
Math 675: Analytic Theory of Numbers
Solutions to problem set # 6

April 23, 2024

1. (a) Let T ≥ x ≥ 2 with x not an integer and set c = 1 + 1
log x

. As we saw in class,

there exists a T ′ ∈ [T, T + 1] such that |T ′− γ| � 1
log(qx)

for all nontrivial zeros of

L(s, χ) by the pigeonhole principle. We also showed that

ψ(x, χ) = − 1

2πi

∫ c+iT ′

c−iT ′

L′

L
(s, χ)

xs

s
ds+O

(
x(log x)2

T
+
x log x

T 〈x〉

)
.

Shifting the contour to all the way to the left and using the estimates for L′

L
(s, χ)

obtained in class yields

ψ(x, χ) = −
∑
|ρ|≤T

xρ

ρ
−L

′

L
(0, χ)+

∞∑
m=1

x1−2m

2m− 1
+O

(
x(log2(qx) + log(qT ))

T
+
x log x

T 〈x〉

)

since L′

L
(s, χ)x

s

s
has a simple pole at 0 with residue L′

L
(0, χ) (recall that, since

χ is odd, L(0, χ) 6= 0 by the functional equation and the fact that Γ(s) never
vanishes), a simple pole at each trivial zero 1− 2m of L(s, χ) with residue x1−2m

1−2m ,

and a simple pole at each nontrivial zero ρ of L′

L
(s, χ) with residue mρ

xρ

ρ
, where

mρ denotes the multiplicity of ρ as a zero of L(s, χ). Taking T →∞ thus yields

ψ(x, χ) = −
∑
ρ

xρ

ρ
− L′

L
(0, χ) +

∞∑
m=1

x1−2m

2m− 1

whenever x is not an integer. If n ∈ N is not a prime power, then ψ(n, χ) =

ψ(n+ ε, χ) and 〈n+ ε〉 ≥ 〈n〉
2

(say) for all ε ∈ (0, 1/2). Thus,

ψ(n, χ) = −
∑
|ρ|≤T

(n+ ε)ρ

ρ
−L

′

L
(0, χ)+

∞∑
m=1

(n+ ε)1−2m

2m− 1
+O

(
n(log2(qn) + log(nT ))

T
+
n log n

T 〈n〉

)

for all ε ∈ (0, 1/2). Taking ε → 0 and then T → ∞ yields the desired result for
integers that are not prime powers as well.
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(b) We proceed analogously to above, with the only difference being that, since χ
is even, L(s, χ) has trivial (simple) zeros at 0,−2,−4, . . . . This means that
L′

L
(s, χ)x

s

s
has simple poles at −2,−4, . . . and the nontrivial zeros of L(s, χ) and

a double pole at s = 0. Since L(s, χ) has a simple zero at s = 0, the resudue of
L′

L
(s, χ) at s = 0 is 1. Thus, L′

L
(s, χ) = 1

s
+ β(χ) + f(s), where f(s) is analytic

and vanishes at s = 0. We can also easily compute that xs = 1 + s log x + gx(s),
where gx(s) is an analytic function of s that vanishes to order at least 2 at s = 0.
It follows that

L′

L
(s, χ)

xs

s
=

(
1

s2
+
β(χ)

s
+

log x

s
+ hx(s)

)
where hx(s) is an analytic function. Thus, the residue of L′

L
(s, χ)x

s

s
at s = 0 is

β(χ) + log x. Now, arguing exactly as in the previous part, we obtain that

ψ(x, χ) = −
∑
ρ

xρ

ρ
− log x− b(χ) +

∞∑
n=1

x−2m

2m

for all noninteger x. In a previous problem set, we showed that
∑∞

n=1
x−2m

2m
=

−1
2

log (1− x−2). We conclude that

ψ(x, χ) = −
∑
ρ

xρ

ρ
− log x− b(χ)− 1

2
log
(
1− x−2

)
.

2. Let χ1 and χ2 be primitive quadratic characters modulo q1 and q2, respectively, with
q1 6= q2, and set

F (s) := ζ(s)L(s, χ1)L(s, χ2)L(s, χ1χ2),

so that F (s) is analytic in all of C except for a simple pole at s = 1 with residue
λ := L(1, χ1)L(1, χ2)L(1, χ1χ2).

(a) First of all, the Dirichlet series
∑∞

n=1
an
ns

= ζ(s)L(s, χ1)L(s, χ2)L(s, χ1χ2) is abso-
lutely convergent when σ > 1 since each of ζ(s), L(s, χ1), L(s, χ2), and L(s, χ1χ2)
is absolutely convergent in that half-plane, and an is multiplicative. This im-
mediately yields a1 = 1. Since all of ζ(s), L(s, χ1), L(s, χ2), and L(s, χ1χ2) are
nonvanishing when σ > 1, F (s) is also nonvanishing in this half-plane, which
means that we can take logF (s). Note that if G(s) is a Dirichlet series with
nonnegative coefficients, then eG(s) is also a Dirichlet series with nonnegative co-
efficients, since all of the power series coefficients of ez are nonnegative. It thus
suffices to check that logF (s) has nonnegative Dirichlet series coefficients when
σ > 1. Using the Euler product expansion, we have that logF (s) equals

−
∑
p

(
log
(
1− p−s

)
+ log

(
1− χ1(p)p

−s)+ log
(
1− χ2(p)p

−s)+ log
(
1− χ1χ2(p)p

−s))
=
∑
p

∞∑
k=1

1 + χ1(p
k) + χ2(p

k) + χ1χ2(p
k)

kpks
=
∑
p

∞∑
k=1

(1 + χ1(p
k))(1 + χ2(p

k))

kpks
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when σ > 1, where we have also used that log(1− z) = −
∑∞

k=1
zk

k
whenever

|z| < 1. Since χ1 and χ2 are real, the above implies that the coefficients of the
Dirichlet series for logF (s) are all nonnegative, and thus the same holds for F (s)
itself.

(b) Since F (s) is analytic in σ > 1 and has a simple pole at s = 1, the radius of
convergence of this power series centered at s = 2 will be 1 (i.e., the distance
from 2 to the closest singularity), so it just suffices to compute the bm and show
that b0 ≥ 1 and bm ≥ 0 for all m ∈ Z≥0. First of all, since F (s) has nonnegative
Dirichlet series coefficients and a1 = 1, b0 = F (2) = 1 +

∑∞
n=2

an
n2 ≥ 1. More

generally,

bm =
(−1)m

m!
F (m)(2).

Since the Dirichlet series for F (s) converges uniformly on compacts, we can dif-
ferentiate F (s) by differentiating its Dirichlet series term-wise. Thus,

F (m)(2) =
∞∑
n=1

(− log n)m
an
n2

= (−1)m
∞∑
n=1

(log n)m
an
n2
,

so that

bm =
1

m!

∞∑
n=1

(log n)m
an
n2
≥ 0.

Finally, F (s) is analytic everywhere in C except for a simple pole of residue λ at
s = 1. Thus, F (s)− λ

s−1 is entire. The power series expansion of λ
s−1 centered at

s = 2 is
λ

s− 1
=

∞∑
m=0

λ(−1)m(s− 2),

where the radius of convergence is also 1. It follows that

F (s)− λ

s− 1
=

∞∑
m=0

(bm − λ)(2− s)m

on all of C, and, in particular, whenever |s− 2| < 2.

(c) By the bounds for L(s, χ) from class, when |s− 2| = 3
2
, we have

F (s)� q1/4 log q1 · q1/42 log q2 · (q1q2)1/4 log q1q2 �
√
q1q2 log2 q1q2 � q21q

2
2,

since, for such s, |t| ≤ 3
2
� 1, as well as

λ� log q1 log q2 log q1q2 � q21q
2
2.

Thus, again for |s− 2| = 3
2
, we have

λ

s− 1
� q21q

2
2

1/2
� q21q

2
2,
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since the closest such s to 1 is the point 1/2. Now, from Cauchy’s integral formula,
we have the bound

|F (m)(2)| ≤ m!

(3/2)m
max

|s−2|=3/2
|F (s)| � m!q21q

2
2

(3/2)m
.

Thus,

|bm − λ| =
1

m!

∣∣F (m)(2)
∣∣� q21q

2
2

(
2

3

)m
.

(d) Let M ∈ N. We have, since b1 ≥ 1 and bm ≥ 0 for all m ∈ N,

F (s)− λ

s− 1
=

∞∑
m=0

bm(2− s)m − λ
∞∑
m=0

(2− s)m

≥ 1 +
∞∑

m=M

bm(2− s)m − λ
∞∑
m=0

(2− s)m

= 1− λ
M−1∑
m=0

(2− s)m +
∞∑

m=M

(bm − λ)(2− s)m

≥ 1− λ(2− s)M − 1

1− s
− c0q21q22e−M/4

for some absolute constant c0 > 0, since

∞∑
m=M

(bm − λ)(2− s)m � q21q
2
2

∞∑
m=M

(
2

3
· 9

8

)m
� q21q

2
2

(
3

4

)M
� q21q

2
2e
−M/4

because e1/4 < 4
3
.

(e) Let M ∈ N be such that e−1/4/2 ≤ c0q
2
1q

2
2e
−M/4 < 1/2.

Then, by the previous part,

F (s)− λ

s− 1
≥ 1

2
− λ(2− s)M − 1

1− s
.

By the choice of M (which guarantees that M ≤ c′0 + 8 log q1q2 for some absolute
constant c′0), we have

(2− s)M = exp(M log(2− s)) ≤ exp(M(1− s))� (q1q2)
8(1−s),

using that log(2− s) = log(1− [s− 1]) ≤ 1 − s for all s ∈ [7/8, 1]. We conclude
that

F (s) >
1

2
− c1λ

1− s
(q1q2)

8(1−s)

for some absolute constant c1 > 0.
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(f) In this case, we have F (β1) = 0 since L(β1, χ1) = 0, so that, by the previous part,

c1λ

1− β1
(q1q2)

8(1−β1) ≥ 1

2

rearranging yields

c1λ >
1

2
(1− β1)(q1q2)−8(1−β1).

(g) We will first show that F (β1) ≤ 0. Indeed, L(σ, χ1), L(σ, χ2), L(s, χ1χ2) > 0 for
all σ ≥ 1 − ε

16
by the assumption that there are no zeros of L(s, χ) in [1 − ε

16
, 1]

for any primitive quadratic character χ, the already-proven fact that L(s, χ) is
always nonvanishing on (1,∞), the fact that clearly L(σ, χ) > 0 for σ ∈ (1,∞)
sufficiently large (as L(σ, χ)→ 1 as σ →∞, and that every L(s, χ) is continuous
on [1− ε

16
,∞). So, it suffices to show that ζ(β1) ≤ 0. We have

ζ(β1) =
β1

β1 − 1
− β1

∫ ∞
1

{t}
tβ1+1

dt < 0

since β1 > 0 but β1 − 1 < 0. Thus, as in the previous part, we have

c1λ

1− β1
(q1q2)

8(1−β1) ≥ 1

2

rearranging again yields

c1λ >
1

2
(1− β1)(q1q2)−8(1−β1).

(h) By the previous two parts, we have no matter what that

c1λ >
1

2
(1− β1)(q1q2)−8(1−β1).

for some β1 ∈ [1 − ε/16, 1) and fixed q1 and χ1. Thus, for all q2 6= q1 and χ2

(mod q2), we obtain

L(1, χ2)L(1, χ1χ2)� q
−ε/2
2 .

Since L(1, χ1χ2)� log q1q2, it follows that

L(1, χ2)� q
−3ε/4
2 ,

say. Thus, any real zero β of L(s, χ2) must satisfy

1− β � L(1, χ2)

log2 q2
� q−ε2

3. We will allow all implied constants to depend on a. Note that #{p ≤ x : p +
a is squarefree} equals∑

p≤x

µ(p+ a)2 =
∑
p≤x

∑
d2|p+a

µ(d) =
∑

d≤
√
x+a

µ(d)π(x; d2,−a),
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where we have used the fact that µ(m)2 =
∑

d2|m µ(d) and then swapped the order of

summation. The contribution to the sum on the right-hand side coming from (d, a) > 1
is �

√
x. We will split up the remaining portion of the sum according to the size of d.

Set y = log2A x. Then, the Siegel–Walfisz theorem tells us that

∑
d≤y

(d,a)=1

µ(d)π(x; d2,−a) = li(x)
∑
d≤y

(d,a)=1

µ(d)

φ(d2)
+O

(
x

exp
(
cA
√

log x
)) .

In class, we showed that∑
d≤y

(d,a)=1

µ(d)

φ(d2)
=
∑

(d,a)=1

µ(d)

dφ(d)
+O

(
1
√
y

)
= c(a) +O

(
1
√
y

)
.

Thus, ∑
d≤y

(d,a)=1

µ(d)π(x; d2,−a) = c(a) li(x) +OA

(
x

√
y log x

)
.

To bound the contribution from y < d ≤
√
x+ a, we use the trivial bound π(x; q, a)�

1 + x
q

to obtain∑
y<d≤

√
x+a

(d,a)=1

µ(d)π(x; d2,−a)�
∑

y<d≤
√
x+a

(d,a)=1

(
1 +

x

d2

)
�
√
x+

x

y
.

We thus conclude that

#{p ≤ x : p+ a is squarefree} = c(a) li(x) +OA

(
x

(log x)A

)
.
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