Math 675: Analytic Theory of Numbers Solutions to problem set \# 5

April 23, 2024

1. (a) Note first that $c_{1}(n)=1$ for all $n \in \mathbf{N}$. Let $q_{1}, q_{2} \in \mathbf{N}$ be relatively prime. We have that $c_{q_{1}}(n) c_{q_{2}}(n)$ equals

$$
\sum_{\substack{a \in\left(\mathbf{Z} / q_{1} \mathbf{Z}\right)^{\times} \\ b \in\left(\mathbf{Z} / q_{2} \mathbf{Z}\right)^{\times}}} e\left(\frac{a n}{q_{1}}+\frac{b n}{q_{2}}\right)=\sum_{\substack{a \in\left(\mathbf{Z} / q_{1} \mathbf{Z} \mathbf{Z}^{\times} \\ b \in\left(\mathbf{Z} / q_{2} \mathbf{Z}\right)^{\times}\right.}} e\left(\frac{\left(a q_{2}+b q_{1}\right) n}{q_{1} q_{2}}\right)=\sum_{c \in\left(\mathbf{Z} / q_{1} q_{2} \mathbf{Z}\right)^{\times}} e_{q_{1} q_{2}}(c n)
$$

by the Chinese remainder theorem.
(b) Prove that

$$
\sum_{d \mid q} c_{d}(n)= \begin{cases}q & q \mid n \\ 0 & \text { otherwise }\end{cases}
$$

Since both $c_{q}(n)$ and $q 1_{q \mid n}$ are multiplicative function of q, it suffices to prove the result when q is a prime power. Note first that, for $k \geq 1$,

$$
\begin{aligned}
c_{p^{k}}(n)=\sum_{\substack{1 \leq m \leq p^{k} \\
(m, p)=1}} e_{p^{k}}(m n) & =\sum_{m=1}^{p^{k}} e_{p^{k}}(m n)-\sum_{m=1}^{p^{k-1}} e_{p^{k-1}}(m n) \\
& =\left\{\begin{array}{ll}
p^{k} & p^{k} \mid n \\
0 & \text { otherwise }
\end{array}- \begin{cases}p^{k-1} & p^{k-1} \mid n \\
0 & \text { otherwise }\end{cases} \right.
\end{aligned}
$$

by orthogonality of additive characters. In particular, $c_{p^{k}}(n)=0$ if $p^{k-1} \nmid n$. Now, if $p^{\ell} \| n$, then

$$
\sum_{d \mid p^{a}} c_{q}(n)=\sum_{k=0}^{a} c_{p^{k}}(n)=\sum_{k=0}^{\min (a, \ell+1)} c_{p^{k}}(n)=\left\{\begin{array}{ll}
p^{a} & \ell \geq a \\
0 & \ell<a
\end{array}= \begin{cases}p^{a} & p^{a} \mid n \\
0 & \text { otherwise }\end{cases}\right.
$$

by telescoping.
(c) It again suffices, by the multiplicativity of $c_{q}(n)$ as a function of q, to check that the desired identity holds on prime powers. First note that, for all $n \in \mathbf{N}$,
$\frac{\mu(1 /(1, n))}{\phi(1 /(1, n))} \phi(1)=1=c_{1}(n)$. By the computation above, for each $k \geq 1$,

$$
c_{p^{k}}(n)= \begin{cases}\phi\left(p^{k}\right) & p^{k} \mid n \\ -p^{k-1} & p^{k-1} \| n \\ 0 & \text { otherwise }\end{cases}
$$

On the other hand, we have

$$
\frac{\mu\left(p^{k} /\left(p^{k}, n\right)\right)}{\phi\left(p^{k} /\left(p^{k}, n\right)\right)} \phi\left(p^{k}\right)=\left\{\begin{array}{ll}
\frac{\mu(1)}{\phi(1)} \phi\left(p^{k}\right) & p^{k} \mid n \\
\frac{\mu(p)}{\phi(p)} \phi\left(p^{k}\right) & p^{k-1} \| n \\
0 & \text { otherwise }
\end{array}= \begin{cases}\phi\left(p^{k}\right) & p^{k} \mid n \\
-p^{k-1} & p^{k-1} \| n \\
0 & \text { otherwise }\end{cases}\right.
$$

so the identity does, indeed, hold on prime powers.
2. (a) When p is odd, $\left(\mathbf{Z} / p^{k} \mathbf{Z}\right)^{\times}$is cyclic, say generated by $n \in\left(\mathbf{Z} / p^{k} \mathbf{Z}\right)^{\times}$. Since χ is nonprincipal, $\chi(n)=-1$, which completely determines the values of χ on all elements of $\left(\mathbf{Z} / p^{k} \mathbf{Z}\right)^{\times}$. Thus, there is only one possibility for χ. Observe that $\left(\frac{n}{p}\right)$ is real-valued and, since it is completely multiplicative and depends only on the value of $n(\bmod p)$, it defines a real nonprincipal Dirichlet character on $\left(\mathbf{Z} / p^{k} \mathbf{Z}\right)^{\times}$. Thus, we must have $\chi(n)=\left(\frac{n}{p}\right)$, which has conductor p.
(b) We have $(\mathbf{Z} / 8 \mathbf{Z})^{\times} \cong(\mathbf{Z} / 2 \mathbf{Z})^{2}$, and $(\mathbf{Z} / 8 \mathbf{Z})^{\times}$is generated by 3 and 5 . Thus, χ is determined by its values on 3 and 5 , and there are three possibilities for χ : $\chi(3)=1$ and $\chi(5)=-1, \chi(3)=-1$ and $\chi(5)=1$, and $\chi(3)=\chi(5)=-1$. The first possibility yields $\chi(1)=\chi(3)=1$ and $\chi(5)=\chi(7)=-1$, which has conductor 8 . The second possibility yields $\chi(1)=1, \chi(3)=-1, \chi(5)=1$, and $\chi(7)=-1$, which has conductor 4 . Finally, the third possibility yields $\chi(1)=1$, $\chi(3)=-1, \chi(5)=-1$, and $\chi(7)=1$, which has conductor 8 .
(c) When $k>3,\left(\mathbf{Z} / 2^{k} \mathbf{Z}\right)^{\times} \cong(\mathbf{Z} / 2 \mathbf{Z}) \times\left(\mathbf{Z} / 2^{k-2} \mathbf{Z}\right)$. Thus, $\left(\mathbf{Z} / 2^{k} \mathbf{Z}\right)^{\times}$can be generated by two elements a and b, and so χ is completely determined by its values on a and b. Since χ is real, $\chi(a), \chi(b) \in\{-1,1\}$, and so there are three possibilities for χ. Each Dirichlet character ψ constructed in the previous part induces a Dirichlet character modulo 2^{k}, and so these must be exactly the real nonprincipal Dirichlet characters modulo 2^{k}.
3. (a) First of all, note that, for any $(a, b) \in \mathbf{Z}^{2}$ for which $a^{2}+b^{2}=n$, we can write $d^{2}\left[(a / d)^{2}+(b / d)^{2}\right]=n$ where $d=\operatorname{gcd}(a, b)$, so that $\operatorname{gcd}(a / d, b / d)=1$ and $d^{2} \mid n$. Thus, we immediately obtain

$$
R(n)=\sum_{d^{2} \mid n} r\left(n / d^{2}\right)
$$

Now recall that if $m \in \mathbf{N}$ has prime factorization $m=2^{a} p_{1}^{b_{1}} \cdots p_{k}^{b_{k}} q_{1}^{c_{1}} \cdots q_{\ell}^{c_{\ell}}$ with each $p_{i} \equiv 1(\bmod 4)$ and each $q_{j} \equiv 3(\bmod 4)$, then $R(n)=0$ unless each of
c_{1}, \ldots, c_{ℓ} is even, in which case

$$
R(n)=\prod_{i=1}^{k}\left(b_{i}+1\right)
$$

Thus, $R(n)$ is multiplicative, and satisfies $R\left(2^{a}\right)=1$ for all $a \in \mathbf{Z}_{\geq 0}, R\left(p^{b}\right)=2^{b}$ for all $p \equiv 1(\bmod 4)$ and $b \in \mathbf{Z}_{\geq 0}$, and $R\left(q^{c}\right)=\frac{1+(-1)^{c}}{2}$ for all $q \equiv 3(\bmod 4)$ and $c \in \mathbf{Z}_{\geq 0}$. On the other hand, $\sum_{d \mid 2^{a}} \chi_{-4}(d)=1$,

$$
\sum_{d \mid p^{b}} \chi_{-4}(d)=\sum_{d \mid p^{b}} 1=b+1
$$

when $p \equiv 1(\bmod 4)$,

$$
\sum_{d \mid q^{c}} \chi_{-4}(d)=\sum_{t=0}^{c}(-1)^{t}=\frac{1+(-1)^{c}}{2}
$$

when $q \equiv 3(\bmod q)$. The second equality thus follows from the multiplicativity of R.
(b) By the previous part, we have $R=1 \star \chi_{-4}$. Since both $\zeta(s)$ and $L\left(s, \chi_{-4}\right)$ are absolutely convergent for $\sigma>1$, we thus have

$$
\sum_{n=1}^{\infty} \frac{R(n)}{n^{s}}=\zeta(s) L\left(s, \chi_{-4}\right)
$$

when $\sigma>1$.
(c) Let $f: \mathbf{N} \rightarrow \mathbf{C}$ denote the indicator functions of the squares, so that f is multiplicative. Then the first part says that $f \star r=R$. Note that $r(n) \leq \tau(n)$, and thus $\mathcal{D} r(s)$ converges absolutely for $\sigma>1$. Thus, since $\mathcal{D} f(s)=\zeta(2 s)$, we have

$$
\zeta(2 s) \mathcal{D} r(s)=\zeta(s) L\left(s, \chi_{-4}\right)
$$

when $\sigma>1$. It follows that

$$
\sum_{n=1}^{\infty} \frac{r(n)}{n^{s}}=\frac{\zeta(s) L\left(s, \chi_{-4}\right)}{\zeta(2 s)}
$$

when $\sigma>1$.
4. (a) Since f_{1} and f_{2} are 1-bounded, each of $\mathcal{D} f_{1}(s), \mathcal{D} f_{2}(s), \mathcal{D}\left(f_{1} f_{2}\right)(s)$, and $\mathcal{D}([1 \star$ $\left.\left.f_{1}\right]\left[1 \star f_{2}\right]\right)(s)$ converge absolutely for $\sigma>1$, and since f_{1} and f_{2} (and thus, also, their product) are completely multiplicative functions, we have

$$
\frac{\zeta(s) \mathcal{D} f_{1}(s) \mathcal{D} f_{2}(s) \mathcal{D}\left(f_{1} f_{2}\right)(s)}{\mathcal{D}\left(f_{1} f_{2}\right)(2 s)}=\prod_{p} \frac{\left(1-f_{1}(p) f_{2}(p) p^{-2 s}\right)}{\left(1-p^{-s}\right)\left(1-f_{1}(p) p^{-s}\right)\left(1-f_{2}(p) p^{-s}\right)\left(1-f_{1}(p) f_{2}(p) p^{-s}\right)}
$$

when $\sigma>1$, which gives the second desired equality. Note that $1 \star f_{1}$ and $1 \star f_{2}$ are both multiplicative, so that their product is also multiplicative. To prove the first equality, we just need to check that

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{\left(1 \star f_{1}\right)\left(p^{k}\right)\left(1 \star f_{2}\right)\left(p^{k}\right)}{p^{k s}}=\frac{\left(1-f_{1}(p) f_{2}(p) p^{-2 s}\right)}{\left(1-p^{-s}\right)\left(1-f_{1}(p) p^{-s}\right)\left(1-f_{2}(p) p^{-s}\right)\left(1-f_{1}(p) f_{2}(p) p^{-s}\right)} \tag{1}
\end{equation*}
$$

for all $\sigma>1$. Assuming $\sigma>1$, we then have that $\left[\left(1-p^{-s}\right)\left(1-f_{1}(p) p^{-s}\right)(1-\right.$ $\left.\left.f_{2}(p) p^{-s}\right)\left(1-f_{1}(p) f_{2}(p) p^{-s}\right)\right]^{-1}$ equals

$$
\left(\sum_{a=0}^{\infty} \frac{1}{p^{a s}}\right)\left(\sum_{b=0}^{\infty} \frac{f_{1}(p)^{b}}{p^{b s}}\right)\left(\sum_{c=0}^{\infty} \frac{f_{2}(p)^{c}}{p^{c s}}\right)\left(\sum_{d=0}^{\infty} \frac{f_{1}(p)^{d} f_{2}(p)^{d}}{p^{d s}}\right)=\sum_{a, b, c, d \geq 0} \frac{f_{1}(p)^{b+d} f_{2}(p)^{c+d}}{p^{(a+b+c+d) s}},
$$

so that the right-hand side of (1) equals

$$
\begin{aligned}
& \sum_{a, b, c, d \geq 0} \frac{f_{1}(p)^{b+d} f_{2}(p)^{c+d}}{p^{(a+b+c+d) s}}-\sum_{a, b, c, d \geq 0} \frac{f_{1}(p)^{b+d+1} f_{2}(p)^{c+d+1}}{p^{(a+b+c+d+2) s}} \\
& =\sum_{a, c, d \geq 0} \frac{f_{1}(p)^{d} f_{2}(p)^{c+d}}{p^{(a+c+d) s}}+\sum_{a, b, d \geq 0} \frac{f_{1}(p)^{b+d} f_{2}(p)^{d}}{p^{(a+b+d) s}}-\sum_{a, d \geq 0} \frac{f_{1}(p)^{d} f_{2}(p)^{d}}{p^{(a+d) s}}
\end{aligned}
$$

which equals

$$
\sum_{a, b, c \geq 0} \frac{f_{1}(p)^{b} f_{2}(p)^{c}}{p^{(a+\max \{b, c\}) s}}
$$

On the other hand, the left-hand side of (1) equals

$$
\sum_{k=0}^{\infty}\left(\sum_{b=0}^{k} f_{1}(p)^{b}\right)\left(\sum_{c=0}^{k} f_{2}(p)^{c}\right) p^{-k s}=\sum_{\substack{b, c, k \geq 0 \\ b, c \leq k}} \frac{f_{1}(p)^{b} f_{2}(p)^{c}}{p^{k s}}=\sum_{a, b, c \geq 0} \frac{f_{1}(p)^{b} f_{2}(p)^{c}}{p^{(a+\max \{b, c\}) s}}
$$

completing the proof.
(b) Fix $t \in \mathbf{R}$ and define $f_{1}(n)=\chi(d) d^{-i t}$ and $f_{2}(n)=\overline{f_{1}(n)}$ for all $n \in \mathbf{N}$, so that both f_{1} and f_{2} are completely multiplicative (since both $\chi(d)$ and $d^{-i t}$ are) and 1 -bounded. Assume by way of contradiction that $L(1+i t, \chi)=0$. Note that $F(s)=\sum_{n=1}^{\infty} \frac{\left(1 * f_{1}\right)(n)\left(1 * f_{2}\right)(n)}{n^{s}}$. Thus, by the previous part, we have that

$$
\begin{equation*}
F(s)=\frac{\zeta(s)^{2} L(s+i t, \chi) L(s-i t, \bar{\chi})}{\zeta(2 s)} \prod_{p \mid q}\left(1+p^{-s}\right)^{-1} \tag{2}
\end{equation*}
$$

whenever $\sigma>1$. The assumption that $L(1+i t, \chi)=0$ implies that $L(1-$ $i t, \bar{\chi})=0$ as well. Thus, the right-hand side of (2) is analytic at $s=1$. Since $\zeta(2 s)$ is nonvanishing for $\sigma \geq 1 / 2$, it follows that the right-hand side of (2) is analytic in a neighborhood of the closed half-plane $\sigma \geq 1 / 2$. Since the righthand side is a meromorphic function on \mathbf{C}, this gives a meromorphic continuation
of $F(s)$ to \mathbf{C}, and we also get that $F(s)$ is analytic in a neighborhood of $\sigma \geq$ $1 / 2$. Since $F(s)$ has nonnegative Dirichlet series coefficients, Landau's lemma implies that its abscissa of convergence is strictly less than $1 / 2$. In particular, $F(1 / 2)=\sum_{n=1}^{\infty} \frac{\left|\sum_{d \mid n} \chi(d) d^{-i t}\right|^{2}}{n^{1 / 2}}$, so that $F(1 / 2) \geq 1$. On the other hand, (2) implies that $F(1 / 2)=0$, since $\zeta(s)^{2} L(s+i t, \chi) L(s-i t, \bar{\chi}) \prod_{p \mid q}\left(1+p^{-s}\right)^{-1}$ is analytic in a neighborhood of $s=1 / 2$ and $\zeta(2 s)$ has a pole at $s=1 / 2$. This gives a contradiction.
5. (a) Note first that since $\max _{t \in(0,1)}|\psi(x, \chi)-\psi(x+t, \chi)| \ll \log x$, it suffices to prove the result for $x \in \frac{1}{2}+\mathbf{N}$. The explicit formula then tells us that if $x \geq T \geq 2$,

$$
\psi(x, \chi)=1_{\chi=\chi_{0}} x-\sum_{|\gamma| \leq T} \frac{x^{\rho}-1}{\rho}+O\left(\frac{x \log ^{2}(x q)}{T}\right)
$$

On GRH, the sum can be bounded by

$$
\ll \sum_{|\gamma| \leq T} \frac{x^{1 / 2}}{\rho} \ll x^{1 / 2} \log ^{2}(q T)
$$

Thus,

$$
\psi(x, \chi)=1_{\chi=\chi_{0}} x+O\left(\frac{x \log ^{2}(x q)}{T}+x^{1 / 2} \log ^{2}(q T)\right) .
$$

Picking $T=\sqrt{x}$ then yields that $\psi(x, \chi)=1_{\chi=\chi_{0}} x+O\left(x^{1 / 2} \log ^{2}(q x)\right)$.
(b) By orthogonality of Dirichlet characters,

$$
\psi(x ; q, a)=\frac{1}{\phi(q)} \sum_{\chi} \psi(x, \chi) \bar{\chi}(a)
$$

whenever $(a, q)=1$. Plugging in the approximation for $\psi(x, \chi)$ from the previous part then yields $\psi(x ; q, a)=\frac{x}{\phi(q)}+O\left(x^{1 / 2} \log ^{2}(q x)\right)$.

