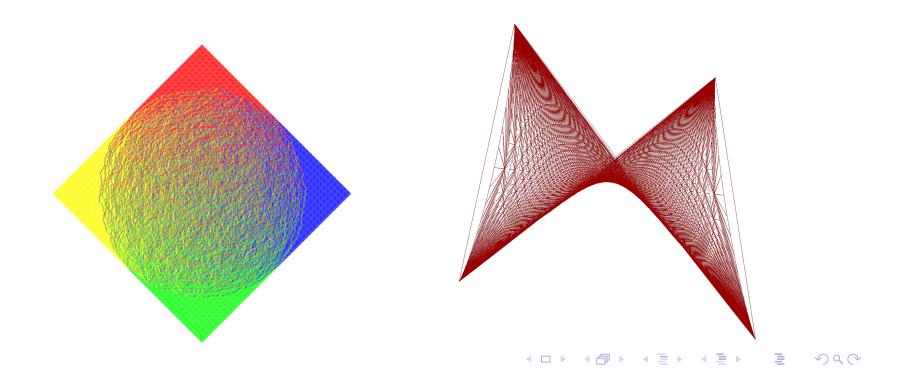
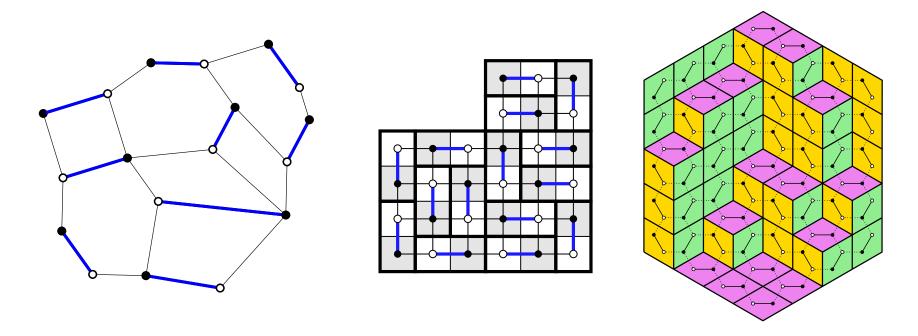
Marianna Russkikh

University of Notre Dame



Dimer model



A dimer cover of a planar bipartite graph is a set of edges with the property: every vertex is contained in exactly one edge of the set.

(On the square lattice / honeycomb lattice it can be viewed as a tiling of a domain on the dual lattice by dominos / lozenges.)

Weighted dimers

Weight function on edges:

$$\nu: E \to \mathbb{R}_{>0}$$

Associated weight of a dimer cover:

$$\nu(m) = \prod_{e \in m} \nu(e)$$

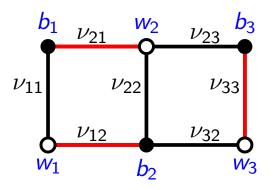
Partition function:

$$Z = \sum_{m \in M} \nu(m)$$

Probability measure on dimer coverings:

$$\mu(m) = \frac{1}{Z}\nu(m)$$

An example for 2×3 graph:



$$\nu(\mathbf{m}) = \nu_{12} \cdot \nu_{21} \cdot \nu_{33}$$

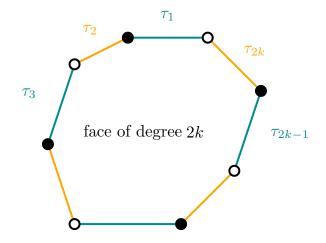
$$Z = \nu_{12} \cdot \nu_{21} \cdot \nu_{33} + \nu_{23} \cdot \nu_{32} \cdot \nu_{11} + \nu_{11} \cdot \nu_{22} \cdot \nu_{33}$$

Kasteleyn matrix

Complex Kasteleyn signs:

$$au_i \in \mathbb{C}$$
, $| au_i| = 1$,

$$\frac{\tau_1}{\tau_2} \cdot \frac{\tau_3}{\tau_4} \cdot \ldots \cdot \frac{\tau_{2k-1}}{\tau_{2k}} = (-1)^{(k+1)}$$

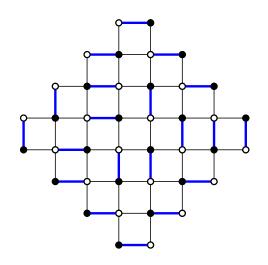


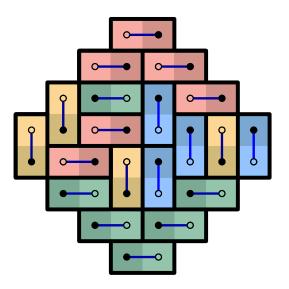
A (Percus-)Kasteleyn matrix K is a weighted, signed adjacency matrix whose rows index the white vertices and columns index the black vertices: $K(w,b) = \tau_{wb} \cdot \nu(wb)$.

- [Percus'69, Kasteleyn'61]: $Z = |\det K| = \sum_{m \in M} \nu(m)$
- The local statistics for the measure μ on dimer configurations can be computed using **the inverse Kasteleyn matrix**.

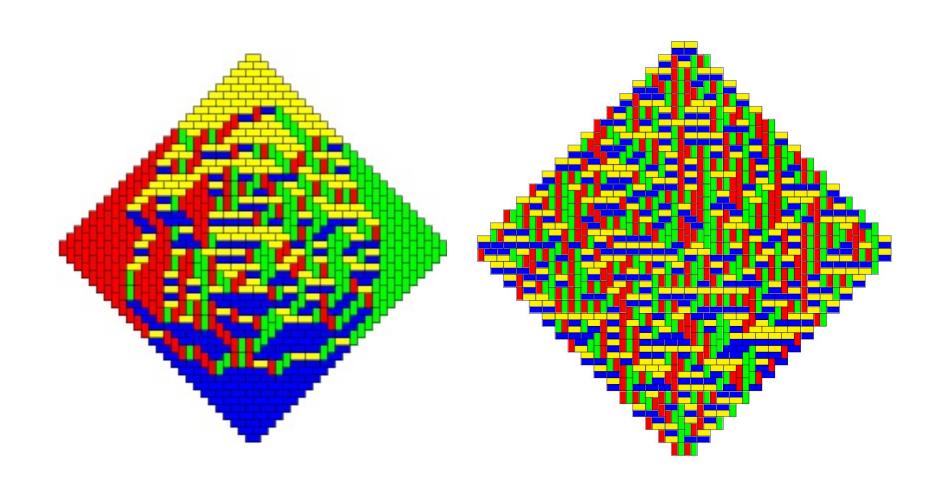
Aztec diamond (uniformly weighted)

Domino tilings of Aztec diamond

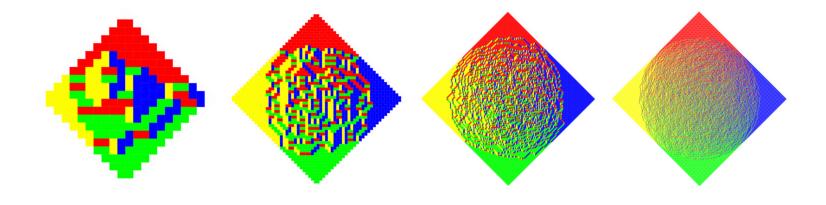




Uniform domino tilings



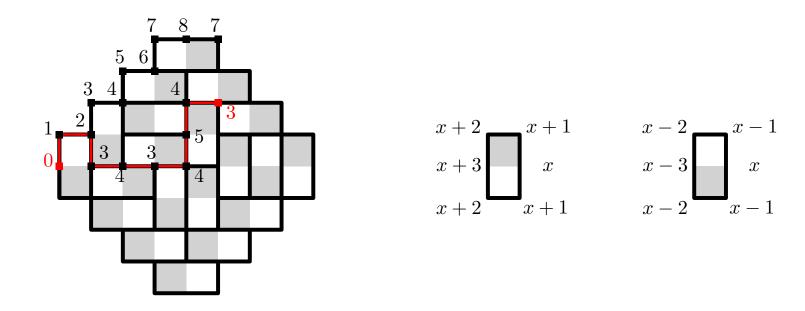
Uniformly distributed domino tilings of the Aztec diamond



The tiling pictures are generated using a program that was kindly provided by S. Chhita

Height function

Thurston introduced the height function of a tiling which uniquely assigns integer values to all vertices.



Dimer height function on vertices: along each edge not covered by a domino the height changes by ± 1 , increases by 1 if this edge has a black face on its left, and decreases by 1 otherwise.

Height function

The key questions: the large-scale behavior of

- (a) the limit shape of the height function,
- (b) fluctuations of the height function.

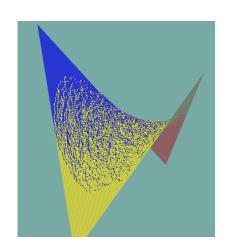
Intuition:

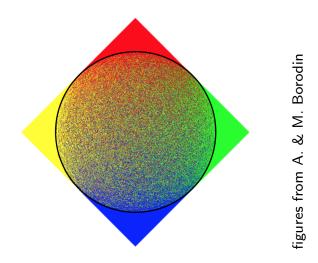
- (a) Law of Large Numbers
- (b) Central Limit Theorem

Dimer model on Aztec diamond: limit shape

[Cohn, Kenyon, Propp '00], [Cohn, Elkies, Propp '96]

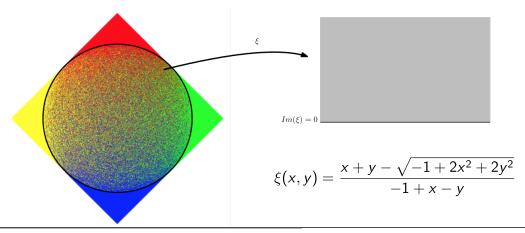
- 1. **Theorem:** The local density of each type of edge converges to a deterministic limit. Equivalently: The normalized random height function converges to a deterministic limit shape.
- 2. The region where these densities are strictly between 0 and 1 is called the Liquid Region and is given by $\{x^2 + y^2 < 1/2\}$.



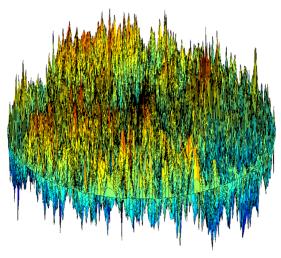


Fluctuations: Gaussian free field

Theorem (Bufetov, Gorin '18) The fluctuations $\tilde{h}_n = h_n - \mathbb{E}[h_n]$ converge to the GFF in the complex structure defined by $\xi(x,y)$: $\tilde{h}_n \circ \xi^{-1} \to F$, where $F = F_{\mathbb{H}}$ is the Dirichlet GFF in the upper half plane.



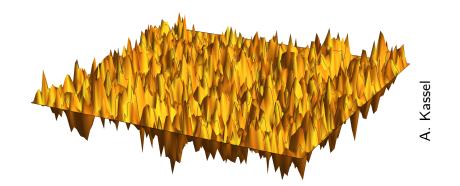
- The GFF is a random generalized function (distribution) on a domain $D \in \mathbb{C}$, a 2-dimensional analogue of a Brownian bridge.
- [Kenyon-Okounkov '05] conjectured it to appear universally in tiling models.



Gaussian Free Field

The Gaussian Free Field is not a random function, but a random distribution.

[1d analog: Brownian Bridge]



The Gaussian free field Φ on \mathcal{D} is the random distribution such that pairings with test functions $\int_{\mathcal{D}} f \Phi$ are jointly Gaussian with covariance

$$\mathsf{Cov}\left(\int_{\mathcal{D}} f_1 \Phi, \int_{\mathcal{D}} f_2 \Phi\right) = \int_{\mathcal{D} \times \mathcal{D}} f_1(z) G(z, w) f_2(w).$$

Results

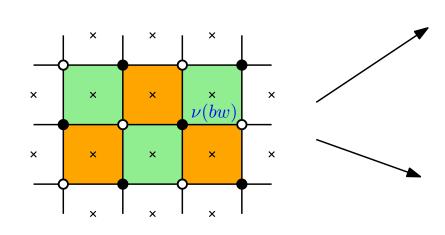
Theorem (Berggren, Nicoletti, R. '23)

Perfect t-embeddings of the uniformly weighted Aztec diamond converge to a Lorentz-minimal surface.

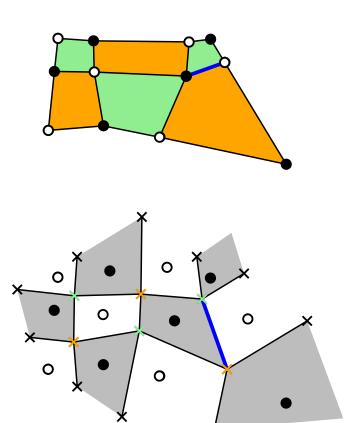
⇒ convergence of height fluctuations to the Gaussian free field in the conformal parametrization of this surface.

Perfect t-embeddings

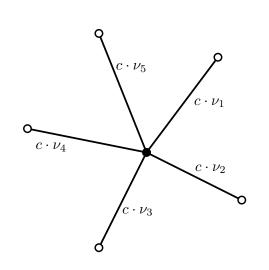
Embeddings of a dimer graph



- · Kenyon, Lam, Ramassamy, R. 'Coulomb gauge'
- · Chelkak, Laslier, R. 't-embedding'



Weighted dimers and gauge equivalence



Weight function $u: E(\mathcal{G}) \to \mathbb{R}_{>0}$

Probability measure on dimer covers:

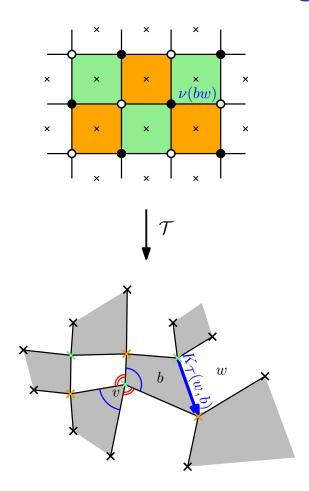
$$\mu(m) = \frac{1}{Z} \prod_{e \in m} \nu(e)$$

Definition

Two weight functions ν_1, ν_2 are said to be gauge equivalent if there are two functions $F: B \to \mathbb{R}$ and $G: W \to \mathbb{R}$ such that for any edge bw, $\nu_1(bw) = F(b)G(w)\nu_2(bw)$.

Gauge equivalent weights define the same probability measure μ .

Definition: t-embedding



 K_T is a Kasteleyn matrix.

[Chelkak, Laslier, R.]

 ${\mathcal T}$ is embedding of ${\mathcal G}^*$ such that

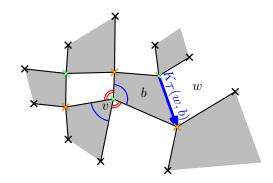
- 1) **lengths** are gauge equivalent to (given) dimer weights
- 2) **angles** at (inner) vertices are balanced:

$$\sum_{f \text{ white}} \frac{\theta(f, v)}{\theta(f, v)} = \sum_{f \text{ black}} \frac{\theta(f, v)}{\theta(f, v)} = \pi.$$

Rmk: (2) \Rightarrow Kasteleyn sign condition.

Origami map

t-embedding $\mathcal{T}(\mathcal{G}^*)$:

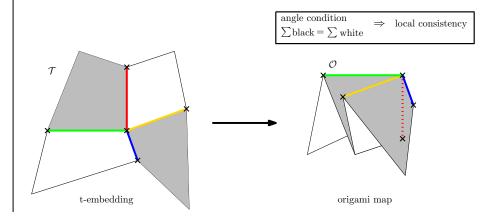


- 1) **lengths** are gauge equivalent to (given) dimer weights
- 2) angles at vertices are balanced:

$$\sum_{f \text{ white}} \theta(f, v) = \sum_{f \text{ black}} \theta(f, v) = \pi.$$

[Chelkak, Laslier, R.]

To get an origami map $\mathcal{O}(\mathcal{G}^*)$ from $\mathcal{T}(\mathcal{G}^*)$ one can fold the plane along every edge of the embedding.



t-embeddings: $(\mathcal{T}, \mathcal{O}) \subset \mathbb{R}^{2+2}$

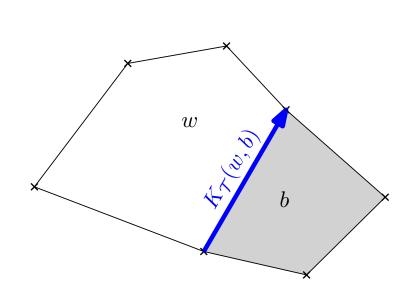
$$|\mathcal{O}(z) - \mathcal{O}(z')| \leq |\mathcal{T}(z) - \mathcal{T}(z')|$$

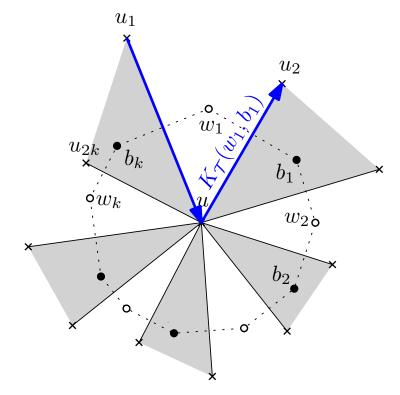
discrete space-like surfaces in Minkowski space \mathbb{R}^{2+2}

Kasteleyn weights

$$\mathcal{T}
ightarrow (\mathcal{G}, \mathit{K}_{\mathcal{T}}),$$
 where

$$\mathcal{T} o (\mathcal{G}, K_{\mathcal{T}}), \quad \text{where} \quad \sum_b K_{\mathcal{T}}(w, b) = \sum_w K_{\mathcal{T}}(w, b) = 0$$





Then K_T is a Kasteleyn matrix.

Kasteleyn sign condition

angle condition

$$\prod rac{\mathcal{K}_{\mathcal{T}}(w_i,b_i)}{\mathcal{K}_{\mathcal{T}}(w_{i+1},b_i)} \in (-1)^{k+1} \mathbb{R}_+ \qquad \sum \mathsf{white} = \pi \mod 2\pi$$

$$\sum$$
 white $=\pi \mod 2\pi$

General setup

Theorem (Kenyon, Lam, Ramassamy, R. '19)

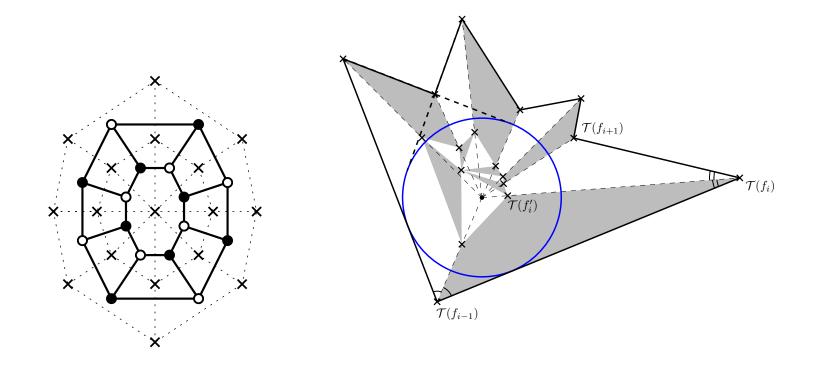
t-embeddings exist at least in the following cases:

- ▶ If \mathcal{G}^{δ} is a bipartite finite graph with outer face of degree 4.
- If \mathcal{G}^{δ} is a biperiodic bipartite graph.

Scaling limit results: [Chelkak, Laslier, R. '20-21]

- Develop new discrete complex analysis techniques on t-embeddings
- Perfect t-embeddings reveal the relevant conformal structure of the Dimer model

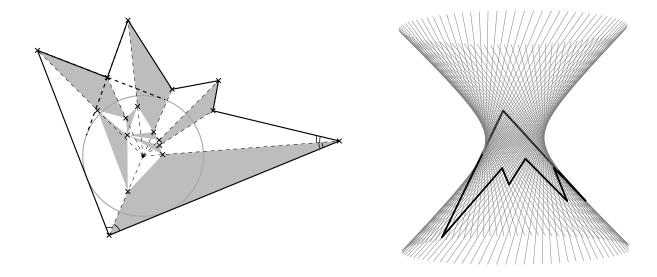
Perfect t-embeddings



Definition [Chelkak, Laslier, R.] Perfect t-embeddings:

- outer face is tangental (not necessary convex)
- outgoing edges = bisectors

General setup



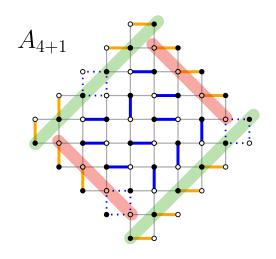
Theorem (Chelkak, Laslier, R. '21)

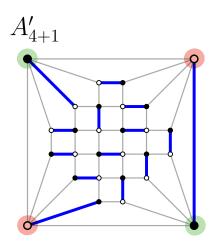
Assume \mathcal{G}^{δ} are perfectly t-embedded.

- a) Technical assumptions on faces
- b) The origami maps converge to a maximal surface in the Minkowski space $\mathbb{R}^{2,1}$
- ⇒ convergence to the Gaussian free field in the conformal parametrization of this surface.

Rmk: Existence of perfect t-embeddings remains an open question.

Reduced Aztec diamond

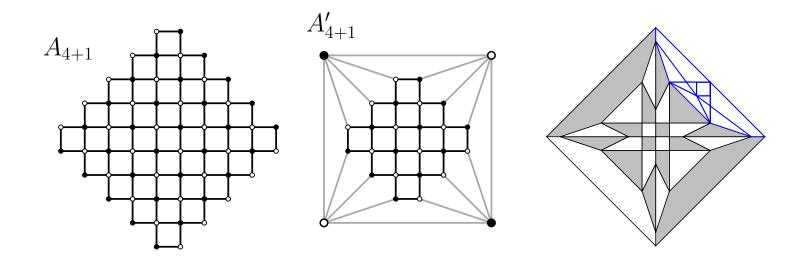




Elementary transformations preserving the dimer measure

[Kenyon, Lam, Ramassamy, R. '19]:

T-embeddings of \mathcal{G}^* are preserved under elementary transformations of \mathcal{G} .

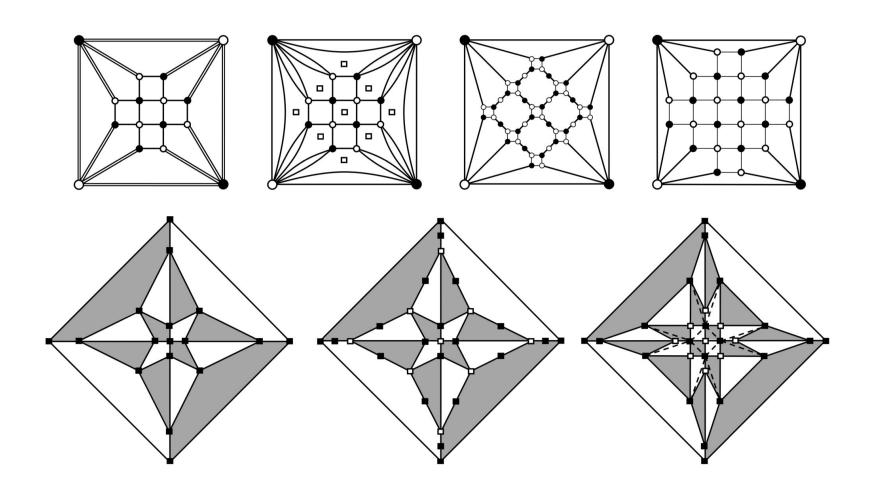


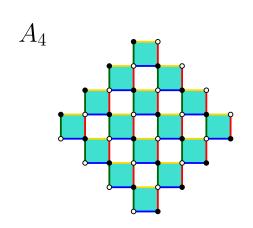
[Chelkak, Ramassamy '21] introduced a construction of perfect t-embeddings $\mathcal{T}_n(\mathcal{G}^*)$ of homogeneous Aztec diamond:

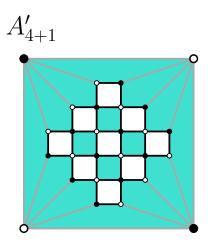
$$\mathcal{T}_{n+1}(j,k) + \mathcal{T}_{n-1}(j,k) = \frac{1}{2} \Big(\mathcal{T}_n(j-1,k) + \mathcal{T}_n(j+1,k) + \mathcal{T}_n(j,k+1) + \mathcal{T}_n(j,k-1) \Big).$$

[Chelkak, Ramassamy '21]

Perfect t-embedding of Aztec diamond







Theorem (Berggren, Nicoletti, R. '23)

For |j| + |k| < n and j + k + n odd, let $p_E(j, k, n)$ (p_N, p_W, p_S) denote the probability that the edge on the East (North, West, South, resp.) boundary of the face (j, k) is present in a uniformly random dimer cover of A_n . Then

$$\mathcal{T}_n(j,k) = p_E(j,k,n) + ip_N(j,k,n) - p_W(j,k,n) - ip_S(j,k,n).$$

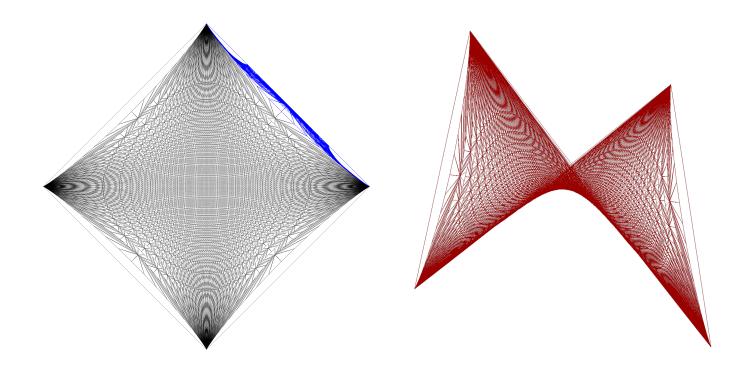
$$\mathcal{T}_n(j,k) = p_E(j,k,n) + ip_N(j,k,n) - p_W(j,k,n) - ip_S(j,k,n).$$

$$\mathcal{O}_n(j,k) = p_E(j,k,n) + ip_N(j,k,n) + p_W(j,k,n) + ip_S(j,k,n).$$

Define $\mathcal{O}'_n := e^{i\frac{\pi}{4}} \left(\mathcal{O}_n - \frac{1+i}{2} \right)$, which is a composition of a translation and rotation of the initial origami map.

- The edge probabilities can be expressed in terms of *inverse**Kasteleyn matrix*, which is known to admit a double integral formula.
- This provides us with expressions of \mathcal{T}_n and \mathcal{O}'_n in terms of double integrals.
- The integral expression allows for asymptotic analysis using a classical stepest descent analysis

The **first order** term in the asymptotic expansion of \mathcal{T}_n and \mathcal{O}'_n is enough to prove the following theorem.



Theorem (Berggren, Nicoletti, R. '23)

The pair $(\mathcal{T}_n, \mathcal{O}_n) \to (z, \vartheta(z))$, as $n \to \infty$, where $(z, \vartheta(z)) \in \mathbb{R}^2 \times \mathbb{R}$ is the graph of a Lorentz-minimal surface.

Remark: This confirms the prediction of [Chelkak, Ramassamy].

The main theorem of [CLR'21] assumes the existence of a sequence of perfect t-embeddings \mathcal{T}_n satisfying the following three properties

- I) The pair $(\mathcal{T}_n, \mathcal{O}'_n) \to (z, \vartheta(z))$, as $n \to \infty$, where $(z, \vartheta(z)) \in \mathbb{R}^2 \times \mathbb{R}$ is the graph of a Lorentz-minimal surface;
- II) At the discrete level the origami map is Lipschitz continuous with constant strictly less then one;
- III) For almost every face, the radius of the largest circle which can be inscribed in the face cannot decay exponentially fast as $n \to \infty$.

Rmk: Assumptions (II) and (III) are conditions on the discrete level, therefore the leading term in the asymptotic expansion of \mathcal{T}_n is not sufficient to prove these assumptions (need to go to the **2nd order** term).

Rigidity condition

Theorem (Berggren, Nicoletti, R. '23)

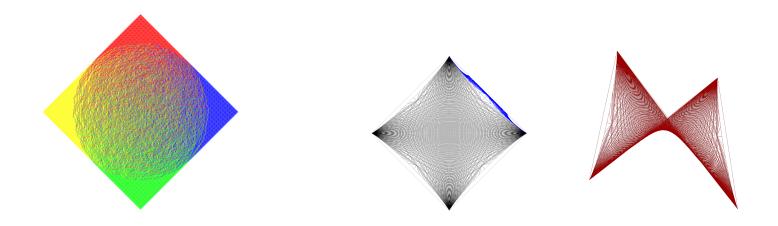
Given a compact set $\mathcal{K} \subset \Omega$, there exist positive $N_{\mathcal{K}}$, $C_{\mathcal{K}}$ and $\varepsilon_{\mathcal{K}}$ which only depend on \mathcal{K} , such that for all pairs of vertices $v \sim v'$ of the dual graph $(A'_n)^*$ such that both $\mathcal{T}_n(v)$, $\mathcal{T}_n(v') \in \mathcal{K}$ we have

$$\frac{1}{nC_{\mathcal{K}}} \leq |\mathcal{T}_n(v') - \mathcal{T}_n(v)| \leq \frac{C_{\mathcal{K}}}{n}$$

for all $n > N_{\mathcal{K}}$.

In addition the angles of the faces of the perfect t-embedding inside K are contained in $(\varepsilon_K, \pi - \varepsilon_K)$ for all $n > N_K$.

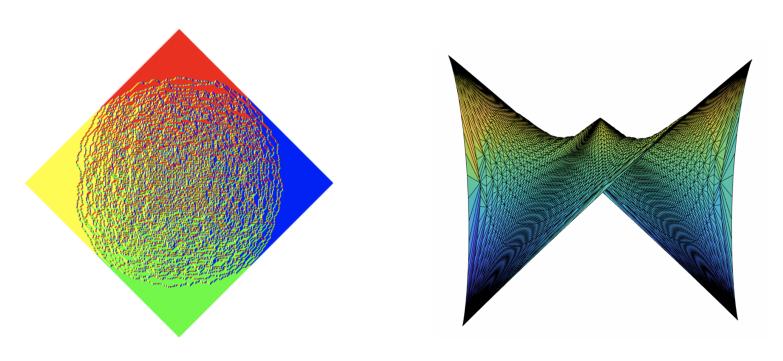
The scaling limit of dimer fluctuations in homogeneous Aztec diamonds via the intrinsic conformal structure of a Lorentz-minimal surface.



Theorem (Berggren, Nicoletti, R. '23)

Let \mathcal{T}_n be the sequence of perfect t-embeddings of the reduced uniformly weighted Aztec diamonds A'_{n+1} , with corresponding origami maps \mathcal{O}_n . All assumptions of the main theorem of [CLR'21] hold for the sequence \mathcal{T}_n .

Thank you!



Aztec diamond with gaseous regions

