Math 675: Analytic Theory of Numbers Solutions to problem set \# 6

April 23, 2024

1. (a) Let $T \geq x \geq 2$ with x not an integer and set $c=1+\frac{1}{\log x}$. As we saw in class, there exists a $T^{\prime} \in[T, T+1]$ such that $\left|T^{\prime}-\gamma\right| \gg \frac{1}{\log (q x)}$ for all nontrivial zeros of $L(s, \chi)$ by the pigeonhole principle. We also showed that

$$
\psi(x, \chi)=-\frac{1}{2 \pi i} \int_{c-i T^{\prime}}^{c+i T^{\prime}} \frac{L^{\prime}}{L}(s, \chi) \frac{x^{s}}{s} \mathrm{~d} s+O\left(\frac{x(\log x)^{2}}{T}+\frac{x \log x}{T\langle x\rangle}\right) .
$$

Shifting the contour to all the way to the left and using the estimates for $\frac{L^{\prime}}{L}(s, \chi)$ obtained in class yields

$$
\psi(x, \chi)=-\sum_{|\rho| \leq T} \frac{x^{\rho}}{\rho}-\frac{L^{\prime}}{L}(0, \chi)+\sum_{m=1}^{\infty} \frac{x^{1-2 m}}{2 m-1}+O\left(\frac{x\left(\log ^{2}(q x)+\log (q T)\right)}{T}+\frac{x \log x}{T\langle x\rangle}\right)
$$

since $\frac{L^{\prime}}{L}(s, \chi) \frac{x^{s}}{s}$ has a simple pole at 0 with residue $\frac{L^{\prime}}{L}(0, \chi)$ (recall that, since χ is odd, $L(0, \chi) \neq 0$ by the functional equation and the fact that $\Gamma(s)$ never vanishes), a simple pole at each trivial zero $1-2 m$ of $L(s, \chi)$ with residue $\frac{x^{1-2 m}}{1-2 m}$, and a simple pole at each nontrivial zero ρ of $\frac{L^{\prime}}{L}(s, \chi)$ with residue $m_{\rho} \frac{x^{\rho}}{\rho}$, where m_{ρ} denotes the multiplicity of ρ as a zero of $L(s, \chi)$. Taking $T \rightarrow \infty$ thus yields

$$
\psi(x, \chi)=-\sum_{\rho} \frac{x^{\rho}}{\rho}-\frac{L^{\prime}}{L}(0, \chi)+\sum_{m=1}^{\infty} \frac{x^{1-2 m}}{2 m-1}
$$

whenever x is not an integer. If $n \in \mathbf{N}$ is not a prime power, then $\psi(n, \chi)=$ $\psi(n+\varepsilon, \chi)$ and $\langle n+\varepsilon\rangle \geq \frac{\langle n\rangle}{2}$ (say) for all $\varepsilon \in(0,1 / 2)$. Thus,
$\psi(n, \chi)=-\sum_{|\rho| \leq T} \frac{(n+\varepsilon)^{\rho}}{\rho}-\frac{L^{\prime}}{L}(0, \chi)+\sum_{m=1}^{\infty} \frac{(n+\varepsilon)^{1-2 m}}{2 m-1}+O\left(\frac{n\left(\log ^{2}(q n)+\log (n T)\right)}{T}+\frac{n \log n}{T\langle n\rangle}\right)$
for all $\varepsilon \in(0,1 / 2)$. Taking $\varepsilon \rightarrow 0$ and then $T \rightarrow \infty$ yields the desired result for integers that are not prime powers as well.
(b) We proceed analogously to above, with the only difference being that, since χ is even, $L(s, \chi)$ has trivial (simple) zeros at $0,-2,-4, \ldots$ This means that $\frac{L^{\prime}}{L}(s, \chi) \frac{x^{s}}{s}$ has simple poles at $-2,-4, \ldots$ and the nontrivial zeros of $L(s, \chi)$ and a double pole at $s=0$. Since $L(s, \chi)$ has a simple zero at $s=0$, the resudue of $\frac{L^{\prime}}{L}(s, \chi)$ at $s=0$ is 1 . Thus, $\frac{L^{\prime}}{L}(s, \chi)=\frac{1}{s}+\beta(\chi)+f(s)$, where $f(s)$ is analytic and vanishes at $s=0$. We can also easily compute that $x^{s}=1+s \log x+g_{x}(s)$, where $g_{x}(s)$ is an analytic function of s that vanishes to order at least 2 at $s=0$. It follows that

$$
\frac{L^{\prime}}{L}(s, \chi) \frac{x^{s}}{s}=\left(\frac{1}{s^{2}}+\frac{\beta(\chi)}{s}+\frac{\log x}{s}+h_{x}(s)\right)
$$

where $h_{x}(s)$ is an analytic function. Thus, the residue of $\frac{L^{\prime}}{L}(s, \chi) \frac{x^{s}}{s}$ at $s=0$ is $\beta(\chi)+\log x$. Now, arguing exactly as in the previous part, we obtain that

$$
\psi(x, \chi)=-\sum_{\rho} \frac{x^{\rho}}{\rho}-\log x-b(\chi)+\sum_{n=1}^{\infty} \frac{x^{-2 m}}{2 m}
$$

for all noninteger x. In a previous problem set, we showed that $\sum_{n=1}^{\infty} \frac{x^{-2 m}}{2 m}=$ $-\frac{1}{2} \log \left(1-x^{-2}\right)$. We conclude that

$$
\psi(x, \chi)=-\sum_{\rho} \frac{x^{\rho}}{\rho}-\log x-b(\chi)-\frac{1}{2} \log \left(1-x^{-2}\right) .
$$

2. Let χ_{1} and χ_{2} be primitive quadratic characters modulo q_{1} and q_{2}, respectively, with $q_{1} \neq q_{2}$, and set

$$
F(s):=\zeta(s) L\left(s, \chi_{1}\right) L\left(s, \chi_{2}\right) L\left(s, \chi_{1} \chi_{2}\right)
$$

so that $F(s)$ is analytic in all of \mathbf{C} except for a simple pole at $s=1$ with residue $\lambda:=L\left(1, \chi_{1}\right) L\left(1, \chi_{2}\right) L\left(1, \chi_{1} \chi_{2}\right)$.
(a) First of all, the Dirichlet series $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}=\zeta(s) L\left(s, \chi_{1}\right) L\left(s, \chi_{2}\right) L\left(s, \chi_{1} \chi_{2}\right)$ is absolutely convergent when $\sigma>1$ since each of $\zeta(s), L\left(s, \chi_{1}\right), L\left(s, \chi_{2}\right)$, and $L\left(s, \chi_{1} \chi_{2}\right)$ is absolutely convergent in that half-plane, and a_{n} is multiplicative. This immediately yields $a_{1}=1$. Since all of $\zeta(s), L\left(s, \chi_{1}\right), L\left(s, \chi_{2}\right)$, and $L\left(s, \chi_{1} \chi_{2}\right)$ are nonvanishing when $\sigma>1, F(s)$ is also nonvanishing in this half-plane, which means that we can take $\log F(s)$. Note that if $G(s)$ is a Dirichlet series with nonnegative coefficients, then $e^{G(s)}$ is also a Dirichlet series with nonnegative coefficients, since all of the power series coefficients of e^{z} are nonnegative. It thus suffices to check that $\log F(s)$ has nonnegative Dirichlet series coefficients when $\sigma>1$. Using the Euler product expansion, we have that $\log F(s)$ equals

$$
\begin{aligned}
& -\sum_{p}\left(\log \left(1-p^{-s}\right)+\log \left(1-\chi_{1}(p) p^{-s}\right)+\log \left(1-\chi_{2}(p) p^{-s}\right)+\log \left(1-\chi_{1} \chi_{2}(p) p^{-s}\right)\right) \\
& =\sum_{p} \sum_{k=1}^{\infty} \frac{1+\chi_{1}\left(p^{k}\right)+\chi_{2}\left(p^{k}\right)+\chi_{1} \chi_{2}\left(p^{k}\right)}{k p^{k s}}=\sum_{p} \sum_{k=1}^{\infty} \frac{\left(1+\chi_{1}\left(p^{k}\right)\right)\left(1+\chi_{2}\left(p^{k}\right)\right)}{k p^{k s}}
\end{aligned}
$$

when $\sigma>1$, where we have also used that $\log (1-z)=-\sum_{k=1}^{\infty} \frac{z^{k}}{k}$ whenever $|z|<1$. Since χ_{1} and χ_{2} are real, the above implies that the coefficients of the Dirichlet series for $\log F(s)$ are all nonnegative, and thus the same holds for $F(s)$ itself.
(b) Since $F(s)$ is analytic in $\sigma>1$ and has a simple pole at $s=1$, the radius of convergence of this power series centered at $s=2$ will be 1 (i.e., the distance from 2 to the closest singularity), so it just suffices to compute the b_{m} and show that $b_{0} \geq 1$ and $b_{m} \geq 0$ for all $m \in \mathbf{Z}_{\geq 0}$. First of all, since $F(s)$ has nonnegative Dirichlet series coefficients and $a_{1}=1, b_{0}=F(2)=1+\sum_{n=2}^{\infty} \frac{a_{n}}{n^{2}} \geq 1$. More generally,

$$
b_{m}=\frac{(-1)^{m}}{m!} F^{(m)}(2)
$$

Since the Dirichlet series for $F(s)$ converges uniformly on compacts, we can differentiate $F(s)$ by differentiating its Dirichlet series term-wise. Thus,

$$
F^{(m)}(2)=\sum_{n=1}^{\infty}(-\log n)^{m} \frac{a_{n}}{n^{2}}=(-1)^{m} \sum_{n=1}^{\infty}(\log n)^{m} \frac{a_{n}}{n^{2}},
$$

so that

$$
b_{m}=\frac{1}{m!} \sum_{n=1}^{\infty}(\log n)^{m} \frac{a_{n}}{n^{2}} \geq 0
$$

Finally, $F(s)$ is analytic everywhere in \mathbf{C} except for a simple pole of residue λ at $s=1$. Thus, $F(s)-\frac{\lambda}{s-1}$ is entire. The power series expansion of $\frac{\lambda}{s-1}$ centered at $s=2$ is

$$
\frac{\lambda}{s-1}=\sum_{m=0}^{\infty} \lambda(-1)^{m}(s-2),
$$

where the radius of convergence is also 1 . It follows that

$$
F(s)-\frac{\lambda}{s-1}=\sum_{m=0}^{\infty}\left(b_{m}-\lambda\right)(2-s)^{m}
$$

on all of \mathbf{C}, and, in particular, whenever $|s-2|<2$.
(c) By the bounds for $L(s, \chi)$ from class, when $|s-2|=\frac{3}{2}$, we have

$$
F(s) \ll q^{1 / 4} \log q_{1} \cdot q_{2}^{1 / 4} \log q_{2} \cdot\left(q_{1} q_{2}\right)^{1 / 4} \log q_{1} q_{2} \ll \sqrt{q_{1} q_{2}} \log ^{2} q_{1} q_{2} \ll q_{1}^{2} q_{2}^{2}
$$

since, for such $s,|t| \leq \frac{3}{2} \ll 1$, as well as

$$
\lambda \ll \log q_{1} \log q_{2} \log q_{1} q_{2} \ll q_{1}^{2} q_{2}^{2} .
$$

Thus, again for $|s-2|=\frac{3}{2}$, we have

$$
\frac{\lambda}{s-1} \ll \frac{q_{1}^{2} q_{2}^{2}}{1 / 2} \ll q_{1}^{2} q_{2}^{2}
$$

since the closest such s to 1 is the point $1 / 2$. Now, from Cauchy's integral formula, we have the bound

$$
\left|F^{(m)}(2)\right| \leq \frac{m!}{(3 / 2)^{m}} \max _{|s-2|=3 / 2}|F(s)| \ll \frac{m!q_{1}^{2} q_{2}^{2}}{(3 / 2)^{m}}
$$

Thus,

$$
\left|b_{m}-\lambda\right|=\frac{1}{m!}\left|F^{(m)}(2)\right| \ll q_{1}^{2} q_{2}^{2}\left(\frac{2}{3}\right)^{m}
$$

(d) Let $M \in \mathbf{N}$. We have, since $b_{1} \geq 1$ and $b_{m} \geq 0$ for all $m \in \mathbf{N}$,

$$
\begin{aligned}
F(s)-\frac{\lambda}{s-1} & =\sum_{m=0}^{\infty} b_{m}(2-s)^{m}-\lambda \sum_{m=0}^{\infty}(2-s)^{m} \\
& \geq 1+\sum_{m=M}^{\infty} b_{m}(2-s)^{m}-\lambda \sum_{m=0}^{\infty}(2-s)^{m} \\
& =1-\lambda \sum_{m=0}^{M-1}(2-s)^{m}+\sum_{m=M}^{\infty}\left(b_{m}-\lambda\right)(2-s)^{m} \\
& \geq 1-\lambda \frac{(2-s)^{M}-1}{1-s}-c_{0} q_{1}^{2} q_{2}^{2} e^{-M / 4}
\end{aligned}
$$

for some absolute constant $c_{0}>0$, since

$$
\sum_{m=M}^{\infty}\left(b_{m}-\lambda\right)(2-s)^{m} \ll q_{1}^{2} q_{2}^{2} \sum_{m=M}^{\infty}\left(\frac{2}{3} \cdot \frac{9}{8}\right)^{m} \ll q_{1}^{2} q_{2}^{2}\left(\frac{3}{4}\right)^{M} \ll q_{1}^{2} q_{2}^{2} e^{-M / 4}
$$

because $e^{1 / 4}<\frac{4}{3}$.
(e) Let $M \in \mathbf{N}$ be such that $e^{-1 / 4} / 2 \leq c_{0} q_{1}^{2} q_{2}^{2} e^{-M / 4}<1 / 2$.

Then, by the previous part,

$$
F(s)-\frac{\lambda}{s-1} \geq \frac{1}{2}-\lambda \frac{(2-s)^{M}-1}{1-s}
$$

By the choice of M (which guarantees that $M \leq c_{0}^{\prime}+8 \log q_{1} q_{2}$ for some absolute constant c_{0}^{\prime}), we have

$$
(2-s)^{M}=\exp (M \log (2-s)) \leq \exp (M(1-s)) \ll\left(q_{1} q_{2}\right)^{8(1-s)}
$$

using that $\log (2-s)=\log (1-[s-1]) \leq 1-s$ for all $s \in[7 / 8,1]$. We conclude that

$$
F(s)>\frac{1}{2}-\frac{c_{1} \lambda}{1-s}\left(q_{1} q_{2}\right)^{8(1-s)}
$$

for some absolute constant $c_{1}>0$.
(f) In this case, we have $F\left(\beta_{1}\right)=0$ since $L\left(\beta_{1}, \chi_{1}\right)=0$, so that, by the previous part,

$$
\frac{c_{1} \lambda}{1-\beta_{1}}\left(q_{1} q_{2}\right)^{8\left(1-\beta_{1}\right)} \geq \frac{1}{2}
$$

rearranging yields

$$
c_{1} \lambda>\frac{1}{2}\left(1-\beta_{1}\right)\left(q_{1} q_{2}\right)^{-8\left(1-\beta_{1}\right)} .
$$

(g) We will first show that $F\left(\beta_{1}\right) \leq 0$. Indeed, $L\left(\sigma, \chi_{1}\right), L\left(\sigma, \chi_{2}\right), L\left(s, \chi_{1} \chi_{2}\right)>0$ for all $\sigma \geq 1-\frac{\varepsilon}{16}$ by the assumption that there are no zeros of $L(s, \chi)$ in $\left[1-\frac{\varepsilon}{16}, 1\right]$ for any primitive quadratic character χ, the already-proven fact that $L(s, \chi)$ is always nonvanishing on $(1, \infty)$, the fact that clearly $L(\sigma, \chi)>0$ for $\sigma \in(1, \infty)$ sufficiently large (as $L(\sigma, \chi) \rightarrow 1$ as $\sigma \rightarrow \infty$, and that every $L(s, \chi)$ is continuous on $\left[1-\frac{\varepsilon}{16}, \infty\right)$. So, it suffices to show that $\zeta\left(\beta_{1}\right) \leq 0$. We have

$$
\zeta\left(\beta_{1}\right)=\frac{\beta_{1}}{\beta_{1}-1}-\beta_{1} \int_{1}^{\infty} \frac{\{t\}}{t^{\beta_{1}+1}} \mathrm{~d} t<0
$$

since $\beta_{1}>0$ but $\beta_{1}-1<0$. Thus, as in the previous part, we have

$$
\frac{c_{1} \lambda}{1-\beta_{1}}\left(q_{1} q_{2}\right)^{8\left(1-\beta_{1}\right)} \geq \frac{1}{2}
$$

rearranging again yields

$$
c_{1} \lambda>\frac{1}{2}\left(1-\beta_{1}\right)\left(q_{1} q_{2}\right)^{-8\left(1-\beta_{1}\right)} .
$$

(h) By the previous two parts, we have no matter what that

$$
c_{1} \lambda>\frac{1}{2}\left(1-\beta_{1}\right)\left(q_{1} q_{2}\right)^{-8\left(1-\beta_{1}\right)} .
$$

for some $\beta_{1} \in[1-\varepsilon / 16,1)$ and fixed q_{1} and χ_{1}. Thus, for all $q_{2} \neq q_{1}$ and χ_{2} $\left(\bmod q_{2}\right)$, we obtain

$$
L\left(1, \chi_{2}\right) L\left(1, \chi_{1} \chi_{2}\right) \gg q_{2}^{-\varepsilon / 2}
$$

Since $L\left(1, \chi_{1} \chi_{2}\right) \ll \log q_{1} q_{2}$, it follows that

$$
L\left(1, \chi_{2}\right) \gg q_{2}^{-3 \varepsilon / 4}
$$

say. Thus, any real zero β of $L\left(s, \chi_{2}\right)$ must satisfy

$$
1-\beta \gg \frac{L\left(1, \chi_{2}\right)}{\log ^{2} q_{2}} \gg q_{2}^{-\varepsilon}
$$

3. We will allow all implied constants to depend on a. Note that $\#\{p \leq x: p+$ a is squarefree\} equals

$$
\sum_{p \leq x} \mu(p+a)^{2}=\sum_{p \leq x} \sum_{d^{2} \mid p+a} \mu(d)=\sum_{d \leq \sqrt{x+a}} \mu(d) \pi\left(x ; d^{2},-a\right),
$$

where we have used the fact that $\mu(m)^{2}=\sum_{d^{2} \mid m} \mu(d)$ and then swapped the order of summation. The contribution to the sum on the right-hand side coming from $(d, a)>1$ is $\ll \sqrt{x}$. We will split up the remaining portion of the sum according to the size of d. Set $y=\log ^{2 A} x$. Then, the Siegel-Walfisz theorem tells us that

$$
\sum_{\substack{d \leq y \\(d, a)=1}} \mu(d) \pi\left(x ; d^{2},-a\right)=\operatorname{li}(x) \sum_{\substack{d \leq y \\(d, a)=1}} \frac{\mu(d)}{\phi\left(d^{2}\right)}+O\left(\frac{x}{\exp \left(c_{A} \sqrt{\log x}\right)}\right)
$$

In class, we showed that

$$
\sum_{\substack{d \leq y \\(d, a)=1}} \frac{\mu(d)}{\phi\left(d^{2}\right)}=\sum_{(d, a)=1} \frac{\mu(d)}{d \phi(d)}+O\left(\frac{1}{\sqrt{y}}\right)=c(a)+O\left(\frac{1}{\sqrt{y}}\right) .
$$

Thus,

$$
\sum_{\substack{d \leq y \\(d, a)=1}} \mu(d) \pi\left(x ; d^{2},-a\right)=c(a) \operatorname{li}(x)+O_{A}\left(\frac{x}{\sqrt{y} \log x}\right) .
$$

To bound the contribution from $y<d \leq \sqrt{x+a}$, we use the trivial bound $\pi(x ; q, a) \ll$ $1+\frac{x}{q}$ to obtain

$$
\sum_{\substack{y<d \leq \sqrt{x+a} \\(d, a)=1}} \mu(d) \pi\left(x ; d^{2},-a\right) \ll \sum_{\substack{y<d \leq \sqrt{x+a} \\(d, a)=1}}\left(1+\frac{x}{d^{2}}\right) \ll \sqrt{x}+\frac{x}{y} .
$$

We thus conclude that

$$
\#\{p \leq x: p+a \text { is squarefree }\}=c(a) \operatorname{li}(x)+O_{A}\left(\frac{x}{(\log x)^{A}}\right)
$$

