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Math 675: Analytic Theory of Numbers
Solutions to problem set # 5

April 23, 2024

Note first that ¢;(n) = 1 for all n € N. Let ¢, g € N be relatively prime. We
have that ¢, (n)cg,(n) equals

I CIC Rt B

ac(Z/q1Z) a€(Z/q1Z)* N c€(Z/q1q2Z) %
be(Z/qaZ) be(Z/q2Z)*

by the Chinese remainder theorem.

Prove that

ch(n) _ {q qln

0 otherwise
dlq

Since both c4(n) and ¢lg, are multiplicative function of ¢, it suffices to prove the
result when ¢ is a prime power. Note first that, for £ > 1,

cpe(n) = Z ek (mn) = Z epr(mn) — Z eph-1(mn)

1<m<pk
(m,p)=1
_ 7P n - PP
0  otherwise 0 otherwise
by orthogonality of additive characters. In particular, c,.(n) = 0 if p"~* { n. Now,
if p||n, then

. min(a,l+1) p* C>a  [pr p*|n
Yoam) =) i)=Y cnln)= {0 <a” {0

i Pt — (<a otherwise

by telescoping.

It again suffices, by the multiplicativity of ¢,(n) as a function of ¢, to check
that the desired identity holds on prime powers. First note that, for all n € N,



2.

(a)

(b)

()

wU/m) (1) = 1 = ¢4(n). By the computation above, for each k > 1,

o(p*) pFln
R
0 otherwise
On the other hand, we have
u(p*/ (", n)) smow) pn o(p*)  prln
S ) = S0 Pl = P
0 otherwise 0 otherwise

so the identity does, indeed, hold on prime powers.

When p is odd, (Z/p*Z)* is cyclic, say generated by n € (Z/p*Z)*. Since y
is nonprincipal, x(n) = —1, which completely determines the values of x on all
elements of (Z/p*Z)*. Thus, there is only one possibility for y. Observe that

(%) is real-valued and, since it is completely multiplicative and depends only

on the value of n (mod p), it defines a real nonprincipal Dirichlet character on
(Z/p*Z)*. Thus, we must have y(n) = (%), which has conductor p.

We have (Z/8Z)* = (Z/2Z)*, and (Z/8Z)* is generated by 3 and 5. Thus, x
is determined by its values on 3 and 5, and there are three possibilities for x:
X(3) = 1 and x(5) = —1, x(3) = —1 and x(5) = 1, and x(3) = x(b) = —1.
The first possibility yields x(1) = x(3) = 1 and x(5) = x(7) = —1, which has
conductor 8. The second possibility yields x(1) = 1, x(3) = —1, x(5) = 1, and
X(7) = —1, which has conductor 4. Finally, the third possibility yields x(1) =1,
x(3) = —1, x(5) = —1, and x(7) = 1, which has conductor 8.

When k > 3, (Z/2FZ)* = (Z/2Z) x (Z/2F2Z). Thus, (Z/2*Z)* can be generated
by two elements a and b, and so x is completely determined by its values on a and
b. Since y is real, x(a), x(b) € {—1,1}, and so there are three possibilities for x.
Each Dirichlet character ) constructed in the previous part induces a Dirichlet
character modulo 2%, and so these must be exactly the real nonprincipal Dirichlet
characters modulo 2*.

First of all, note that, for any (a,b) € Z?* for which a? + b*> = n, we can write
d*[(a/d)? + (b/d)?] = n where d = gcd(a, b), so that ged(a/d,b/d) =1 and d? | n.
Thus, we immediately obtain

R(n) = r(n/d).
d?|n

Now recall that if m € N has prime factorization m = 2“]91{1 x -pZ" gt -+ - q,* with

each p; = 1 (mod 4) and each ¢; = 3 (mod 4), then R(n) = 0 unless each of



C1,...,¢p is even, in which case

k

R(n) = [ [ (b + 1).

i=1

Thus, R(n) is multiplicative, and satisfies R(2%) = 1 for all a € Zso, R(p®) = 2°
forall p=1 (mod 4) and b € Z>, and R(¢°) = % for all ¢ =3 (mod 4) and
¢ € Zxg. On the other hand, >, x-a(d) = 1,

ZX—4(d) :leb+1>

dlpb dlp®

when p =1 (mod 4),

C

_ ¢ 1+ (=1)°
ZX—4(d) = Z(—l) =5

dlq° t=0

when ¢ = 3 (mod ¢). The second equality thus follows from the multiplicativity
of R.

By the previous part, we have R = 1% xy_4. Since both ((s) and L(s,x_4) are
absolutely convergent for ¢ > 1, we thus have

S s xoa)

nS

n=1
when o > 1.

Let f : N — C denote the indicator functions of the squares, so that f is mul-
tiplicative. Then the first part says that f xr = R. Note that r(n) < 7(n), and
thus Dr(s) converges absolutely for o > 1. Thus, since Df(s) = ((2s), we have

((25)Dr(s) = ((s)L(s, x-4)

when o > 1. It follows that

—7(n) _ C(s)L(s,x-4)
; ns ¢(2s)

when o > 1.

Since f1 and fy are 1-bounded, each of Dfi(s), Dfs(s), D(fif2)(s), and D([1
fil[1 * f2])(s) converge absolutely for o > 1, and since f; and f, (and thus, also,
their product) are completely multiplicative functions, we have

((5)Df1(s)Dfa(s)D(f1f2)(s) _ (L= fi(p) folp)p™)

D(f1/2)(25) -1l (1 =p=)A = filp)p=)(A = falp)p*) (A = filp) fa(p)p~*)’

p



when o > 1, which gives the second desired equality. Note that 1% f; and 1« f,
are both multiplicative, so that their product is also multiplicative. To prove the
first equality, we just need to check that

i Lx f1)(p 1*f2)( ") _ (1= filp) f2(p)p~*)
po (1 —=p=)A = filp)p~*) (A = f2(p)p=*) (1 = fi(p) f2(P)p~*)
(1)

for all 0 > 1. Assuming ¢ > 1, we then have that [(1 — p~*)(1 — fi(p)p~*)(1 —
F2(p)p%)(1 = fi(p) fa(p)p~*)] " equals

(S0 ) (0 (o) (o b -y AOTTEGS

a=0 a,b,c,d>0

so that the right-hand side of equals

fl b+df2( )c+d fl b+d+1f ( )c+d+1
Z a+b+c+d) Z p(a+b+c+d+2)8
a,b,c,d>0 a,b,c,d>0
J1(p)? fa(p)te filp)" fa(p)” (p)"" f2(p) f1
o Z p(a+c+d Z a+b+d Z
a,c,d>0 a,b,d>0 a,d>0

which equals

Sip
Z a+max{b c})s

abc>0

On the other hand, the left-hand side of equals

k
> (S sr) (S s ) - 3 BOEERE 5 LOREGE
k=0 = c=0 bbcck<>kO abc>0

completing the proof.

Fix t € R and define f1(n) = x(d)d™" and fy(n) = fi(n) for all n € N, so that
both f; and f, are completely multiplicative (since both x(d) and d~* are) and

1-bounded. Assume by way of contradiction that L(1 + it,x) = 0. Note that
F(s) =3 (Ixf1)(n) (Axf2)(n)

n=1 ns

. Thus, by the previous part, we have that

((s)’L(s +it, x)L(s — it,X) syl
F(s) = 5 [[a+p) (2)
¢(2s)

plg

whenever ¢ > 1. The assumption that L(1 + it,x) = 0 implies that L(1 —
it,x¥) = 0 as well. Thus, the right-hand side of is analytic at s = 1. Since
((2s) is nonvanishing for o > 1/2, it follows that the right-hand side of is
analytic in a neighborhood of the closed half-plane ¢ > 1/2. Since the right-
hand side is a meromorphic function on C, this gives a meromorphic continuation

4



of F(s) to C, and we also get that F(s) is analytic in a neighborhood of o >
1/2. Since F(s) has nonnegative Dirichlet series coefficients, Landau’s lemma
implies that its abscissa of convergence is strictly less than 1/2. In particular,

F(1/2) = Z;OIM, so that F(1/2) > 1. On the other hand,

implies that F7(1/2) = 0, since ((s)?L(s + it, x)L(s — it,X) [[,,(1 +p~*)"" is
analytic in a neighborhood of s = 1/2 and ((2s) has a pole at s = 1/2. This gives
a contradiction.

Note first that since maxc(o1) [1(z, x) — ¥ (x + ¢, x)| < logz, it suffices to prove
the result for x € % + N. The explicit formula then tells us that if z > T > 2,

P _ 2

[vI<T P

On GRH, the sum can be bounded by
2172
< Z “— < ' log?(qT).

[vI<T
Thus,

xlog?(x
¢(xa X) = Ly=yoT + ) (# + z!/? 10g2(qT)) .

Picking T’ = \/z then yields that ¢(z, x) = Ly—y,z + O (2'/*1og*(qz)).
By orthogonality of Dirichlet characters,

W(x;q,a) —% Z x(a)

whenever (a, q) = 1. Plugging in the approximation for ¢(x, x) from the previous
part then yields ¢(z;¢q,a) = s tO0 (212 1og*(qx)).



