
Math 675: Analytic Theory of Numbers
Solutions to problem set # 5

April 23, 2024

1. (a) Note first that c1(n) = 1 for all n ∈ N. Let q1, q2 ∈ N be relatively prime. We
have that cq1(n)cq2(n) equals∑

a∈(Z/q1Z)×
b∈(Z/q2Z)×

e

(
an

q1
+
bn

q2

)
=

∑
a∈(Z/q1Z)×
b∈(Z/q2Z)×

e

(
(aq2 + bq1)n

q1q2

)
=

∑
c∈(Z/q1q2Z)×

eq1q2(cn)

by the Chinese remainder theorem.

(b) Prove that ∑
d|q

cd(n) =

{
q q | n
0 otherwise

.

Since both cq(n) and q1q|n are multiplicative function of q, it suffices to prove the
result when q is a prime power. Note first that, for k ≥ 1,

cpk(n) =
∑

1≤m≤pk
(m,p)=1

epk(mn) =

pk∑
m=1

epk(mn)−
pk−1∑
m=1

epk−1(mn)

=

{
pk pk | n
0 otherwise

−

{
pk−1 pk−1 | n
0 otherwise

by orthogonality of additive characters. In particular, cpk(n) = 0 if pk−1 - n. Now,
if p`‖n, then

∑
d|pa

cq(n) =
a∑
k=0

cpk(n) =

min(a,`+1)∑
k=0

cpk(n) =

{
pa ` ≥ a

0 ` < a
=

{
pa pa | n
0 otherwise

by telescoping.

(c) It again suffices, by the multiplicativity of cq(n) as a function of q, to check
that the desired identity holds on prime powers. First note that, for all n ∈ N,
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µ(1/(1,n))
φ(1/(1,n))

φ(1) = 1 = c1(n). By the computation above, for each k ≥ 1,

cpk(n) =


φ(pk) pk | n
−pk−1 pk−1‖n
0 otherwise

.

On the other hand, we have

µ(pk/(pk, n))

φ(pk/(pk, n))
φ(pk) =


µ(1)
φ(1)

φ(pk) pk | n
µ(p)
φ(p)

φ(pk) pk−1‖n
0 otherwise

=


φ(pk) pk | n
−pk−1 pk−1‖n
0 otherwise

,

so the identity does, indeed, hold on prime powers.

2. (a) When p is odd, (Z/pkZ)× is cyclic, say generated by n ∈ (Z/pkZ)×. Since χ
is nonprincipal, χ(n) = −1, which completely determines the values of χ on all
elements of (Z/pkZ)×. Thus, there is only one possibility for χ. Observe that(
n
p

)
is real-valued and, since it is completely multiplicative and depends only

on the value of n (mod p), it defines a real nonprincipal Dirichlet character on

(Z/pkZ)×. Thus, we must have χ(n) =
(
n
p

)
, which has conductor p.

(b) We have (Z/8Z)× ∼= (Z/2Z)2, and (Z/8Z)× is generated by 3 and 5. Thus, χ
is determined by its values on 3 and 5, and there are three possibilities for χ:
χ(3) = 1 and χ(5) = −1, χ(3) = −1 and χ(5) = 1, and χ(3) = χ(5) = −1.
The first possibility yields χ(1) = χ(3) = 1 and χ(5) = χ(7) = −1, which has
conductor 8. The second possibility yields χ(1) = 1, χ(3) = −1, χ(5) = 1, and
χ(7) = −1, which has conductor 4. Finally, the third possibility yields χ(1) = 1,
χ(3) = −1, χ(5) = −1, and χ(7) = 1, which has conductor 8.

(c) When k > 3, (Z/2kZ)× ∼= (Z/2Z)×(Z/2k−2Z). Thus, (Z/2kZ)× can be generated
by two elements a and b, and so χ is completely determined by its values on a and
b. Since χ is real, χ(a), χ(b) ∈ {−1, 1}, and so there are three possibilities for χ.
Each Dirichlet character ψ constructed in the previous part induces a Dirichlet
character modulo 2k, and so these must be exactly the real nonprincipal Dirichlet
characters modulo 2k.

3. (a) First of all, note that, for any (a, b) ∈ Z2 for which a2 + b2 = n, we can write
d2[(a/d)2 + (b/d)2] = n where d = gcd(a, b), so that gcd(a/d, b/d) = 1 and d2 | n.
Thus, we immediately obtain

R(n) =
∑
d2|n

r(n/d2).

Now recall that if m ∈ N has prime factorization m = 2apb11 · · · p
bk
k q

c1
1 · · · q

c`
` with

each pi ≡ 1 (mod 4) and each qj ≡ 3 (mod 4), then R(n) = 0 unless each of
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c1, . . . , c` is even, in which case

R(n) =
k∏
i=1

(bi + 1).

Thus, R(n) is multiplicative, and satisfies R(2a) = 1 for all a ∈ Z≥0, R(pb) = 2b

for all p ≡ 1 (mod 4) and b ∈ Z≥0, and R(qc) = 1+(−1)c
2

for all q ≡ 3 (mod 4) and
c ∈ Z≥0. On the other hand,

∑
d|2a χ−4(d) = 1,∑

d|pb
χ−4(d) =

∑
d|pb

1 = b+ 1,

when p ≡ 1 (mod 4),

∑
d|qc

χ−4(d) =
c∑
t=0

(−1)t =
1 + (−1)c

2

when q ≡ 3 (mod q). The second equality thus follows from the multiplicativity
of R.

(b) By the previous part, we have R = 1 ? χ−4. Since both ζ(s) and L(s, χ−4) are
absolutely convergent for σ > 1, we thus have

∞∑
n=1

R(n)

ns
= ζ(s)L(s, χ−4)

when σ > 1.

(c) Let f : N → C denote the indicator functions of the squares, so that f is mul-
tiplicative. Then the first part says that f ? r = R. Note that r(n) ≤ τ(n), and
thus Dr(s) converges absolutely for σ > 1. Thus, since Df(s) = ζ(2s), we have

ζ(2s)Dr(s) = ζ(s)L(s, χ−4)

when σ > 1. It follows that

∞∑
n=1

r(n)

ns
=
ζ(s)L(s, χ−4)

ζ(2s)

when σ > 1.

4. (a) Since f1 and f2 are 1-bounded, each of Df1(s), Df2(s), D(f1f2)(s), and D([1 ?
f1][1 ? f2])(s) converge absolutely for σ > 1, and since f1 and f2 (and thus, also,
their product) are completely multiplicative functions, we have

ζ(s)Df1(s)Df2(s)D(f1f2)(s)

D(f1f2)(2s)
=
∏
p

(1− f1(p)f2(p)p−2s)
(1− p−s)(1− f1(p)p−s)(1− f2(p)p−s)(1− f1(p)f2(p)p−s)

,

3



when σ > 1, which gives the second desired equality. Note that 1 ? f1 and 1 ? f2
are both multiplicative, so that their product is also multiplicative. To prove the
first equality, we just need to check that

∞∑
k=0

(1 ? f1)(p
k)(1 ? f2)(p

k)

pks
=

(1− f1(p)f2(p)p−2s)
(1− p−s)(1− f1(p)p−s)(1− f2(p)p−s)(1− f1(p)f2(p)p−s)

(1)
for all σ > 1. Assuming σ > 1, we then have that [(1 − p−s)(1 − f1(p)p−s)(1 −
f2(p)p

−s)(1− f1(p)f2(p)p−s)]−1 equals(
∞∑
a=0

1

pas

)(
∞∑
b=0

f1(p)
b

pbs

)(
∞∑
c=0

f2(p)
c

pcs

)(
∞∑
d=0

f1(p)
df2(p)

d

pds

)
=

∑
a,b,c,d≥0

f1(p)
b+df2(p)

c+d

p(a+b+c+d)s
,

so that the right-hand side of (1) equals∑
a,b,c,d≥0

f1(p)
b+df2(p)

c+d

p(a+b+c+d)s
−

∑
a,b,c,d≥0

f1(p)
b+d+1f2(p)

c+d+1

p(a+b+c+d+2)s

=
∑
a,c,d≥0

f1(p)
df2(p)

c+d

p(a+c+d)s
+
∑
a,b,d≥0

f1(p)
b+df2(p)

d

p(a+b+d)s
−
∑
a,d≥0

f1(p)
df2(p)

d

p(a+d)s
,

which equals ∑
a,b,c≥0

f1(p)
bf2(p)

c

p(a+max{b,c})s .

On the other hand, the left-hand side of (1) equals

∞∑
k=0

(
k∑
b=0

f1(p)
b

)(
k∑
c=0

f2(p)
c

)
p−ks =

∑
b,c,k≥0
b,c≤k

f1(p)
bf2(p)

c

pks
=
∑
a,b,c≥0

f1(p)
bf2(p)

c

p(a+max{b,c})s ,

completing the proof.

(b) Fix t ∈ R and define f1(n) = χ(d)d−it and f2(n) = f1(n) for all n ∈ N, so that
both f1 and f2 are completely multiplicative (since both χ(d) and d−it are) and
1-bounded. Assume by way of contradiction that L(1 + it, χ) = 0. Note that

F (s) =
∑∞

n=1
(1?f1)(n)(1?f2)(n)

ns . Thus, by the previous part, we have that

F (s) =
ζ(s)2L(s+ it, χ)L(s− it, χ)

ζ(2s)

∏
p|q

(
1 + p−s

)−1
(2)

whenever σ > 1. The assumption that L(1 + it, χ) = 0 implies that L(1 −
it, χ) = 0 as well. Thus, the right-hand side of (2) is analytic at s = 1. Since
ζ(2s) is nonvanishing for σ ≥ 1/2, it follows that the right-hand side of (2) is
analytic in a neighborhood of the closed half-plane σ ≥ 1/2. Since the right-
hand side is a meromorphic function on C, this gives a meromorphic continuation
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of F (s) to C, and we also get that F (s) is analytic in a neighborhood of σ ≥
1/2. Since F (s) has nonnegative Dirichlet series coefficients, Landau’s lemma
implies that its abscissa of convergence is strictly less than 1/2. In particular,

F (1/2) =
∑∞

n=1

|∑d|n χ(d)d
−it|2

n1/2 , so that F (1/2) ≥ 1. On the other hand, (2)
implies that F (1/2) = 0, since ζ(s)2L(s + it, χ)L(s − it, χ)

∏
p|q(1 + p−s)−1 is

analytic in a neighborhood of s = 1/2 and ζ(2s) has a pole at s = 1/2. This gives
a contradiction.

5. (a) Note first that since maxt∈(0,1) |ψ(x, χ)− ψ(x+ t, χ)| � log x, it suffices to prove
the result for x ∈ 1

2
+ N. The explicit formula then tells us that if x ≥ T ≥ 2,

ψ(x, χ) = 1χ=χ0x−
∑
|γ|≤T

xρ − 1

ρ
+O

(
x log2(xq)

T

)
.

On GRH, the sum can be bounded by

�
∑
|γ|≤T

x1/2

ρ
� x1/2 log2(qT ).

Thus,

ψ(x, χ) = 1χ=χ0x+O

(
x log2(xq)

T
+ x1/2 log2(qT )

)
.

Picking T =
√
x then yields that ψ(x, χ) = 1χ=χ0x+O

(
x1/2 log2(qx)

)
.

(b) By orthogonality of Dirichlet characters,

ψ(x; q, a) =
1

φ(q)

∑
χ (mod q)

ψ(x, χ)χ(a)

whenever (a, q) = 1. Plugging in the approximation for ψ(x, χ) from the previous
part then yields ψ(x; q, a) = x

φ(q)
+O

(
x1/2 log2(qx)

)
.
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