (ω) is drawn from a Fréchet with parameters (γ̃λkAi,k, θ). Using the properties of the

Fréchet distribution,

ηi,k =
(λkAi,k)

θ∑
l (λlAi,l)

θ

=
(λkAi,k)

θ

Φθ
i

where we define Φθ
i =

∑
l

(
c̄
− 1
γl

l p
1
γl
i,lw

−αl
γl

i,A ρ
−βl
γl

i Ai,l

)θ
.

Note that because we assume that there is a continuum of plots in each region i, ηi,k also

represents the aggregate fraction of land that is allocated to crop k, in region i. Note that ηi,k > 0

for all crops with Ai,k > 0. This outcome is due to the fact that the distribution of each Λi,k (ω) is

unbounded from above, of which the Fréchet distribution is a special case.

Note also that we can henceforth assume that if ω ∈ Ωi,k, then all land in ω is allocated to

k, φi,k (ω) = 1. Assuming a continuous distribution for Λi,k (ω) guarantees that cases where the

farmer is indifferent between two crops have zero probability. The interpretation is that each plot

will become perfectly specialized in the production of a single crop k.

Finally, in equilibrium the fact that the farmer chooses k to maximize profits does not contradict

the he earns zero profits on each plot in equilibrium. The land rent on that plot, ri (ω), adjusts
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to ensure this is so. Because ri (ω) is the maximum of a set of Fréchet r.v., we also obtain the

distribution of rental rates. In fact, ri (ω) is drawn from a Fréchet distribution with parameters

(Φi, θ).

Optimal Demand for Labor and Intermediates Once we have the equilibrium value of

ri (ω) when ω ∈ Ωi,k, equal to to ri,k (ω), we can obtain the optimal labor-land and intermediates-

land ratios, as a function of prices and land quality. Knowledge of optimal factor uses will allow us

to calculate optimal yields and revenues per unit of land.

Using the first order conditions of the CMP, evaluated at φi,k (ω) = 1, to obtain the input

demands per plot, if ω is specialized in k, and substituting ri (ω) in these expressions:

li,k (ω)

φi,k (ω)
=

µαkqi,k (ω)

wi,A

ri (ω)

µγkqi,k (ω)

li,k (ω) =
αk

γkwi,A
ri (ω)

li,k (ω) =
αk

γkwi,A
λi,kΛi,k (ω) (5)

and, similarly,

xi,k (ω) =
βk
γkρi

λi,kΛi,k (ω) . (6)

Revenue per Unit of Land Let ψi,k (ω) denote the optimal revenue per unit of land, condi-

tional on ω ∈ Ωi,k. Then substitute the optimal demands for labor (5) and intermediate inputs (6)

in the production function (2), setting φi,k (ω) = 1 (which has the same interpretation as output

per unit of land):

ψi,k (ω) = pi,kqi,k (ω)

= pi,k

(
αk

γkwi,A
λi,kΛi,k (ω)

)αk ( βk
γkρi

λi,kΛi,k (ω)

)βk
(Λi,k (ω))γk

= pi,kα
αk
k ββkk γγk−1

k w−αki,A ρ−βki λ1−γk
i,k Λi,k (ω)

= pi,kα
αk
k ββkk γγk−1

k w−αki,A ρ−βki

(
c̄
− 1
γk

k p
1
γk
i,kw

−αk
γk

i,A ρ
−βk
γk

i

)−γk
λi,kΛi,k (ω)

= pi,kα
αk
k ββkk γγk−1

k w−αki,A ρ−βki

(
c̄kp
−1
i,kw

αk
i,Aρ

βk
i

)
λi,kΛi,k (ω)

=
λi,kΛi,k (ω)

γk
.
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Optimal Land Yield Let yi,k(ω) denote the optimal land yield, still conditional on ω ∈ Ωi,k.

We obtain it as

yi,k (ω) = ψi,k (ω) /pi,k

=
λi,kΛi,k (ω)

pi,kγk

B.1.4 Expected yields, revenue and land rents

So far, we have characterized land rent, physical yields and revenues for a given plot, as a function of

output and factor prices, and of that plot’s random land quality Λi,k (ω) (under the assumption that

ω ∈ Ωi,k). To match the model to data, we must characterize the distributions of these variables

conditional on ω ∈ Ωi,k actually happening. That is, we study how ri,k (ω), yi,k (ω) and ψi,k (ω) are

distributed over the set of plots where it is optimal to grow crop k.

The Conditional Distribution of Land Quality Λi,k (ω) |ω ∈ Ωi,k The main building

block is the distribution of land quality, conditional on crop k being chosen, which I denote Gi,k

We need to calculate:

Gi,k (t) = P
[
Λi,k (ω) ≤ t|λi,kΛi,k (ω) = max

j
λi,jΛi,j (ω)

]
.

After rearranging the conditioning event, we write this as

Gi,k (t) =
1

ηi,k
P
[
λi,j
λi,k

Λi,j (ω) ≤ Λi,k (ω) ≤ t, ∀j
]

=
1

ηi,k

∫ t

0

∏
j 6=k

P
[
λi,j
λi,k

Λi,j (ω) ≤ v
]
fi,k (v) dv.

Using the fact that Λi,j (ω), ∀j, is distributed like a Fréchet rv:

Gi,k (t) =
1

ηi,k

∫ t

0

∏
j 6=k

exp

(
−
(
A−1
i,j

λi,k
λi,j

v

)−θ)
exp

(
−
(
A−1
i,k v
)−θ)

θAθi,kv
−θ−1dv

=
1

ηi,k

∫ t

0
exp

−λ−θi,k v−θ∑
j

(Ai,jλi,j)
θ

 θAθi,kv
−θ−1dv

=

∫ t

0
exp

(
−λ−θi,k v

−θΦθ
i

)
θλ−θi,kΦθ

i v
−θ−1dv

= exp
(
−λ−θi,kΦθ

i t
−θ
)

= exp

(
−
(

Φi

λi,k
t

)−θ)
,

which proves that Λi,k (ω) |ω ∈ Ωi,k is distributed like a Fréchet r.v. with parameters (γ̃Φi/λi,k, θ).
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The interpretation is as follows. If we went across all plots in the region for which ω ∈ Ωi,k and

measured the land quality that is attained with an optimal allocation of land, that measure would

be distributed according to Gi,k (ω).

Once we know the conditional distribution, it is also straightforward to show that

E [Λi,k (ω) |ω ∈ Ωi,k] =
Φi

λi,k
.

The Conditional Distribution of Land Rents Note that the land rent in plot ω, when

ω ∈ Ωi,k, is just Λi,k (ω) scaled by λi,k , as shown above:

ri,k (ω) = λi,kΛi,k (ω) .

Exploiting the properties of Fréchet r.v. once again, it is clear that the distribution of ri (ω) |ω ∈
Ωi,k, inherits the properties of Gi,k (t): ri (ω) |ω ∈ Ωi,k follows a Fréchet distribution, with param-

eters (γ̃Φi, θ).

This result is important because it says that, no matter what crop k we are talking about, the

distributions of ri (ω) |ω ∈ Ωi,k are identical. In particular, the average land rent in the plots of

region i that grow crop k is

E [ri (ω) |ω ∈ Ωi,k] = γ̃λi,kE [Λi,k (ω) |ω ∈ Ωi,k]

= γ̃Φi. (7)

Note that the average return to land is equalized across crops within a region. This is a stronger

result than we would obtain without the Fréchet assumption: optimal land allocation only guar-

antees that the return to land is equalized at the margin across crops, not on average. Also, note

that both ri (ω) and E [ri (ω) |ω ∈ Ωi,k] are homogeneous of degree one in prices.

Similarly, the distributions of yi,k (ω) |ω ∈ Ωi,k and ψi,k (ω) |ω ∈ Ωi,k can be obtained as an

implication of the distribution of Λi,k (ω) , too. In particular.

Proposition 2. A) The physical land yield of crop k, conditional on ω ∈ Ωi,k, denoted by

yi,k (ω) |ω ∈ Ωi,k, is distributed like a Fréchet r.v, with parameters
(
γ̃γ−1

k p−1
i,kΦi, θ

)
.

B) The revenue per unit of land for crop k, conditional on ω ∈ Ωi,k, denoted by ψi,k (ω) |ω ∈ Ωi,k,

is distributed like a Fréchet r.v., with parameters
(
γ̃γ−1

k Φi, θ
)
.

Proof. This follows from the optimal value of yi,k (ω) and ψi,k (ω) and the previously derived

conditional distribution of Λi,k.

Likewise,

E [yi,k (ω) |ω ∈ Ωi,k] =
Φi

γkpi,k

14



and

E [ψi,k (ω) |ω ∈ Ωi,k] =
Φi

γk

Note that if αk = βk = 0, then γk = 1, and we go back to the land-only world. Both in their

model and in this one, the distribution of revenue per unit of land is identical across crops, within

a region.

Case θ →∞ In this case, heterogeneity vanishes and the logic of land allocation is the same

as in a traditional Ricardian model: land is only allocated to the crops that maximize λi,kAi,k, so,

for example, if we observe in the data that ηi,k > 0, it means that λi,kAi,k = maxl {λi,lAi,l}. This

allows us to write:

lim
θ→∞

E [yi,k (ω) |ω ∈ Ωi,k] = lim
θ→∞

Φi

γkpi,k

=
1

γkpi,k
lim
θ→∞

Φi

=
λi,kAi,k
γkpi,k

and yi,k scales up with Ai,k, given prices.

Relation of Revenue Share and Land Share Let πi,k denote the revenue share of crop k

in region i , that is

πi,k =
pi,kqi,k∑
l pi,lqi,l

Proposition 3. The revenue share is proportional to the land share, with the constant of

proportionality reflecting the land intensity of the crop relative to the average

πi,k =
γ−1
k ηk∑
l γ
−1
l ηl

.

Proof

We can calculate total revenue from crop k as

1

γk
E [λkΛk (ω) |ω ∈ Ωk] ηkHi.

Now, maxk λkΛk is drawn from a Fréchet with parameters (γ̃Φi, θ), independent of which crop is

15



the maximizer. Then

πi,k =
γ−1
k E [λkΛk (ω) |ω ∈ Ωi,k] ηkHi∑
l γ
−1
l E [λlΛl (ω) |ω ∈ Ωi,l] ηlHi

=
γ−1
k Φiηk∑
l γ
−1
l Φiηl

=
γ−1
k ηk∑
l γ
−1
l ηl

�

B.1.5 Deriving cost-weighted cost shares

Proposition 3 implies that a cost-weighted average of land-shares in a given region is equal to the

“harmonic” land-weighted average of those land-shares:

πi,kγk =
ηi,k∑
l γ
−1
l ηi,l∑

k

πi,kγk =
∑
k

ηi,k∑
l γ
−1
l ηi,l

=
1∑
l
ηi,l
γl

≡ γ̄i

B.2 Aggregate Quantities

In this section I show how to aggregate the optimal behavior of the representative farmer across

plots ω ∈ Ωi. I derive the regional demand for labor and intermediates, as well as the total value

of production of each crop and overall.

B.2.1 Regional Revenue and Output

First we calculate the total output and value coming from the production of crop k. Aggregate

revenue is

Vi,k = E [ψi,k (ω) |ω ∈ Ωi,k] ηi,kHi

= γ−1
k Φiηi,kHi

= γ−1
k (λi,kAi,k)

θ Φ1−θ
i Hi

which allows us to calculate output in units of good k as

qi,k = Vi,k/pi,k

= γ−1
k (λi,kAi,k)

θ p−1
i,kΦ1−θ

i Hi.
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We can further aggregate across goods to obtain the revenue function

Vi =
∑
k

Vi,k

=
∑
k

γ−1
k Φiηi,kHi

= ΦiHi

∑
k

γ−1
k ηi,k

= ΦiHi

∑
k

γ−1
k ηi,k

=
ΦiHi

γ̄i

which scales up with Φi.

B.2.2 Aggregate Demand for Labor and Intermediates

The plot-level demand for labor is, as shown before,

li,k (ω) =
αk

γkwi,A
λi,kΛi,k (ω) ,

so the aggregate demand in region i, coming from crop k is

li,k =

∫
ω∈Ωi,k

li,k (ω) dω

= E [li,k (ω) |ω ∈ Ωi,k] ηi,kHi

= E
[

αk
γkwi,A

λi,kΛi,k (ω) |ω ∈ Ωi,k

]
ηi,kHi

=
αk

γkwi,A
Φiηi,kHi.

Likewise, plot level demand for intermediates is

xi,k =

∫
ω∈Ωi,k

xi,k (ω) dω

= E
[
βk
γkρi

λi,kΛi,k (ω) |ω ∈ Ωi,k

]
ηi,kHi

=
βk
γkρi

Φiηi,kHi.

Summing across crops, within region i, we get

li,A =
∑
k

αk
γkwi,A

Φiηi,kHi

=
ΦiHi

wi,A

∑
k

αk
γk
ηi,k
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and

xi =
∑
k

βk
γkρi

Φiηi,kHi

=
ΦiHi

ρi

∑
k

βk
γk
ηi,k

Something to note here is that these expressions, for example, the aggregate demand for labor

depends on the wage directly through the wi,A term in the denominator, but also through the

wage’s indirect effect in the allocation of land across crops, which differ in the intensity with which

they use labor. Thus, we cannot derive a closed form expression for the wage wi,A as a function of

the labor demanded li,A. Defining ᾱi as ∑
k

αkπi,k = ᾱi,

we obtain

li,A =
ΦiHi

wi,A

∑
k

αk
γk
ηi,k

=
Φi

wi,A
Hi
ᾱi
γ̄i

=
ᾱi
wi,A

Vi

since

∑
k

ηi,k
γi,k

αk =
∑
k

πk

(∑
l

ηl/γl

)
αk

=
1

γ̄i

∑
k

πkαk.

This expression for labor demand reflects the endogenous average labor and land shares (which

depend, among other things, on input and output prices). For example, if the wage goes up, the

amount of land allocated to relatively labor intensive crops will go down, and so will the demand

for labor. That is on top of the decrease induced by an input mix that is less labor intensive, for

all crops. Note that the last equation just delivers the usual Cobb-Douglas result for the share of

labor in production. The reasoning to obtain

xi =
β̄iVi
ρi

is analogous.
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B.3 Competitive Equilibrium

Regions in Home take the prices in Foreign as given, and these prices remain unchanged regardless

of how much is imported or exported. I provide next the definition of a competitive equilibrium

which incorporates the implications of Assumptions 1 and 2, thus focusing on regional aggregates.

Definition 1. A competitive equilibrium consists of, for each region i = 1, . . . , I:

(a) prices pi,k for all crops k ;

(b) wage rates wi,M , wi,A, and input prices ρi;

(c) final goods expenditure Eii′,TR, i′ ∈ W, and Ei,NT , and consumption Ci,k for all crops k;

(d) input demands li,A, xi,A, and outputs qi,k for all crops k = 1, . . . ,K, and the non-agricultural

sector, li,NT , li,TR;

(e) trade flows: (e1) domestic zni,k, for all regions n = 1, . . . , I and crops k = 1, . . . ,K, (e.2)

international zFi,k and ziF,k for all crops k = 1, . . . ,K (e.3) international ziF,x of the intermediate

input X, such that,

(1) the quantities in (c) solve the consumer’s problem, given income and prices

Ci,k =

(
pi,k
Pi

)−σ biEi
Pi

Eij,TR =

(
dij,Mwj,M/Tj,TR

Pi,TR

)1−ε
bi,TREi

Ei,NT = bi,NTEi,

where Pi,TR =
(∑

j∈W (dij,TRwij,TR/Tj,TR)1−ε
) 1

1−ε
;

(2) the inputs and outputs in (d) solve the agricultural producer’s problem, given prices;

(3) the agricultural goods prices in (a) come from the cheapest supplier

pn,k ≤ dni,kpi,k

with equality if zni,k > 0, for all regions n, i ∈ W, for all crops k; the intermediate input prices are

ρi = diF,xρF

for all regions i in Home;

(4) The labor demand for non-agricultural in (d) labor satisfies:

wi,M (li,NT + li,TR) =

I∑
n=1

(
dni,TRpii,TR

Pi,TR

)1−ε
En,TR + Ei,NT +DROW,i,

where DROW,i = (wi,MdFi/Ti,TR)1−εXROW and

wi,M li,NT = Ei,NT ;
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(5) in each region, local markets clear for agricultural labor, land, and crops:

Li,A = li,A

Ci,k = qi,k −
∑
n∈W

dni,kzni,k +
∑
i′∈W

zii′,k, all k = 1, . . . ,K

ziF,x = xi,A

Li,M = li,NT + li,TR;

(6) with the definition of Ei, this implies trade with Foreign is balanced: the value of exports

is equal to the value of imports

K∑
k=1

pF,k

I∑
i=1

zFi,k
dFi,k

+
I∑
i=1

DROW,i =
K∑
k=1

pF,k

I∑
n=1

dnF,kznF,k + ρF

I∑
n=1

dnF,xxn +
I∑

n=1

pnROW,MCnROW,M

To complete the description of the equilibrium, I drop the trade balance condition and choose

a normalization, given by the price of foreign goods in the data.

B.4 Alternative Representations of the Farmer’s Problem

The Farmer Seeks to Maximize Total Rents For simplicity consider only one input other

than land. Also, let us drop the region index to simplify notation. We consider the case where: (i)

the size of the plot is h, (ii) the farmer seeks to maximize the total revenue of the household, (iii)

land quality is a Hicks-neutral productivity shock.

Suppose then that the technology for producing crop k in plot ω is

qk (ω) = Λk (ω)Lαki,k (φk (ω))γk

where αk + γk = 1. In equilibrium it will be that
∑K

k=1 φk (ω) = h. The solution to the CMP is

the cost function

ck (ω) =
c̄kw

αkrk (ω)γk

Λk (ω)

and the solution to the PMP is then

pk ≤ ck (ω) ,

with equality if ω ∈ Ωk. This yields a land rent for the plot

rk (ω) = c̄
−1/γk
k w−αk/γkp

1/γk
k Λk (ω)1/γk .

Now the farmer chooses land allocations and input use to maximize the land owner’s total rent

(which is what determines the land owner’s income):

R =
∑
k

rk (ω)φk (ω)h.

20



So the farmer chooses {φk} to maximize R. Note that, to be able to use the familiar results from

the Fréchet, we need to assume that Λk (ω) is drawn from a Fréchet with parameters (Ak, θ/γk),

such that Λk (ω)1/γk is drawn from a Fréchet distribution with parameters
(
A

1/γk
k , θ

)
. With those

assumptions, rk (ω), the rental rate of land if ω is used to grow k, is also drawn from a Fréchet

distribution.

Now h is a constant, and so rk (ω)h is also a Fréchet r.v. With probability 1 there is only one

maximizer among the collection of random variables:

{rk (ω)h}k

so, with probability one, the equilibrium is a corner solution with

φk (ω) = 1 iff k = arg max
l
{rl (ω)h} .

That being the case, the probability of the farmer choosing k is equal to ηk in the main text of the

paper.

The Land Owner Chooses Inputs and Land What if the farmers act directly to maximize

the total return to land in each plot? Then they want to maximize

R (ω) =
∑
k

pkqk (ω)− wklk (ω)

=
∑
k

(pkΛk (ω) lk (ω)αk φk (ω)γk − wlk (ω))

So choose lk (ω) optimally conditional on φk > 0

αkpkΛk (ω) lk (ω)αk−1 φk (ω)γk = w

⇒

lk (ω) =

(
αkpkφk (ω)γk Λk (ω)

w

) 1
1−αk

and plug it back in

R =
∑
k

[
pkΛk (ω)

(
αkpkφk (ω)γk Λk (ω)

w

) αk
1−αk

φk (ω)γk − wlk (ω)

]

Now, since αk = 1− γk

R =
∑
k

[
γkα

αk
γk p

1
γk
k w

−αk
γk Λk (ω)1/γk φk (ω)

]
.
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We can finally analyze the choice of crops. Note that, conditional on the realization of Λk (ω)1/γk ,

R is a sum of terms that are linear in φk, the land allocations to different uses. Therefore, the

solution is found in a corner, setting φk = 1 for the crop l such that

l = arg max
k

(
γkα

αk
γk p

1
γk
k w

−αk
γk Λ

1
γk
k

)
Since

λk = α
αk
γk
k γkp

1
γk
k w

−αk
γk

This problem will yield the same solution in the main text.

C Homogeneous technology

The results drastically simplify when we assume γk = γ for all k. In this case, our Propositions

boil down to

1. Land Allocation:

ηi,k =

(
p

1/γ
i,k Ai,k

)θ
Φ̃θ
i

with

Φ̃i =

(∑
k

(
p

1/γ
i,k Ai,k

)θ)1/θ

.

2. Revenue and yield per unit of land

E [yi,k|ω ∈ Ωi,k] = κy

(
wi,A
pi,k

)−α/γ ( ρi
pi,k

)−β/γ ( Φ̃γ
i

pi,k

)1/γ

E [ψi,k (ω) |ω ∈ Ωi,k] = κyw
−α/γ
i,A ρ

−β/γ
i Φ̃i

3. Land and revenue shares are equal

πi,k = ηi,k

for all i and k

Furthermore, we can show the revenue function for crop k simplifies to

Vi,k = γ−1c̄
− 1
γw
−α
γ

i,A ρ
−β
γ

i

p
θ
γ

i,kA
θ
i,k

Φ̃θ
i

Φ̃iHi.

Total revenue is then

Vi = γ−1c̄
− 1
γw
−α
γ

i,A ρ
−β
γ

i Φ̃iHi,
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and labor demand is

li,A =
ΦiHi

wi,A

∑
k

α

γ
ηi,k

=
ΦiHi

wi,A

α

γ

while total demand for intermediate inputs is

xi =
ΦiHi

ρi

∑
k

βk
γk
ηi,k

=
β

γ

ΦiHi

ρi
.

This case allows for further simplification under the assumption that labor is immobile in agricul-

ture. We can solve for agricultural wages from the labor demand, using market clearing

Li,A =
α

γ
c̄
− 1
γw
− 1−β

γ

i,A ρ
−β
γ

i Φ̃iHi

w
1−β
γ

i,A =
α

γ
c̄
− 1
γ ρ
−β
γ

i Φ̃i
Hi

Li,A

= c̄
− 1

1−β

(
α

γ

) γ
1−β

ρ
− β

1−β
i

(
Φ̃i

Hi

Li,A

) γ
1−β

.

Substituting this expression for wages in the expression for Vi we get

Vi = γ−1c̄
− 1
γ

(
c̄
− 1

1−β

(
α

γ

) γ
1−β

ρ
− β

1−β
i

(
Φ̃i

Hi

Li,A

) γ
1−β
)−α

γ

ρ
−β
γ

i Φ̃iHi

= γ−1c̄
− 1
γ

+ α
γ(1−β)

(
α

γ

)− α
1−β

ρ
−β
γ

+ αβ
γ(1−β)

i

(
Φ̃iHi

)1− α
1−β

= γ−1

(
α

γ

)− α
1−β

c̄
− 1

1−β ρ
− β

1−β
i

(
Φ̃iHi

) γ
1−β

L
α

1−β
i,A

= κV ρ
− β

1−β
i Φ̃

γ
1−β
i H

γ
1−β
i L

α
1−β
i,A

D Market Access and Productivity

To gain a clear understanding of how trade costs affect allocations and productivity, I discuss a

stripped down version of the model. Suppose that land shares are the same, so γk = γ, for all

crops. Then Propositions 1 trough 3 simplify quite a bit. The key distinction is that, since all

crops have the same input shares, changes in the factor rewards do not affect the allocation of land

across crops. Therefore, the land allocation is independent of factor rewards, and depends only on
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relative average land qualities and relative output prices.6

With this simplification, we can calculate the equilibrium revenue function in terms of endow-

ments, crop prices, and the price of intermediate inputs:

Vi ∝ ρ
− β

1−β
i Φ̃

γ
1−β
i H

γ
1−β
i L

α
1−β
i,A . (8)

where Φ̃θ
i =

∑
k

(
p

1/γ
i,k Ai,k

)θ
. Equation (8) is the familiar revenue function. It relates the total

revenue generated by region i to prices that are exogenous to the farmer and to the total stock of

factors of production.

In this context, where a region produces many crops, we may measure physical productivity in

each crop directly by looking at yields. But to study aggregate productivity at the regional level

requires a method for aggregating consistently across crops. The multi-crop index Vi offers just

such a measure. In Section 7, where I take this index to data, I express Vi in terms of units of

intermediate inputs at the port, or Vi/ρF . This choice of units is appropriate for productivity, since

it measures revenue in quantities whose value does not change in counterfactual exercises.

Equation (8) shows the sense in which the coefficient ρ
− β

1−β
i Φ̃

γ
1−β
i is a measure of productivity,

or TFP. Keeping the coefficient constant, the total revenue of agricultural production has constant

returns to scale in land and labor. Equation (8) also shows that in location i, agricultural pro-

ductivity is higher because Φ̃i is higher (capturing, in part, better land allocations) or because the

relative price of intermediates, ρi, is lower.7

In the model, variation in ρi is entirely driven by transportation costs: imported intermediates

will be more expensive in remote places. This is the first channel through which transport costs

lower productivity. The elasticity of TFP with respect to the price of the intermediate input, keeping

all other prices constant, is −β/ (1− β), which is higher the larger the cost share of intermediates.

As shown before, however, input use depends on the price of the intermediate relative to the price

of output. In the exchange between the farmer and the rest of the world, trade costs increase this

relative price twice: once when the farmer ships his output to the closest port and once when he

brings the intermediate input back to the farm.8

The second channel is related to the farmers’ production and consumption choices. High trans-

port costs increase the prices of the crops that farmers purchase, and decrease the price of the

crops they sell. Both effects are summarized in the value of Φ̃i. Because producers will tend to sell

the goods in which they have a comparative advantage and buy those in which they do not, high

6In this case, relative land shares are given by ηi,k/ηi,l =

(
p

1
γ

i,kAi,k

)θ
/

(
p

1
γ

i,lAi,l

)θ
. Moreover, land shares and

revenue shares are equalized across crops πi,k = ηi,k.
7Note that subtraction of intermediate input costs leaves a constant proportion of revenue, (1− β)Vi, so the TFP

coefficient is the same.
8Consider the use of intermediate inputs relative to total output in region i, crop k, in the case when region i

exports crop k to Foreign and obtains inputs in return. The model predicts xi,k/qi,k = βkpi,k/ρi = βk
pF,k
ρF

dFi,kdiF,x.
Insofar as modern intermediates increase productivity, trade costs will decrease measured productivity.
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transport costs will induce a negative correlation between pi,k and Ai,k across k, thus lowering Φ̃i.
9

I emphasize, however, that Φ̃i does not exclusively measure the effect of specialization due to

comparative advantage. Rather, it also reflects other factors that increase the productivity of land,

but are not explicitly modeled. Thus, if the quality of land in a region doubles – keeping prices

constant –, then Φ̃i will also double, regardless of that region’s access to markets. The education

of the workforce, for example, or the presence of increasing returns to scale at the farm level can

generate differences in Φ̃i across regions. We return to the quantitative impact of trade frictions in

Section 7.

E First-Order Approximations to counterfactuals

E.1 Change in Value Added

We start by finding a first-order approximation to the change in value added (that is, the payments

to labor and land) in response to a change in crop prices and intermediate price changes.

The problem of the farmers is equivalent to that of a planner that maximizes total revenue

minus payments to intermediate inputs, or value added, subject to the total endowment of labor

and land. That is, dropping region indexes for simplicity:

V A = max
φk(ω),lk(ω),xk(ω)

∑
k

∫
Ω
pk

[
lk (ω)αk xk (ω)βk (φk (ω) Λk (ω))γk

]
− ρxk (ω)

subject to

∑
k

∫
Ω
lk (ω) dω = LA∑
k

φk (ω) = 1, ∀k.

Using the envelope theorem, which allows us to ignore plots that switch uses, we calculate the total

differential of value added when prices pk and ρ change

dV A =
∑
k

qkdpk − xkdρ

where qk = lk (ω)αk xk (ω)βk (φk (ω) Λk (ω))γk in equilibrium, and xk and lk is the equilibrium

demand of intermediate inputs and labor, given in (5) and (6). Using the fact that payments to

9In a land-only model, for an autarkic region, the elasticity of the relative price of two crops, pk
pk′

, with respect

to their relative land qualities, Ak
Ak′

, is − θ

θ + σ − 1
. In contrast, if a small region is integrated with the rest of the

economy, then the relative price of crop k is not related endogenously to land quality Ak. Weakening the negative
correlation between pi,k and Ai,k that prevails in autarky increases the magnitude of Φi.
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factors obey the Cobb-Douglas form, as shown before

dV A =
∑
k

(
qkdpk − βkpkqk

dρ

ρ

)
.

And using V A =
(
1− β̄

)
V , where V is the total value of production, we write the change in value

added in proportional terms:

dV A

V A
=

∑
k

(
pkqk
V A

dpk
pk
− βk

pkqk
V A

dρ

ρ

)
=

∑
k

(
1

1− β̄
πk
dpk
pk
− βk

1

1− β̄
πk
dρ

ρ

)
=

1

1− β̄
∑
k

πk

(
dpk
pk
− βk

dρ

ρ

)
=

1

1− β̄
∑
k

πk
dpk
pk
− 1

1− β̄
dρ

ρ

∑
k

πkβk

=
1

1− β̄
∑
k

πk
dpk
pk
− β̄

1− β̄
dρ

ρ

E.2 Change in welfare

With this expression, it is easy to calculate the first-order approximation to the change in welfare

of farmer households, which own land and labor. Welfare for them is:

W =
V A

P b
,

which implies

dW

W
=

dV A

V A
− bdP

P

=
1

1− β̄
∑
k

πk
dpk
pk
− β̄

1− β̄
dρ

ρ
− b

∑
k

sk
dpk
pk

=
∑
k

(
1

1− β̄
πk − bsk

)
dpk
pk
− β̄

1− β̄
dρ

ρ
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F Data Appendix

In this section I provide more details on the data sets I use in the paper. For an overview of all

data sources and samples, see Table H.1.

Regions. In matching the model to data, I use the administrative division of Peru to define the

regions in the model. As of 2012, Peru is hierarchically divided into 24 departments, 194 provinces

and 1838 districts. Each region i in Home in the model corresponds to one of the 194 provinces in

Peru, although for some purposes, like the estimation of θ, I exploit the district level disaggregation.

I use information on consecutive cross-sections, the exact years depending on the sample.

Crops. The National Statistics on Agriculture contain detailed information on over 180 crops

grown in Peru. Besides being unmanageable from a computational perspective, many of these crops

only account for tiny fractions of land and value of production. Therefore, I select the top 20 crops,

according to their value of production in the years 2008-2011, and restrict the sample to those. The

crops are listed in Table H.2. Section F.7 at the end of this Appendix explains how I match crops

across different sources.

As shown in Table H.2 these crops do not account for all of production in the country. Further,

the coverage varies across regions. Therefore, I re-scale the data on Hi as to keep the total value

of production for each region unchanged. This procedure also leaves land shares ηi,k and prices

pi,k unchanged. The size Hi of each district is given by the total amount of land used for growing

the crops in the sample. The 25th, 50th, and 75th percentiles of the resulting size distribution for

provinces are 54.87km2, 134.87km2, and 252.17km2.10

F.1 National Statistics on Agriculture

These data are collected by the Peruvian Ministry of Agriculture (MINAG). Given the level of

disaggregation, MINAG relies on local “qualified informers”, who are often people trusted by the

community, to gather the data.

The original data are disaggregated at the district level. For each district i, crop k, and year

t, the data set contains information on farm-gate prices, pi,k,t, physical yields, yi,k,t, and land use,

ηi,k,tHi,k,t. I eliminate the time variation by averaging each variable at the district and crop level,

and interpret these averages as the objects pi,k, yi,k and ηi,kHi in the model. Using the data at

the province level requires aggregation, which I do weighing appropriately by revenues or by land

shares, depending on the variable.

I describe below two samples, which I use for different purposes depending on their relative

strengths.

10The 25th, 50th, and 75th percentiles of the size distribution of districts are 1.88km2, 5.76km2 and 15.96km2.
This distribution remains unchanged, since it is only used in the estimation of θ, which does not require the rescaling.
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Wide sample

This is a cross-section of every district in Peru that produces agricultural goods. It is a balanced

panel containing the years 2008-2011. Once I have an estimate of θ, I use this sample, aggregated

at the province level, to estimate underlying land quality for each region and crop, Ai,k. Descriptive

statistics for this sample are shown in Tables H.4, H.5 and H.6 in this Appendix.

Long sample

This is a sample of the districts contained in 4 out of 24 departments: Arequipa, Huánuco, La

Libertad, Puno. They account for 22 percent of the total value of production in 2008. The

advantage of this sample is that it includes the years 1997-2011, although the panel is unbalanced.

I use it to get more precise estimates of the long-run equilibrium values of ηi,k and pi,k, which are

necessary to improve the estimation of θ, the land heterogeneity parameter. Also, for the estimation

of θ, which requires matching to the fine-grained GAEZ dataset, I use data at the district level of

disaggregation.

F.2 Global Agro-Ecological Zones (GAEZ)

I describe the data set briefly –Costinot and Donaldson (2014) provide a more detailed discussion

of it. The goal of the GAEZ project is to assess the agricultural potential for land cells in a fine grid

of the World. FAO and IIASA have developed a methodology to estimate the potential land yield

(see IIASA/FAO (2012)). That is, they estimate the land yield that would prevail if all land in a

cell is entirely devoted to growing a crop. This method transforms information on land types, water

resources and weather conditions into potential yields, through a model of agricultural production.

Importantly, actual statistics on agricultural production are not inputs into the model. Hence, the

database contains truly independent measures of potential agricultural productivity.

To access the data on potential land yields, the user must make a choice about management

conditions: low, medium and high level of inputs. In estimation, I show the results of using low

input levels, but nothing hinges on this: the results are virtually unchanged with medium input

levels.

F.3 Freight rates, the transportation network and geography

The Transportation Network I use a digitized dataset for the universe of roads in Peru, pro-

vided by Ministerio de Transportes y Comunicaciones (MTC). The system is divided hierarchically

in 3 parts: The National roads (Red Vial Nacional) consist of 3 north-south axes, which connect

the northern and southern frontiers of the country, and 20 west-east axes, which link the north-

south axes at different latitudes. The Departmental roads (Red Vial Departamental), under the

purview of each of the 24 departments of the administrative division, serve as an intermediate

between National roads and the more local, Neighborhood roads (Red Vial Vecinal). The latter
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connect populated and production centers with departmental roads. See Ministerio de Transportes

y Comunicaciones de Peru (2011)

Regardless of its place in the hierarchy, a road segment can be paved, graded or dirt. I use this

characteristic later on to classify roads into high and low quality. The data set also contains a set of

clearly identified roads that have not been built, but are being considered for being built (classified

as “En Proyecto”). These are the roads I use in the Counterfactual contained in Section 7.2.

As documented by the Ministry of Transportations and Communications (Ministerio de Trans-

portes y Comunicaciones de Peru, 2013), trains have historically, and until the present, been used

almost exclusively for transportation of people or minerals, which is why I exclude them from the

analysis of transportation of crops. Quoting and translating from the report: “During the year 2013,

38% of the public freight railroad service is conducted by [two firms]. The first transports mainly

minerals, among them concentrated zinc, copper and zinc bars. The remaining 62% corresponds is

a private service conduced by the firm Southern Peru Copper Corporation.”11

The same report suggests that domestic freight transport by air is minimal as well. According

to MTC, 11% of all freight air traffic (or 36, 190 tn) corresponds to domestic traffic (the rest is

international traffic, a distinction that is irrelevant for my approach).

To the best of my knowledge, river trade is minimal as well, although I did not find in the

same publication any direct measures. The only navigable rivers are in the jungle region (three

out of 24 departments in my sample, which comprise 5.0% of the total workforce and 7.8% of

total cultivated land). Still, available statistics about international fluvial trade suggest it is not

particularly important: out of total exports through aquatic ports (12 262 metric tons), only 18

were carried through river ports.

Freight Rates I use a sample of freight rates between 46 pairs of districts, averaged over the

years 2010-2013, where at least one of the districts in the pair belongs to the department of La

Libertad. Most of the freight rates are expressed in terms of local currency per unit of weight.

Others are measured in units (mostly animals) that need to be converted to weight units. The

scope of the data is restricted this way because the source is the Direccion Regional de Agricultura

de La Libertad (http://www.agrolalibertad.gob.pe/).

Altitude Altitude comes from the GTOPO30 project (https://lta.cr.usgs.gov/GTOPO30). It

contains a raster of 30 arc seconds resolution.

F.4 National Household Surveys (ENAHO)

This survey is conducted by the Instituto Nacional de Estadistica e Informatica (INEI); it is Peru’s

main tool for learning about living standards. Every quarter, INEI samples households at random

and applies a survey about income, expenditures, living conditions, etc. The household contains

several modules; in this paper, I use the household expenditure module, which contains information

11Southern Peru is one of the main mining firms in Peru
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on expenditures on disaggregated food items. INEI asks questions in this module to all households in

the sample. Respondents give a detailed account of their expenditures on narrow food consumption

categories, during the fifteen days previous to the day the survey was administered. The survey is

conducted yearly, and to keep a consistent sample with the National Statistics, I use the years 2008

to 2011.

F.5 The International Price of Intermediate Inputs, ρF , and Crops, pF,k

To calculate the international price of crops and intermediate inputs, I use data on agricultural

trade between 2008 and 2011, coming from the Ministry of Agriculture, disaggregated at the HS10

level. Building on a classification employed by the Ministry of Agriculture12, I match crops in the

paper to HS10-level. This match is detailed in Table H.9

The International Price of Intermediates ρF To calculate the price of the good at the port, I

construct a bundle of fertilizers and average their price. This is similar to assuming that, to obtain

a unit of intermediate inputs, farmers combine all available fertilizers in fixed, equal proportions,

as with a Leontieff production function. In Table H.7 I show the unit FOB price and the import

quantity of each fertilizer I include in the input bundle. I take the simple average in the bottom

row to be ρF .13

The International Price of Crops pF,k After matching the K crops in the paper to their

corresponding HS10 codes, I construct unit values, corresponding to pF,k, by dividing total flows

by physical quantities. Table H.8 reports those values. The key observation is that, while it is true

that a fraction of agricultural international trade comprises crops processed to different degrees,

within each crop I identify prices gaps using only the crops that best reflect the unprocessed nature

of crops at the farm gate and therefore set the right international prices in the calibration

Trade Flows by Crop and Customs Using the same data, I complement the match described

previously with other HS10 codes for each crop, as to match the actual quantities of exports, but

including more processed stages of output. I use these data to calibrate the parameters ak, as

described in the paper.

Using the same HS10 correspondence, I use data on exports by good and customs coming from

the Association of Exporters (ADEX) to calculate the share of exports of each good going out

through each port.

12 This is the classification the Ministry uses in its Monthly Statistical Bulletin (Bolet́ın Estad́ıstico Mensual ”EL
AGRO EN CIFRAS”)

13FAOSTAT data for the years 2008 and 2009 show: (i) the fertilizers included in the Table account for more
than 95 percent of total imports of fertilizer, (ii) imported fertilizer is more than 99 percent of consumption, (iii)
exports are about 3 percent of consumption (all measured by weight). Taken together, this evidence suggests that
the assumption that intermediate inputs are imported from abroad is not too far from reality.
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Non-Agricultural Trade Flows I obtain data on aggregate trade flows outside of agriculture

from the 2008 Input-Output Tables for Peru.

F.6 Other Regional Data

Labor Force I use the National Population Census of 2007 to obtain the number of workers in

agriculture and non-agriculture for each district, and aggregate them up to the province level. The

distribution of workers across regions is given in Table H.3, panels (b) and (c).

Gross Domestic Product I obtain GDP data in Agriculture and Non Agriculture for each

department in Peru from INEI.

F.7 A note on matching crops across data sets

Assembling the database requires matching crop definitions coming from three distinct data sets,

each with its own nomenclature: (i) National statistics on agriculture (Ministry of Agriculture), (ii)

Consumption module of the National Household Survey (ENAHO), and (iii) exports and imports

of agricultural goods (published by the Ministry of Agriculture).

Source (i), the National statistics on agriculture, forms the basis of my list of crops, and it

remains unchanged throughout. To match ENAHO to it, I use question “produc61” which, on the

basis of the responses to questions p601A and p601X, match each item consumed to a list of finely

disaggregated consumption goods. Then I match, one by one, the disaggregated categories to their

closest counterparts in the National Statistics database. With this procedure, I was able to match

the following goods: asparagus, avocado, banana, barley, cacao, cassava, coffee, dry bean, grape,

maize (choclo), onion, orange, potato, rice, tangerine, wheat. The match is imperfect because some

goods in the National Statistics are not frequently consumed by households in their unprocessed

form.

The data I use on exports and imports (source (iii)), while published by the Ministry of Agricul-

ture, are originally measured by the customs authority. Therefore, goods are classified at the HS10

level (the first 6 digits are in common with the rest of the world, while the latter 4 are specific to

Peru.) The Ministry of Agriculture groups the relevant HS10 categories according to the crop they

contain. Since this grouping sometimes combines raw crops with products with varying degrees of

processing, I further disaggregate these groupings for the purposes of identifying prices, pF,k, and

export quantities, zFi,k and ziF,k.

To calculate prices, I only keep those HS10 categories that pertain to unprocessed crops. This

selection excludes part of the total volumes of exports and imports (I retain approximately 60% of

total export and import value of all agricultural exports and imports reported by the Ministry of

Agriculture), but allows me to calculate an international price that is comparable to the farm-gate

price in the national statistics. The categories I use for obtaining prices are shown in Table H.9.

To recover the correct quantities, I then add the rest of categories that the Ministry of Agricul-

ture groups as belonging to a given crop. These additional categories are shown in Table H.10.
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In both cases, the names are often close enough that the match is straightforward. Still, it is

not a perfect procedure, and it requires a few judgment calls.
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G Estimation Appendix

In this section, I describe the details of estimation that were left out of the paper for space consid-

erations. I also derive results that I use in the paper to bring the model to the data.

G.1 Estimation of cost shares

Estimation of γk The basis for the estimation of γk is Proposition 3 in the main text. To

estimate it, I regress

log πi,k = log ηi,k + ιi + ιk + εi,k (9)

where i is a district, k is a crop and ιi and ιk are region and crop dummies (omitting a base crop

l), and εi,k is motivated as measurement error on πi,k. According to Proposition 3, the region fixed

effect ιi captures the normalization term log
(∑

l γ
−1
l ηi,l

)
; while the crop fixed effect ιk captures

log (γk) .

In regression (6), I include a full set of region fixed effects and I omit one crop fixed effect.

The regression therefore identifies land intensities γk relative to a base category. To recover all

levels, I normalize the revenue-weighted cost share of land for the country as a whole to 0.22, as in

Dias Avila and Evenson (2010):

0.22 =
∑
k

(∑
i Vi,k∑
i′ Vi′

)
︸ ︷︷ ︸

k’s total revenue share

γk

where Vi,k is the total value of production in region i and crop k, and Vi region i’s total value of

production.

Note that in regression (9) we estimate a coefficient of 1.03 (std. err. 0.006) for ηi,k – reassur-

ingly, almost equal to 1.

Calibration of αk and βk To arrive at the normalization that the aggregate revenue-weighted

cost share equals 0.22, I take the estimates for the input cost shares in Peru from Dias Avila and

Evenson (2010), Table A.3a, for the period 1981-2001: cropland (22.17%), labor (56.23%), fertilizer

and chemicals (7.02%), seeds (4.64%), mechanization (4.57%) and animal power (3.85%).

Interpreting the labor cost share in Dias Avila and Evenson (2010), Table A.3a, as the country-

wide revenue-weighted cost share in the model suggests ᾱ = 0.56, and letting intermediate inputs

include mechanization and animal power β̄ = 0.22. Thus, compared to the estimates in Hayami

and Ruttan (1985), –later quoted in Restuccia, Yang, and Zhu (2008)–, who estimate that, for a

sample of countries, the labor cost share is 0.42, the intermediate input share is 0.4 and the land

share is 0.18, I use a higher labor cost share and a lower intermediate input share.
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G.2 Obtaining the equations to estimate θ

Although potential land yield is not observed in equilibrium, the GAEZ data set is useful in the

estimation of θ because it aids in handling the unobserved productivity terms, Ai,k. Suppose that,

in equilibrium, we observe a region’s prices (pi,k), wi, ρi. Then we can calculate the potential land

yield E [yi,k (ω) ;wi, ρi, pi,k], that is, the yield that would prevail if all land were allocated to that

crop, given the prices.

Lacking data on labor and intermediate input shares across crops, I impose that αk/βk = ν,

where ν is crop independent, and since αk + βk = 1 − γk, we have βk = (1− γk) / (ν + 1) and

αk = ν (1− γk) / (ν + 1). Equipped with estimates of all land shares, γ̂k, now we can turn to

optimal land allocation to estimate θ. The first step is to derive the unconditional land productivity.

Start with the yield in crop k in plot ω is

yi,k (ω) =
λi,kΛi,k (ω)

pi,kγk
.

The unconditional expectation, yi,k (ω), i.e., allocating all plots ω ∈ Ωi to crop k, is

E [yi,k (ω)] = γ−1
k p−1

i,kλi,kE [Λi,k (ω)]

= γ−1
k c̄
− 1
γk

k w
−αk
γk

i,A ρ
−βk
γk

i p
1−γk
γk

i,k Ai,k

Again, at those prices land would be allocated according to (4), so this is an object that, while

never observed in equilibrium, corresponds to the statistics produced by the GAEZ project.

The GAEZ data. Next, I impose an additional restriction to make contact with the GAEZ data.

I assume that the GAEZ model does not have spatial price variation in it (as explained below). I

also assume there is a prediction error ui,k, which allows us to make contact with the GAEZ data

as

ỹGi,k = γ−1
k c̄
− 1
γk

k

(
wGi,A

)−αk
γk

(
ρGi
)−βk

γk
(
pGi,k
) 1−γk

γk Ai,ke
ui,k ,

where ỹGi,k is the GAEZ project’s measure.

The estimating equation. To arrive at the estimation equation, I eliminate Ai,k from the

equation above. To do so, I use the land share equation (4):

ηi,k =
λθi,kA

θ
i,k

Φθ
i

,

to solve for Ai,k which yields:

Ai,k =
Φi

λi,k
η

1
θ
i,k.
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Using this expression to substitute for the true Ai,k in the equation that defines the GAEZ estimate,

yGi,k, through the lens of the model, we obtain:

ỹGi,k = γ−1
k c̄
− 1
γk

k

(
wGi,A

)−αk
γk

(
ρGi
)−βk

γk
(
pGi,k
) 1−γk

γk
Φi

λi,k
η

1
θ
i,ke

ui,k ,

so taking logs and rearranging, we obtain

log ỹGi,k = − log γk −
1

γk
log c̄k −

αk
γk

logwGi,A −
βk
γk

log ρGi +
1− γk
γk

log pGi,k

+ log Φi +
1

θ
log ηi,k +

1

γk
log c̄k −

1

γk
log pi,k +

αk
γk

logwi,A +
βk
γk

log ρi

+ui,k.

GAEZ model has no spatial variation. As I anticipated, I further assume that there is no

price variation in the GAEZ model. Doing so simplifies the equation to:

log ỹGi,k = − log γk −
(1− γk) ν
γk (1 + ν)

logwGA −
1− γk

γk (1 + ν)
log ρG +

1− γk
γk

log pGk︸ ︷︷ ︸
=ιk

+ log Φi︸ ︷︷ ︸
ιi

+
1

θ
log ηi,k −

1

γk
log pi,k +

(ν logwi,A + log ρi)

1 + ν︸ ︷︷ ︸
=δi

(1− γk)
γk

+ui,k

⇒

log

(
p

1
γk
i,k ỹ

G
i,k

)
=

1

θ
log ηi,k + ιk + ιi + δi

(1− γk)
γk

+ ui,k

where ιi and ιk are region and crop fixed effects, and δi is a region-specific coefficient for the

regressor (1− γk) /γk which is constructed from the first stage. In practice, this means that we

construct the variable (1− γk) /γk and multiply it by a set of regional dummies ιi, so that we have,

for each region i, the regressor: 

0
...

0

(1− γ1) /γ1

...

(1− γK) /γK
...

0


and each one of these variables is associated with its own coefficient δi.
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Matching the GAEZ data set to the Peruvian administrative division To construct the

ỹGi,k data at the district level, I overlay the administrative division of Peru on top of the GAEZ grid.

To deal with the fact that the boundaries of both divisions do not coincide, I further partition the

GAEZ grid according to Peru’s map. It often happens that one cell gets assigned to more than one

district; also, on many occasions, this procedure assigns pieces from more than one cell to a single

district, in which case I assign the maximum cell value to that district.

To match the GAEZ grid to the districts, I use the actual administrative division of Peru.

The quartiles of the administrative district-size distribution are 93.8km2, 210.6km2 and 497.7km2.

The quartiles for the distribution of harvested land are 1.88km2, 5.76km2, 15.96km2. Due to its

projection, the cell size in the GAEZ grid is approximately 86.km2 at the Equator, but it grows

larger at higher latitudes. The fact that the total agricultural land is usually much smaller than the

total amount of land in a district justifies using the maximum GAEZ value for each district that

contains more than one GAEZ cell. The crops included in the regression are those that are both

observed in national statistics and in the GAEZ dataset: alfalfa, banana, barley, cacao, cassava,

coffee, maize (yellow hard), onion, orange, potato, rice, wheat. Table H.12 shows the regression

results.

G.3 Estimation of Iceberg Costs

The goal of this section is to produce an estimate of the iceberg trade costs between any two regions

in Peru, and for each good in the data set.

The first step is to estimate a statistical model of transport costs: I project a sample of within-

country price gaps on data about the quality and geography of the road that connects each origin-

destination pair in the sample. Because data on geography and road quality are available for

the whole country, I then use this estimated model to predict trade costs for all possible origin-

destination pairs in Peru.

G.3.1 Preparing the road and geography data

I follow Donaldson (2015) and represent the transportation system with a graph. To form the

graph, I combine GIS data on (i) the exact location of the capital of each district i, (ii) a fine grid

of altitude, and (iii) the shape, length and quality of the road network.

Nodes. The following are nodes in the graph: (i) district capitals, (ii) locations where existing

roads branch out or merge, (iii) locations where the quality of a road changes, (iv) if a road is the

closest one to a district centroid, the point in the road that is closest to that centroid.

Arcs. Two nodes are connected by an edge if at least one of the following conditions is met: (i)

there is a segment of road of any quality that connects them, (ii) the two nodes are district capitals

at most 10 km. apart, (iii) one of the nodes is a district capital that would be disconnected from the

rest of the graph without connection to another district capital. In case (ii) I use the straight-line
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distance and assign low quality to the connection. In case (iii) I use the straight-line distance to

the closest district capital and assign low quality to the connection.

G.3.2 Estimation

I estimate a transport cost model, which will give estimates of the relative costs of traversing roads

of different qualities and with different slopes. Let yni be the dependent variable (either price gaps

or freight rates of shipping a kilogram of goods) from region i to region n. I estimate the following

equation by NLS:

E [log yni|geography, roads] = β0 + βdistance log (effective distanceni (λ)) . (10)

where βdistance is the elasticity of the dependent variable to effective distance. For a given choice

of the parameter vector λ, “effective distanceni” is the lowest-cost path between regions n and i,

calculated according to Dijkstra’s algorithm, which minimizes the following weighted sum of road

lengths:

effective distanceni (λ) = min
R

∑
q∈Q

∑
edge∈Eq(R)

[
h (λssedge) ·

(
λqroad lengthedge

)]
. (11)

In equation (11), the effective distance between i and n is the weighted distance over route R on

the network. For each road of quality q ∈ Q, route R contains edges Eq (R). The cost of traversing

a kilometer of road of quality q is λq and λs is the effect of traversing an edge with slope sedge,

captured through the function h (·). Without loss, we normalize the weight of high-quality distance,

λhigh, to one.14

In practice, I set Q = {high, low}, where only paved roads have high quality, and I set h (x) =

(1 + x) to avoid non-linearities that depend on the way roads were segmented to make the graph.

In all of these formulations I use the Matlab BGL Library (Gleich (2009)).

Letting n = F , and yni = pF,coffee/pi,coffee− 1 gives the results in the main body of the paper,

contained in Table H.13(a).15 Tables H.13(b) presents estimates of (10) in levels, and show that

the results do not change much, especially for my main specification. Finally, the third column of

both tables estimates the model allowing for the effect of slope of terrain, but the standard errors

are too large to draw inference on them.16

Price gaps are observed at the district level, and that is also the level at which I construct

14In (11) the optimal road depends on the actual value of λ. The reason is that, given λ, Dijkstra’s algorithm
chooses among alternative ways of reaching n from i, over the graph, and these choices may change with the cost
vector λ. In the extreme, if h (·) = 1 and λq = 1 ∀q ∈ Q, the algorithm minimizes the simple road length between
two points. As λq increases, for q 6= high, the algorithm gives priority to high-quality edges.

15The underlying model is that the iceberg trade cost from i to n follows the form: dni = 1 +

exp
(
β0distance

βdistance
ni

)
, which ensures that the iceberg cost is always weakly greater than one.

16Limao and Venables (1999) find empirical evidence for the role of infrastructure as a determinant of trade costs.
Donaldson (2015) estimates that transporting goods on dirt roads increases transport costs by a factor of 7.9 relative
to railroads. My estimates are larger, which possibly reflects that infrastructure plays a larger role in Peru.

37



the network described above. However, in the rest of the paper I identify a region with Peruvian

provinces. This requires me to aggregate the predictions from equations (10) and (11).

G.4 International Barriers and Domestic Demand Parameters

In this section, I discuss how I calibrate the domestic demand parameters, ak and international

barriers τk. For any region i in Home, the cost of trading with Foreign has two components. The

first is captured by the cost of trading with the closest international port. To find the closest

international port, I select the three main sea ports by value traded, and find the closest port o (i)

to region i according to the predicted iceberg cost d̂o(i) = arg minj d̂ji. The second component,

denoted by τk below, is a barrier that prevents the traders from realizing the full price of goods

at the port. Without it, the model is unable to reproduce the variation of crop prices within the

country, as equilibrium prices would then deviate too little with respect to international prices.

I use information on net export quantities and international prices to calibrate ak, ∀k. Specifi-

cally, I pick ak to solve the following problem:

min
Xag ,ak

(
NXd

kd̃F,kτk − qdk + cdk (ak, Xag)

qdk

)2

I
[
NXd

k > 0
]

+

NXd
k/
(
d̃F,kτk

)
− qdk + cdk (ak, Xag)

cdk (ak, Xag)

2

I
[
NXd

k < 0
]

+

(
qdk − cdk (ak, Xag)

qdk

)2

I
[
NXd

k = 0
]

subject to
∑

k ak = 1. In this problem, c
(
ak, Xag; p

d
F,k

)
is consumption of k according to the model,

and is calculated making use of information on average farm-gate prices pdF,k, preference parameters

ak andXag, a measure of real consumption in agricultural goods; NXd
k are observations on aggregate

net exports of crop k, qdk are data on aggregate output of crop k, pdk are median farmgate prices

for crop k, d̃k is the minimal cost of trading internationally among regions that produce k. The

intuition is to choose values of Xag, ak that allow a simple version of the model – where there are no

costs to trade domestically but there are uniform costs to trade abroad – to get as close as possible

to matching data on net exports. Note that I weigh each term in this objective function by the

size of the industry. I choose the international wedges τk, such that τk = max
{

1, pF,k/
(
pdkd̃F,k

)}
if NXk > 0 and τk = max

{
1, pdF,k/

(
pdk/d̃F,k

)}
if NXk < 0.

Note that there is an asymmetry in the treatment of the international wedges in the calibration:

they enter in the difference between domestic and international prices, but not in the difference

between domestic flows and international flows. The reason is that, for a few crops, even with small

trade costs d̃F,k, NXd
kd̃F,k > qdk, which implicitly states that consumption of that crop is negative.

However, there are large differences between international, pdF,k, and domestic average prices, pdk,

which explains the need for the τk wedges. This calibration is similar to having a tax on exports
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and imports that doesn’t get rebated to consumers.

Figure H.4(a) compares the full simulation results of net exports (normalized by gross output

in agriculture) with those numbers in the data. This correlation is not explicitly targeted in the

in the calibration. The Figure shows that the fit is good, with the exception of avocado. The

reason is that there is large within country heterogeneity in the price avocado, which the model is

unable to generate; coupled with a large elasticity of supply for that crop, this generates excessive

specialization. Figure H.4(b) shows that the model is quite close to fitting net exports as a fraction

of each crop’s output, however. The results of this procedure are reported in Tables H.17 and H.18.

With these values of ak and τk, I compute for each good, the following measure of international

trade costs

d̂iF,k = τkd̂o(i).

G.5 Land Quality Parameters, Ai,k

The estimation proceeds in two steps. First, we obtain the value of Φi in equilibrium. Second, using

that value, we use the land equation to back out the value of Ai,k that rationalizes land allocations

given prices.

Total Value of Production and Baseline Value of Φi. First, recall that the equilibrium value

of agricultural production in region i is

Vi = Hi
γ̄i

Φi .

Because Vi, πi,k are observable, and we have estimates of γk, we can back out Φi from the data as:

Φi = γ̄iVi
Hi

. (12)

Equation (12) uses the aggregation properties of the model to infer region i’s aggregate land

productivity from data on its land share of income, total value of production, and land endowment.

The variable Φi is informative about the aggregate level of productivity, as shown in the distribution

of yields and revenues in Proposition 2. A higher value of γ̄iVi relative to Hi and will lead us to

infer a higher land quality for all crops in i, because it means that region i produces more value for

a given factor use.

Estimation of Ai,k. To estimate the Ai,k parameters I rely on the model structure. As I have

discussed in detail in Section 4, Assumption #2 imposes strong restrictions on what data are

informative about land quality. The only way to learn about the relative values of the parameters

Ai,k is by comparing land allocations across crops, within a region. In contrast, data on revenue

per unit of land and physical yields are informative about the common component of all Ai,k within

a region. Recall that relative values of Ai,k are not directly observable, except for the limiting case

where θ →∞, in which the observed land yield of crop k fully reveals Ai,k.
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My approach, which extracts the model parameters using data on the endogenous variables,

is an alternative to the use of external measures of productivity. Costinot, Donaldson, and Smith

(2016) and Costinot and Donaldson (2014), for example, use directly the potential quality measures

produced by the GAEZ project. Their method has the benefit that the productivity measures are

independent of the model, insofar as the researcher only needs to choose how to interpret the

productivity data. Its main shortcoming is that, although constructed with extreme care, the

GAEZ measures are an imperfect measure of actual land quality. For my application, there is an

additional complication: GAEZ does not estimate potential productivity data for some goods that

are important in my database.

Just like aggregate output and endowments are informative of a common component of land

quality for all crops in region i, data on prices and land allocations are informative about the

relative land qualities within that region. Using equation (4) to solve for Ai,k we obtain:

Ai,k = η
1
θ
i,k

Φi

λi,k
. (13)

To take this expression to data, we use

ρi = diF,xρF ,

together with

wi,A =
ᾱiVi
Li,A

to construct the baseline value of

λi,k = p
1
γk
i,k c̄
− 1
γk

k w
−αk
γk

i,A ρ
−βk
γk

i .

We can take these expressions to data because pi,k, ηi,k, Vi and Li,A are measured directly, and

equation (12) tells us how to measure Φi with the regional aggregates. It is clear that these

estimates, Âi,k, are independent of the numeraire in the data, since equation (13) is homogeneous

of degree zero in prices.

Let us take a moment to interpret this equation. As already said, the statistic Φi shifts all

estimates of Ai,k proportionally, based on how much output is produced in i, compared to its

endowments. A large value of ηi,k requires a higher land quality for crop k, relative to the other

crops, to rationalize it. But we must also net out the effect of the profitability of growing that crop

in i, λi,k, which also tends to generate a large land allocation to crop k.17

There is an alternative interpretation of equation (13) that will help understand the results of

the simulations in Sections 6 and 7. The estimate of Ai,k combines information on prices and land

allocations. In this estimation, variation in land allocations is more important, relative to price

17The estimation of Ai,k is not free of error; the observations for pi,k, ηi,k, and the aggregate variables used to
infer Φi are themselves estimates, just like the values of θ and γk. Even if the model is correct, we are ignoring the
sampling variation and hope for an unbiased estimate of Ai,k.
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variation, the larger 1/θ. Given γ, a lower value of θ (high heterogeneity) gives less importance to

land allocations in the estimation of Âi,k.

Finally, while in the theory section I have specified labor as inelastically supplied to each sector,

the calibration does not require taking a stance on labor mobility since, using the model, one is

able to back out implied wages in agriculture and non-agriculture, wi,M and wi,A.

Sample and Results My primary goal in obtaining Ai,k is coverage, so I sacrifice precision in the

estimation to be able to obtain an estimate for every region in the country. Hence, I use the wide

sample of national statistics, which contains repeated cross-sections from 2008-2011 and covers the

whole country. Data on pi,k, and ηi,k are averages across time. I use the corresponding data on

land yields, yi,k, to construct the total value of production in region i, Vi =
∑

k∈K pi,kyi,kηi,kHi.

Table H.15 shows, for each crop k, the summary statistics of the estimates of Ai,k. The estimates

vary substantially between crops, reflecting the fact that the price of a ton of output also varies

much between crops.

G.6 Elasticity of substitution σ

ENAHO surveys each year a random sample of households for a sample of regions i. I treat each

household as randomly sampled from the model, and match its consumption to the goods k used in

the simulation. The observations that I can match between ENAHO and the National Statistics on

agriculture account for 8.3% of total household expenditure in the survey. To minimize the role of

extreme observations, for each crop I trim the top and bottom 1% observations of the unit values.

As discussed in the main body of the paper, my main IV strategy relies on the GAEZ estimates

of potential productivity, ỹGi,k. Column 1 of Table H.16 shows OLS results of regressing expenditure

shares on log unit values, for comparison purposes. Column 2 shows the the first stage coefficient

and F-statistic, which suggests GAEZ productivities are relevant instruments. Column 3 shows the

second stage, which is the number reported in the paper. Columns 6 and 7 repeat the estimation

using the logarithm of GAEZ productivities as instruments. These results confirm the relevance of

the instrument, and point to a higher elasticity of substitution σ = −2.804. While the log form

for the instrument is appealing, all zero estimates in GAEZ are dropped in this regression, which

decreases the number of observations.

An alternative is to implement an IV strategy based on the assumption that international prices

and transportation costs are orthogonal to the error εENAHOi,k,t,h . In particular, I instrument log vi,k,t,h

with

Zi,k =

log (pF,k + fi,k) , if ηi,k = 0

log (pF,k − fi,k) , if ηi,k > 0

Intuitively, if ηi,k = 0, the region cannot produce crop k so, unless its importing costs are too

high, the supply of the crop in question will be affected by the price of delivering the crop from

abroad, approximated by, pF,k + fi,k. On the other hand, if ηi,k > 0, region i produces some

amount of crop k, and, provided trade costs are not too high, will export it, so the price will be
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close to pF,k−fi,k. Note, according to the model, whether ηi,k is positive is entirely exogenous, and

controlled by whether Ai,k is positive. Combining the information on trade costs and international

prices is crucial to generate enough variation in the data such that household and crop fixed effects

can be included in the estimation. Columns (4) and (5) of Table H.16 show the results of this

strategy. The results point to a σ = −2.164, slightly less than my main estimates, but confirm the

direction of the OLS bias.

G.7 Manufacturing Productivity Ti,TR and Ti,NT

To estimate the manufacturing productivity parameters Ti,M , I use data on value added per worker

outside of agriculture. Under the assumption of free mobility within the non-agricultural sector M ,

the wage wi,M implied by the data is given by

wi,M =
V Ai,TR + V Ai,NT
Li,TR + Li,NT

,

where V Ai,j is value added in region i, sector j. Unfortunately, sectoral value added data are only

available at the department level, which is a higher level of aggregation than provinces, my unit of

observation. To make use of the available data, I assume that all regions i within a department

have the same equilibrium wage wi,M in the data.

I assign Ti,TR such that the, given all data on production in the agricultural sector, and data on

factor endowments, the model is able to replicate the equilibrium wages wi,M I observe in the data.

Finally, Ti,TR is chosen as to replicate the allocation of labor within the non-agricultural sector.
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H Appendix Tables and Figures

H.1 Summary Statistics of Agriculture Data Set

Table H.1: Description of Data Sets
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Table H.2: Crops Included

Crop Rank Cumulative Share
of Production Value

rice 1 0.14
potato 2 0.26
coffee 3 0.37
maize (yellow hard) 4 0.42
alfalfa 5 0.46
asparagus 6 0.50
banana 7 0.54
cassava 8 0.57
maize (amilaceo) 9 0.59
grape 10 0.61
cotton branch 11 0.63
onion 12 0.65
maize (choclo) 13 0.66
dry bean 14 0.68
avocado 15 0.69
wheat 16 0.70
cacao 17 0.71
orange 18 0.72
barley grain 19 0.73
tangerine 20 0.74

For a crop ranked k, “Cumulative Share of Production Value” refers to the first k crops’ share of production, out of the total value produced
between 2008 and 2011, evaluated at 2011 prices.

Table H.3: Summary Statistics of Land Shares, ηi,k

(a) Arable Land (Hectares)

count mean std min 25% 50% 75% max

Land 194.00 18257.49 17632.09 0.00 5487.25 13487.29 25217.16 117681.50

(b) Agricultural Labor

count mean std min 25% 50% 75% max

Agricultural Labor 194.00 1221.43 972.59 29.10 483.72 977.40 1714.38 5071.50

(c) Non-Agricultural Labor

count mean std min 25% 50% 75% max

Non-Agricultural Labor 194.00 3881.36 23608.11 67.50 372.95 848.10 1892.73 325405.40
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Table H.4: Summary Statistics of Land Shares, ηi,k (fraction of total land)

count mean std 10% 25% 50% 75% 90%

alfalfa 194.00 0.11 0.22 0.00 0.00 0.01 0.08 0.40
asparagus 194.00 0.01 0.07 0.00 0.00 0.00 0.00 0.00
avocado 194.00 0.01 0.02 0.00 0.00 0.00 0.00 0.02
banana 194.00 0.04 0.09 0.00 0.00 0.00 0.03 0.17
barley grain 194.00 0.09 0.11 0.00 0.00 0.03 0.18 0.25
cacao 194.00 0.01 0.05 0.00 0.00 0.00 0.00 0.02
cassava 194.00 0.03 0.07 0.00 0.00 0.00 0.02 0.07
coffee 194.00 0.05 0.13 0.00 0.00 0.00 0.00 0.17
cotton branch 194.00 0.01 0.06 0.00 0.00 0.00 0.00 0.02
dry bean 194.00 0.04 0.05 0.00 0.00 0.01 0.05 0.10
grape 194.00 0.01 0.04 0.00 0.00 0.00 0.00 0.01
maize (amilaceo) 194.00 0.11 0.13 0.00 0.00 0.05 0.19 0.29
maize (choclo) 194.00 0.02 0.04 0.00 0.00 0.00 0.02 0.08
maize (yellow hard) 194.00 0.09 0.13 0.00 0.00 0.02 0.14 0.27
onion 194.00 0.01 0.03 0.00 0.00 0.00 0.01 0.02
orange 194.00 0.01 0.02 0.00 0.00 0.00 0.00 0.02
potato 194.00 0.17 0.20 0.00 0.00 0.12 0.23 0.41
rice 194.00 0.09 0.18 0.00 0.00 0.00 0.07 0.32
tangerine 194.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
wheat 194.00 0.09 0.12 0.00 0.00 0.02 0.14 0.26

Table H.5: Summary Statistics of Log Prices, log pi,k (local currency)

count mean std 10% 25% 50% 75% 90%

alfalfa 140.00 -1.60 0.52 -2.19 -1.81 -1.41 -1.29 -1.16
asparagus 22.00 0.88 0.21 0.70 0.79 0.85 0.94 1.18
avocado 127.00 0.13 0.59 -0.86 -0.24 0.19 0.62 0.82
banana 112.00 -0.74 0.41 -1.27 -1.03 -0.72 -0.47 -0.27
barley grain 127.00 -0.03 0.19 -0.29 -0.18 0.01 0.10 0.18
cacao 56.00 1.51 0.38 0.87 1.24 1.69 1.77 1.86
cassava 115.00 -0.50 0.46 -1.22 -0.70 -0.42 -0.17 -0.03
coffee 67.00 1.57 0.38 0.88 1.33 1.62 1.90 1.97
cotton branch 44.00 0.78 0.47 0.08 0.39 0.98 1.10 1.24
dry bean 153.00 0.87 0.31 0.41 0.73 0.92 1.07 1.20
grape 47.00 0.46 0.35 0.05 0.23 0.41 0.69 0.91
maize (amilaceo) 139.00 0.48 0.29 0.17 0.28 0.50 0.65 0.74
maize (choclo) 115.00 -0.28 0.33 -0.66 -0.48 -0.24 -0.05 0.07
maize (yellow hard) 139.00 -0.21 0.21 -0.51 -0.32 -0.20 -0.10 0.01
onion 99.00 -0.33 0.28 -0.65 -0.54 -0.30 -0.19 0.05
orange 121.00 -0.50 0.41 -1.06 -0.80 -0.51 -0.20 -0.00
potato 152.00 -0.43 0.22 -0.67 -0.59 -0.43 -0.27 -0.19
rice 79.00 -0.04 0.33 -0.53 -0.21 -0.04 0.13 0.33
tangerine 45.00 -0.51 0.48 -1.14 -0.82 -0.59 -0.07 0.06
wheat 138.00 0.21 0.19 -0.02 0.06 0.18 0.36 0.49
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Table H.6: Summary Statistics of Log Physical Yields, log yi,k (kg/ha)

count mean std 10% 25% 50% 75% 90%

alfalfa 140.00 -3.45 0.46 -4.08 -3.79 -3.40 -3.20 -2.92
asparagus 22.00 -4.84 0.36 -5.29 -5.12 -4.85 -4.53 -4.41
avocado 127.00 -4.73 0.41 -5.19 -5.00 -4.68 -4.46 -4.20
banana 112.00 -4.58 0.53 -5.21 -4.83 -4.55 -4.37 -3.95
barley grain 127.00 -6.72 0.33 -7.07 -6.93 -6.78 -6.57 -6.25
cacao 56.00 -7.25 0.31 -7.66 -7.49 -7.15 -7.06 -6.90
cassava 115.00 -4.43 0.38 -4.80 -4.65 -4.44 -4.21 -4.05
coffee 67.00 -7.23 0.30 -7.60 -7.40 -7.25 -7.00 -6.94
cotton branch 44.00 -6.26 0.55 -6.96 -6.72 -6.16 -5.89 -5.63
dry bean 153.00 -6.71 0.33 -7.08 -6.91 -6.75 -6.50 -6.30
grape 47.00 -4.51 0.60 -5.21 -4.96 -4.49 -3.98 -3.76
maize (amilaceo) 139.00 -6.59 0.45 -7.07 -6.92 -6.69 -6.41 -5.96
maize (choclo) 115.00 -4.82 0.49 -5.43 -5.19 -4.81 -4.51 -4.13
maize (yellow hard) 139.00 -5.77 0.57 -6.43 -6.22 -5.91 -5.36 -4.84
onion 99.00 -4.10 0.62 -5.08 -4.55 -4.01 -3.59 -3.36
orange 121.00 -4.77 0.54 -5.40 -5.13 -4.77 -4.42 -4.22
potato 152.00 -4.41 0.42 -4.82 -4.64 -4.53 -4.20 -3.70
rice 79.00 -5.31 0.62 -6.23 -5.88 -5.05 -4.86 -4.66
tangerine 45.00 -4.62 0.58 -5.35 -4.94 -4.70 -4.49 -3.72
wheat 138.00 -6.62 0.44 -7.01 -6.92 -6.74 -6.48 -5.98

Table H.7: The Intermediate Input Bundle

Input Name Unit Price Import Quantity
(LCU / Kg) (Tons)

Urea 1.140 1412085.28
Diammonium phosphate (DAP) 1.561 509983.82
Ammonium sulfate 0.657 465571.80
Potassium chloride 1.453 241862.40
Ammonium nitrate 1.236 204021.46
Potassium sulphate 2.201 117853.96
Magnesium and potassium sulphate 0.999 87836.48
Superphosphate 1.215 9609.98

Average 1.205
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Table H.8: Summary Statistics of International Prices, pF,k (local currency)

Price

alfalfa 0.00
asparagus 6.38
avocado 4.54
banana 1.80
barley grain 0.93
cacao 8.76
cassava 0.00
coffee 11.11
cotton branch 1.26
dry bean 2.89
grape 6.53
maize (amilaceo) 0.00
maize (choclo) 0.00
maize (yellow hard) 0.75
onion 0.74
orange 2.00
potato 0.00
rice 0.37
tangerine 2.73
wheat 0.90

A value of 0.00 indicates the price for a crop that Peru does not trade internationally in raw form.
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Table H.9: HS-10 correspondence to Crops (Prices)

Crop HS10 Code Description

alfalfa 1214100000 Alfalfa pellets
asparagus 0709200000 Asparagus, fresh or refrigerated
avocado 0804400000 Avocado, fresh or dried
banana 0803001100 Banana for cooking, fresh
banana 0803001200 Banana fresh
banana 0803001300 Musa Acuminata
banana 0803001900 Other banana, fresh or dried
banana 0803002000 Banana dried or fresh
banana 0803901100 Banana fresh
barley grain 1003001000 Barley for seed
barley grain 1003009000 Barley not for seed
cacao 1801001100 Cacao for seed
cacao 1801001900 Other cacao grain, whole or broken, raw
cacao 1801002000 Cacao grain, whole or broken, toasted
cassava 0714100000 Cassava roots fresh, refrigerated, frozen or dried
coffee 0901119000 Coffee not toasted, not decaffeinated, others
cotton branch 5201001000 Cotton - fiber length larger than 3492 mm
cotton branch 5201002000 Cotton - fiber length larger than 2857 mm
cotton branch 5201003000 Cotton - fiber length larger than 2222 mm
cotton branch 5201009000 Cotton - fiber length larger than 28.57 mm
dry bean 0713311000 Beans sp Vigna Mungo (L) Hepper or Vigna Radiata (L) Wilckez, for seed
dry bean 0713319000 Beans sp Vigna Mungo (L) Hepper or Vigna Radiata (L) Wilckez, not for seed
dry bean 0713321000 Beans sp Phaseoulus or Vigna Angularis, for seed
dry bean 0713329000 Beans sp Phaseoulus or Vigna Angularis, not for seed
dry bean 0713331100 Common beans (Phaseoulus Vulgaris), for seed
dry bean 0713331900 Other common beans for seed, except black
dry bean 0713339100 Black bean, not for seed
dry bean 0713339200 Canario bean, not for seed
dry bean 0713339900 Other common beans, not for seed
dry bean 0713359000 Other wild beans or caupi
dry bean 0713391000 Other beans for seed
dry bean 0713399100 Pallares (Phaseoulus Lunatus)
dry bean 0713399200 Castilla beans (Vigna Unguiculata)
dry bean 0713399900 Other beans
grape 0806100000 Fresh grapes
maize (yellow hard) 1005901100 Maize yellow hard
onion 0703100000 Onions fresh refrigerated
orange 0805100000 Oranges, fresh or dried
orange 0805202000 Tangelo (Citrus reticulata x citrus paradisis)
potato 0701100000 Potato for seed, fresh or refrigerated
potato 0701900000 Other potato, fresh or refrigerated
rice 1006300000 Rice, semi-white or wite, including polished or glazed
tangerine 0805201000 Tangerines, fresh or dried
wheat 1001101000 Hard wheat, for seed
wheat 1001109000 Hard wheat, not for seed
wheat 1001190000 Other hard wheat, not for seed
wheat 1001901000 Other wheat, for seed
wheat 1001902000 Other wheat
wheat 1001903000 Morcajo (wheat plus rye)
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Table H.10: HS-10 correspondence to Crops (Quantities)

Crop HS10 Code Description

asparagus 0710801000 Asparagus frozen
asparagus 2005600000 Asparagus prepared or in preserve, not frozen
cacao 1802000000 Peels and other residuals of cacao
cacao 1803100000 Cacao butter, grease not removed
cacao 1803200000 Cacao butter, grease totally or partially removed
cacao 1804001100 Cacao butter
cacao 1804001200 Cacao butter
cacao 1804001300 Cacao butter
cacao 1804002000 Cacao fat and oil
cacao 1805000000 Powder cacao without additives
cacao 1806100000 Powder cacao with additives
cacao 1806201000 Other cacao preparations, without additives
cacao 1806209000 Other cacao preparations, in bars or blocks
cacao 1806310000 Chocolates and preparations, in blocks, tablets or bars, no filling
cacao 1806311000 Preparations in blocks, filled, without additives
cacao 1806319000 Other chocolates and preparations in blocks, tablets or bars, filled
cacao 1806320000 Other chocolates and preparations in blocks, tablets or bars, not filled
cacao 1806900000 Other Chocolates and food preprations that contain cacao
coffee 0901211000 Toasted coffee, not decaffeinated, grain
coffee 0901212000 Toasted coffee, not decaffeinated, ground
coffee 0901220000 Toasted coffee, decaffeinated
dry bean 2005510000 Beans shelled, prepared or in conserve, not frozen
grape 0806200000 Dry grapes, including raisins

H.2 Additional Estimation and Simulation Tables

Table H.11: More evidence on spatial differences in prices (local currency)

Crop Region dummies Urban dummy

Excluding income Including income Excluding income Including income

F statistic p value F statistic p value Coefficient s.e Coefficient s.e

alfalfa
asparagus 49.160 0.000 9261.149 0.000 0.336 0.078 0.279 0.082
avocado 367.949 0.000 302.087 0.000 0.363 0.008 0.289 0.008
banana 225.344 0.000 208.876 0.000 0.123 0.003 0.091 0.003
barley grain 31709.330 0.000 1410.410 0.000 0.402 0.013 0.285 0.015
cacao 18.362 0.000 4182578.000 0.000 0.302 0.092 0.301 0.086
cassava 590.747 0.000 2347.150 0.000 0.246 0.004 0.189 0.005
coffee 102.337 0.000 522.045 0.000 0.194 0.022 0.184 0.022
cotton branch
dry bean 151.542 0.000 125.030 0.000 0.190 0.005 0.153 0.005
grape 113848.500 0.000 307.192 0.000 -0.016 0.006 -0.034 0.006
maize (amilaceo)
maize (choclo) 200.788 0.000 262.682 0.000 0.335 0.007 0.246 0.008
maize (yellow hard)
onion 98.850 0.000 99.475 0.000 -0.016 0.003 -0.037 0.003
orange 364.937 0.000 329.860 0.000 0.128 0.004 0.083 0.005
potato 259.760 0.000 175.609 0.000 0.242 0.003 0.161 0.003
rice 168.931 0.000 166.006 0.000 0.054 0.002 0.014 0.002
tangerine 155.203 0.000 147.595 0.000 0.156 0.005 0.105 0.006
wheat 231.343 0.000 76.201 0.000 0.604 0.007 0.454 0.008

Unit values are not available for crops that are not consumed directly by households. In that case, the corresponding row is empty.
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Table H.12: Estimation of Inverse Heterogeneity θ

(1)

log ỹikp
1/γk
ik

log ηik 0.603∗∗∗

(0.0690)

Crop FE Yes

Region FE Yes

Region x 1−γk
γk

Yes

Observations 453
Adjusted R2 0.918

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table H.13: Estimation of Transportation Models (Based on coffee price gaps)

(a) Specification in logs

Constrained Road Quality Road Quality and Slope
Model Model Model

log effective distance βdist 0.348 0.473 0.473
( 0.115) ( 0.069) ( 0.153)

high quality λhi 1.000 1.000 1.000
— — —

low quality λlo 1.000 11.548 11.548
— ( 5.330) ( 7.957)

slope λs 0.000 0.000 0.000
— — ( 34.020)

Intercept β0 0.210 -0.104 -0.104
( 0.049) ( 0.061) ( 0.123)

N 332 332 332
R-squared 0.192 0.351 0.351

Bootstrapped standard errors in parentheses

(b) Specification in levels

Constrained Road Quality Road Quality and Slope
Model Model Model

log effective distance βdist 0.528 0.633 0.633
( 0.186) ( 0.155) ( 0.272)

high quality λhi 1.000 1.000 1.000
— — —

low quality λlo 1.000 11.459 11.459
— ( 10.466) ( 14.471)

slope λs 0.000 0.000 0.000
— — ( 14.318)

Intercept β0 0.431 -0.028 -0.028
( 0.046) ( 0.140) ( 0.107)

N 332 332 332
R-squared 0.231 0.404 0.404

Bootstrapped standard errors in parentheses
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Table H.14: Estimation of Transportation Models (Based on freight rates)

(a) Specification in logs

Constrained Road Quality Road Quality and Slope
Model Model Model

log effective distance βdist 0.358 0.399 0.399
( 0.104) ( 0.078) ( 0.149)

high quality λhi 1.000 1.000 1.000
— — —

low quality λlo 1.000 44.740 44.740
— ( 34.382) ( 48.325)

slope λs 0.000 0.000 0.000
— — ( 2.852)

Intercept β0 -1.469 -2.010 -2.010
( 0.230) ( 0.218) ( 0.370)

N 46 46 46
R-squared 0.404 0.755 0.755

Bootstrapped standard errors in parentheses

(b) Specification in levels

Constrained Road Quality Road Quality and Slope
Model Model Model

log effective distance βdist 0.308 0.919 0.919
( 0.094) ( 0.172) ( 0.182)

high quality λhi 1.000 1.000 1.000
— — —

low quality λlo 1.000 36.544 36.544
— ( 14.512) ( 7.803)

slope λs 0.000 0.000 0.000
— — ( 26.084)

Intercept β0 -1.253 -2.080 -2.080
( 0.239) ( 0.399) ( 0.585)

N 46 46 46
R-squared 0.301 0.876 0.876

Bootstrapped standard errors in parentheses
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Table H.16: Instrumental Variable Estimation of Elasticity of Substitution, σ

(1) (2) (3) (4) (5) (6) (7)
OLS First stage GAEZ level First stage Freight instrument First stage GAEZ log

log unit value 0.144∗∗∗ -1.385∗∗∗ -1.616∗∗∗ -1.804∗∗∗

(0.00417) (0.0416) (0.0413) (0.0875)

GAEZ productivity -0.0376∗∗∗

(0.000498)

logp intl inst 0.214∗∗∗

(0.00269)

log GAEZ productivity -0.0261∗∗∗

(0.000625)

R-sq 0.415 0.520 0.339 0.660 0.207 0.517 0.169
First st. F stat . 5705.1 6301.2 1742.0

Standard errors in parentheses
Regression includes Province, Crop and Year FE
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table H.17: Estimates of crop-specific preferences, ak

crop ak
rice 18.543
wheat 12.780
maize (yellow hard) 11.202
potato 11.168
cotton branch 9.892
cacao 6.967
maize (amilaceo) 6.503
dry bean 6.408
cassava 3.242
onion 2.320
barley grain 2.151
banana 2.115
alfalfa 1.893
grape 1.807
maize (choclo) 1.756
orange 0.598
avocado 0.249
tangerine 0.207
coffee 0.100
asparagus 0.100
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Table H.18: Estimates of international barriers, τk

crop τk
alfalfa
asparagus 2.395
avocado 3.298
banana 3.153
barley grain 1.000
cacao 1.007
cassava
coffee 1.000
cotton branch 1.801
dry bean 1.016
grape 3.809
maize (amilaceo)
maize (choclo)
maize (yellow hard) 1.000
onion 1.000
orange 2.928
potato
rice 2.286
tangerine 4.325
wheat 1.087

Blank spaces indicate crops that are not traded internationally.
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Table H.19: Baseline consumption and revenue shares

(a) Consumption, si,k × 100

Crop Average C. Variation.

potato 20.62 0.36
alfalfa 17.70 0.44
rice 14.73 0.46
maize (yellow hard) 11.30 0.39
wheat 6.63 0.40
cassava 5.89 0.48
banana 5.02 0.46
onion 3.36 0.44
maize (amilaceo) 3.29 0.36
maize (choclo) 2.34 0.41
barley grain 2.25 0.45
dry bean 1.99 0.35
cotton branch 1.89 0.42
orange 1.22 0.34
grape 0.76 0.36
cacao 0.49 0.51
tangerine 0.27 0.44
avocado 0.24 0.42
asparagus 0.02 0.41
coffee 0.01 0.50

(b) Revenue, πi,k × 100

Crop Average C. Variation.

potato 22.14 1.08
alfalfa 15.14 1.75
coffee 8.17 2.20
maize (amilaceo) 6.35 1.68
rice 6.17 2.27
maize (yellow hard) 5.62 1.29
wheat 5.51 1.36
cassava 4.81 2.83
onion 4.44 3.08
banana 3.97 2.62
avocado 3.28 3.93
maize (choclo) 3.16 2.94
barley grain 2.74 1.41
dry bean 1.81 1.91
grape 1.46 5.66
asparagus 1.19 7.23
cotton branch 1.00 4.50
cacao 0.95 3.31
orange 0.85 3.31
tangerine 0.20 5.18
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Table H.20: Paving Roads: Average Change in Land Yields Across Crops

Crop Average Yield Change

alfalfa 6.07
rice 5.03
orange 4.79
maize (yellow hard) 4.41
tangerine 4.32
dry bean 4.28
banana 3.99
maize (choclo) 3.97
onion 3.87
cassava 3.77
maize (amilaceo) 2.91
potato 2.84
avocado 2.60
cacao 2.41
wheat 2.34
cotton branch 2.16
barley grain 1.47
grape 1.07
coffee 0.89
asparagus −0.42

Table H.21: Production patterns of top 25% regions with largest trade cost reductions (Road Building Policy)

Crop Avg. πi,k
potato 20.37
alfalfa 12.88
cassava 11.08
coffee 9.50
rice 7.10

Table H.22: Paving Roads: Contributions to Changes in Real Income of Top Winners and Losers

(a) Top 10% regions with largest real income gains

Crop Avg. πi,k Avg. ∆pi,k Avg. 1
1−β̄i

πi,k∆pi,k Avg. bisi,k∆pi,k

wheat 4.60 4.05 0.92 0.04
coffee 12.73 2.80 0.75 0.00
potato 14.60 0.88 0.73 0.03
cassava 9.14 1.39 0.61 0.01
alfalfa 13.73 1.68 0.60 0.03

(b) Top 10% regions with largest real income losses

Crop Avg. πi,k Avg. ∆pi,k Avg. 1
1−β̄i

πi,k∆pi,k Avg. bisi,k∆pi,k

potato 38.97 −0.67 −0.38 −0.01
maize (yellow hard) 7.45 −1.00 −0.15 −0.01
banana 6.12 −0.90 −0.12 0.00
cassava 2.15 −0.72 −0.09 0.00
wheat 4.43 −0.59 −0.09 0.00
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H.3 Additional Estimation and Simulation Figures

Figure H.1: Distribution of Agriculture Expenditure Share bi across Regions

Figure H.4: Net exports as fraction of crop output (model and data)
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Figure H.2: Maps of the Infrastructure Policies

(a) Before (b) After paving roads

(c) After building roads

Notes: All maps display the National and Departmental road systems. They do not include the Rural road system.
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Figure H.3: Spatial Distribution of Welfare Policy Responses

(a) Paving Highways in the National System (b) Building New Roads

Notes: All maps display only the National road systems.

Figure H.6: Paving Roads: Counterfactual Change in Prices and Land Shares
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Figure H.5: Fitting Prices and Land Shares

(a) Prices in the data and the simulation

(b) Land shares in the data and the simulation
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Figure H.7: Paving Roads: Distribution of Changes in Prices and Land Shares

Figure H.8: Paving Roads: Net Export Growth
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Figure H.9: International Price Shock: Distribution of Changes in Prices and Land Shares

Notes. Red lines indicate the magnitude of the international shock.
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Figure H.10: International Price Shock: Price Response and Cost of Trading to Ports

Notes. Red lines indicate the magnitude of the international shock.

Figure H.11: International Price Shock: Imperfect Average Pass-Through

Notes: The figure displays the 45-degree line
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Figure H.12: Non-Agricultural Real Income Change following an International Price Shock and Cost of trading
with ROW

Notes: The Figure shows a locally weighted regression line of changes in non-agricultural real income on cost
on trading with ports.

Figure H.13: International Price Shock: Net Export Growth
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