Math 675: Analytic Theory of Numbers Solutions to problem set \# 4

March 31, 2024

1. (a) We just need to be a bit more careful proving the explicit formula than we were in class. We showed that, when $|T-\gamma| \gg \frac{1}{\log T}$ with $T \geq 2$ and $x \geq 2$ is not an integer,

$$
\psi(x)=x-\sum_{|\gamma| \leq T} \frac{x^{\rho}}{\rho}+\sum_{k=1}^{\infty} \frac{x^{-2 k}}{2 k}-\frac{\zeta^{\prime}}{\zeta}(0)+O\left(\frac{x}{T}\left((\log x T)^{2}+\frac{\log x}{\langle x\rangle}\right)\right)
$$

for any odd positive integer N. To compute $\frac{\zeta^{\prime}}{\zeta}(0)$, recall from the previous homework that, for $\sigma>-1$,

$$
\begin{aligned}
\zeta(s) & =\frac{s}{s-1}+\sum_{0 \leq r \leq 1} \frac{B_{r+1}}{r+1}\binom{s+r-1}{r}-\binom{s+1}{2} \int_{1}^{\infty} B_{2}(t) t^{-s-2} \mathrm{~d} t \\
& =\frac{1}{2}+\frac{1}{s-1}+\frac{s}{12}-\frac{s^{2}+s}{2} \int_{1}^{\infty} \frac{B_{2}(t)}{t^{s+2}} \mathrm{~d} t .
\end{aligned}
$$

This immediately yields $\zeta(0)=-\frac{1}{2}$. We will also use this expression to compute $\zeta^{\prime}(0)$. By the above, we have, since $\int_{1}^{\infty} \frac{B_{2}(t)}{t^{s+2}} \mathrm{~d} t$ is analytic in $\sigma>-1$,

$$
\zeta^{\prime}(s)=-\frac{1}{(s-1)^{2}}+\frac{1}{12}-\frac{s^{2}+s}{2}\left(\frac{\mathrm{~d}}{\mathrm{~d} s} \int_{1}^{\infty} \frac{B_{2}(t)}{t^{s+2}} \mathrm{~d} t\right)-\frac{2 s+1}{2} \int_{1}^{\infty} \frac{B_{2}(t)}{t^{s+2}} \mathrm{~d} t
$$

for $\sigma>-1$. Thus,

$$
\zeta^{\prime}(0)=-1+\frac{1}{12}-\frac{1}{2} \int_{1}^{\infty} \frac{B_{2}(t)}{t^{2}} \mathrm{~d} t
$$

We can compute $\frac{1}{2} \int_{1}^{\infty} \frac{B_{2}(t)}{t^{2}} \mathrm{~d} t$ by Euler-Maclaurin summation and Stirling's formula. Indeed, for integer N, the former yields

$$
\sum_{n \leq N} \log n=N \log N-N+1+\frac{\log N}{2}+\frac{\frac{1}{N}-1}{12}-\frac{1}{2} \int_{1}^{N} \frac{B_{2}(t)}{t^{2}} \mathrm{~d} t
$$

and the latter yields

$$
\sum_{n \leq N} \log n=N \log N-N+\frac{\log N}{2}+\frac{1}{2} \log 2 \pi+O\left(\frac{1}{N}\right) .
$$

Combining these, we get

$$
\frac{1}{2} \int_{1}^{N} \frac{B_{2}(t)}{t^{2}} \mathrm{~d} t=1-\frac{1}{12}+\frac{1}{2} \log 2 \pi+O\left(\frac{1}{N}\right)
$$

and taking $N \rightarrow \infty$ shows that $\frac{1}{2} \int_{1}^{N} \frac{B_{2}(t)}{t^{2}} \mathrm{~d} t=1-\frac{1}{12}+\frac{1}{2} \log 2 \pi$. Thus, $\zeta^{\prime}(0)=-\frac{1}{2} \log 2 \pi$, and we conclude that $\frac{\zeta^{\prime}}{\zeta}(0)=\log 2 \pi$.
Now, as in class, we can bound $\sum_{k=1}^{\infty} \frac{x^{-2 k}}{2 k} \leq x^{-2} \sum_{k=1}^{\infty} \frac{x^{-k}}{2 k} \ll x^{-2}$ since $x \geq 2$. Thus,

$$
\psi(x)=x-\sum_{|\gamma| \leq T} \frac{x^{\rho}}{\rho}-\log 2 \pi+O\left(\frac{x}{T}\left((\log x T)^{2}+\frac{\log x}{\langle x\rangle}\right)+x^{-2}\right)
$$

when $|T-\gamma| \gg \frac{1}{\log T}$ for all nontrivial zeros $\rho=\beta+i \gamma$ with $x, T \geq 2$ and x not an integer. Since, for any $T \geq 2$, there are $\ll \log T$ nontrivial zeros of zeta with imaginary part in $[T, T+1]$, we may select a $T^{\prime} \in[T, T+1]$ such that $\left|T^{\prime}-\gamma\right| \gg \frac{1}{\log T}$. As in class, $\left|\sum_{T \leq|\gamma| \leq T^{\prime}} \frac{x^{\rho}}{\rho}\right| \ll \frac{x \log T}{T}$, so that we have, in fact, that

$$
\psi(x)=x-\sum_{|\gamma| \leq T} \frac{x^{\rho}}{\rho}-\log 2 \pi+O\left(\frac{x}{T}\left((\log x T)^{2}+\frac{\log x}{\langle x\rangle}\right)+x^{-2}\right)
$$

for all $x, T \geq 2$ with x not an integer. Now, let $N \in \mathbf{N}$ be not a prime power, and set $x=N+\frac{1}{N^{10}}$, say, and $T=N^{2}$. Then $\psi(x)=\psi(N)$, and the above yields

$$
\begin{aligned}
\psi(N) & =N-\sum_{|\gamma| \leq N^{2}} \frac{\left(N+\frac{1}{N^{10}}\right)^{\rho}}{\rho}-\log 2 \pi+o(1) \\
& =N-\sum_{|\gamma| \leq N^{2}} \frac{N^{\rho}}{\rho}-\log 2 \pi+o(1)
\end{aligned}
$$

as desired.
(b) Suppose by way of contradiction that $\zeta(s)$ has only finitely many nontrivial zeros, and denote the set of such zeros by S. Note that, since $\log (1-x)=-\sum_{n=1}^{\infty} \frac{x^{n}}{n}$ for all $|x|<1$, we have $\sum_{k=1}^{\infty} \frac{x^{-2 k}}{2 k}=-\frac{1}{2} \log \left(1-x^{-2}\right)$. Thus, being a bit more careful in the argument above, we have

$$
\psi(x)=x-\sum_{|\gamma| \leq T} \frac{x^{\rho}}{\rho}-\frac{1}{2} \log \left(1-x^{-2}\right)-\log 2 \pi+O\left(\frac{x}{T}\left((\log x T)^{2}+\frac{\log x}{\langle x\rangle}\right)\right)
$$

for all $x, T \geq 2$ with x not an integer. For each fixed noninteger $x \geq 2$, we get, by taking $T \rightarrow \infty$, that

$$
\psi(x)=x-\sum_{\rho \in S} \frac{x^{\rho}}{\rho}-\frac{1}{2} \log \left(1-x^{-2}\right)-\log 2 \pi
$$

Set $f(x)=x-\sum_{\rho \in S} \frac{x^{\rho}}{\rho}-\frac{1}{2} \log \left(1-x^{-2}\right)-\log 2 \pi$ for $x \geq 2$, and note that $f(x)$ is a continuous function of x. We have $\psi(5+\varepsilon)=\psi(5)=\log 5+\psi(4)=\log 5+\psi(5-\varepsilon)$ for all $\varepsilon \in(0,1 / 2)$, say. Thus, $\lim _{x \rightarrow 5^{-}} f(x)=\lim _{\varepsilon \rightarrow 0^{+}} \psi(5-\varepsilon) \neq \lim _{\varepsilon \rightarrow 0^{+}} \psi(5+\varepsilon)=$ $\lim _{x \rightarrow 5^{+}} f(x)$, which contradicts that $f(x)$ is continuous. We conclude that $\zeta(s)$ must have infinitely many nontrivial zeros.
(c) Recall that, by the functional equation for $\zeta(s)$, if $\rho=\beta+i \gamma$ is a nontrivial zero, then so is $1-\beta-i \gamma$. Thus, since there is at least one nontrivial zero ρ by the previous part of the problem, at least one of ρ or $1-\rho$ will be a nontrivial zero with real part at least $\frac{1}{2}$, which is, obviously, greater than $\frac{1}{2}-\varepsilon$ for all $\varepsilon>0$.

Now let $\varepsilon>0$. Then the above tells us that $\zeta(s)$ has a nontrivial zero ρ with $\beta \geq \frac{1}{2}-\frac{\varepsilon}{2}$, so that $\frac{\zeta^{\prime}}{\zeta}(s)$ must have at least two poles in the half-plane $\sigma>\frac{1}{2}-\varepsilon$: at $s=1$ and at $s=\rho$. Suppose by way of contradiction that $\psi(x)=x+O\left(x^{1 / 2-\varepsilon}\right)$, i.e., $\psi(x)-x \ll x^{1 / 2-\varepsilon}$. Define the Dirichlet series

$$
F(s):=\sum_{n=1}^{\infty} \frac{\Lambda(n)-1}{n^{s}}
$$

which converges absolutely for $\sigma>1$, and note that $-\frac{\zeta^{\prime}}{\zeta}(s)=F(s)+\zeta(s)$ for $\sigma>1$. By partial summation, we have

$$
\sum_{n=1}^{N} \frac{\Lambda(n)-1}{n^{s}}=\frac{\psi(N)-N}{N^{s}}+s \int_{1}^{N} \frac{\psi(t)-t}{t^{s+1}} \mathrm{~d} t
$$

for all $N \in \mathbf{N}$ and $s \in \mathbf{C}$. The assumption that $\psi(x)-x \ll x^{1 / 2-\varepsilon}$ thus implies that $F(s)$ converges whenever $\sigma>\frac{1}{2}-\varepsilon$, and so $F(s)$ is analytic in this half-plane. Since $\zeta(s)$ is analytic except for a simple pole at $s=1$, it follows that $F(s)+\zeta(s)$ is analytic in the half-plane $\sigma>\frac{1}{2}-\varepsilon$ except for a simple pole at $s=1$. But, since $-\frac{\zeta^{\prime}}{\zeta}(s)=F(s)+\zeta(s)$ whenever $\sigma>\frac{1}{2}-\varepsilon$ by the principle of analytic continuation, this contradicts that $-\frac{\zeta^{\prime}}{\zeta}(s)$ has at least two poles in the half-plane $\sigma>\frac{1}{2}-\varepsilon$. Thus, we cannot have $\psi(x)=x+O\left(x^{1 / 2-\varepsilon}\right)$.
2. (a) In class, we showed that $\frac{\zeta^{\prime}}{\zeta}(s) \ll 1$ when $\sigma \geq 2$, so it suffices to consider $\sigma \in\left[1-\delta_{t} / 2,2\right]$. By the lemma from class, we have

$$
-\frac{\zeta^{\prime}}{\zeta}(s)=\frac{1}{s-1}-\sum_{|\gamma-t| \leq 1} \frac{1}{s-\rho}+O(\log (|s|+2))
$$

so that, by the assumption that $|t| \geq 3$ and $\sigma-\beta \gg \frac{1}{\log (|t|+2)}$ for all nontrivial zeros of $\zeta(s)$, we have

$$
\frac{\zeta^{\prime}}{\zeta}(s) \ll \log (|s|+2)+\sum_{|\gamma-t| \leq 1} \log (|t|+2) \ll \log ^{2}|t|
$$

since there are $\ll \log (|t|+2) \ll \log |t|($ as $|t| \geq 3)$ nontrivial zeros of $\zeta(s)$, counted with multiplicity, satisfying $|\gamma-t| \leq 1$ and $|s|+2 \asymp|t|$ for s with $\sigma \in\left[1-\delta_{t} / 2,2\right]$ and $|t| \geq 3$.
(b) First of all, note that when $\sigma \geq 1+\delta_{t}$, we have

$$
\left|\frac{\zeta^{\prime}}{\zeta}(s)\right| \leq \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{1+\delta_{t}}} \leq \sum_{n=2}^{\infty} \frac{\log n}{n^{1+\delta_{t}}} \ll 1+\int_{2}^{\infty} \frac{\log x}{x^{1+\delta_{t}}} \mathrm{~d} t \ll \frac{1}{\delta_{t}} \ll \log |t|
$$

since $\frac{\log n}{n^{1+\delta}}$ is decreasing for $n \geq 3$. So, it remains to prove the desired bound when $\sigma \in\left[1-\delta_{t} / 2,1+\delta_{t}\right)$. For such σ and for all $|t| \geq 3$, we have, again by the lemma in class, that

$$
\begin{aligned}
\frac{\zeta^{\prime}}{\zeta}(\sigma+i t)-\frac{\zeta^{\prime}}{\zeta}\left(1+\delta_{t}+i t\right) & =\sum_{|\gamma-t| \leq 1}\left(\frac{1}{\sigma+i t-\rho}-\frac{1}{1+\delta_{t}+i t-\rho}\right)+O(\log |t|) \\
& =\sum_{|\gamma-t| \leq 1} \frac{1+\delta_{t}-\sigma}{(\sigma+i t-\rho)\left(1+\delta_{t}+i t-\rho\right)}+O(\log |t|)
\end{aligned}
$$

Thus, for all $\sigma \in\left[1-\delta_{t} / 2,1+\delta_{t}\right)$ and $|t| \geq 3$, since $\left|1+\delta_{t}+i t-\rho\right| \asymp|\sigma+i t-\rho|$ for all nontrivial zeros ρ, we have

$$
\left|\frac{\zeta^{\prime}}{\zeta}(\sigma+i t)\right| \ll \log |t|+\frac{1}{\log |t|} \sum_{|\gamma-t| \leq 1} \frac{1}{\left|1+\delta_{t}+i t-\rho\right|^{2}}
$$

Since $\frac{1}{|z|^{2}}=\frac{1}{\operatorname{Re}\{z\}} \operatorname{Re}\left\{\frac{1}{z}\right\}$ for all $z \in \mathbf{C}$, we have

$$
\sum_{|\gamma-t| \leq 1} \frac{1}{\left|1+\delta_{t}+i t-\rho\right|^{2}}=\sum_{|\gamma-t| \leq 1} \frac{1}{1+\delta_{t}-\beta} \operatorname{Re}\left\{\frac{1}{1+\delta_{t}+i t-\rho}\right\} \leq \frac{\delta_{t}}{2} \operatorname{Re}\left\{\sum_{|\gamma-t| \leq 1} \frac{1}{1+\delta_{t}+i t-\rho}\right\}
$$

Since

$$
\operatorname{Re}\left\{\sum_{|\gamma-t| \leq 1} \frac{1}{1+\delta_{t}+i t-\rho}\right\}=\operatorname{Re}\left\{\frac{\zeta^{\prime}}{\zeta}\left(1+\delta_{t}\right)\right\}+O(\log |t|) \ll \log |t|
$$

we conclude that $\frac{\zeta^{\prime}}{\zeta}(\sigma+i t) \ll \log |t|$.
(c) Let $s=\sigma+i t$ with $\sigma \geq 1-\frac{\delta_{t}}{2}$ and $|t| \geq 3$. First of all, since $\frac{\mathrm{d}}{\mathrm{d} s} \log \zeta(s)=\frac{\zeta^{\prime}}{\zeta}(s)$, we have

$$
\log \zeta\left(1+\delta_{t}+i t\right)-\log \zeta(\sigma+i t)=\int_{\sigma}^{1+\delta_{t}} \frac{\zeta^{\prime}}{\zeta}(x+i t) \mathrm{d} x
$$

Thus, whenever $\sigma \leq 1+\delta_{t}$, we have

$$
\left|\log \zeta\left(1+\delta_{t}+i t\right)-\log \zeta(\sigma+i t)\right| \ll \frac{1}{\log |t|} \cdot \log |t| \ll 1
$$

by the previous part of the problem. Since we know from class that $\log \zeta(s)=\sum_{p} \sum_{k=1}^{\infty} \frac{1}{k p^{k s}}=$ $\sum_{n=2}^{\infty} \frac{\Lambda(n)}{(\log n) n^{s}}$ for $\sigma>1$, we can bound
$\left|\log \zeta\left(1+\delta_{t}+i t\right)\right| \leq \sum_{n=2}^{\infty} \frac{\Lambda(n)}{(\log n) n^{1+\delta_{t}}}=\log \zeta\left(1+\delta_{t}\right) \leq \log \frac{1}{\delta_{t}}+O(1) \leq \log \log |t|+O(1)$.
Thus, $|\log \zeta(s)| \leq \log \log |t|+O(1)$ whenever $\sigma \in\left[1-\frac{\delta_{t}}{2}, 1+\delta_{t}\right]$ and $|t| \geq 3$. This bound trivially follows from the bound $\log \zeta(s) \leq \log \left(\frac{1}{\sigma-1}\right)+O(1)$ when $\sigma>1+\delta_{t}$ and $|t| \geq 3$, completing the proof in general.
(d) Note that, like in our proof of the prime number theorem, it suffices to prove the result for $x \in \frac{1}{2}+\mathbf{Z}$. By Perron's formula, for such $x \geq 2$ with and $x \geq T \geq 2$, we have

$$
\sum_{n \leq x} \mu(n)=\frac{1}{2 \pi i} \int_{c-i T}^{c+i T} \frac{1}{\zeta(s)} x^{s} \frac{\mathrm{~d} s}{s}+O\left(\frac{x \log x}{T}\right)
$$

where $c=1+\frac{1}{\log x}$, so that $x^{c} \asymp x$. Set $\alpha=1-\frac{\delta_{T}}{2}$ and let R_{T} denote the rectangular contour (traversed counterclockwise) with vertices at $c \pm i T$ and $\alpha \pm i T$. Note that R_{T}
is completely contained within the region $\sigma \geq 1-\frac{\delta_{t}}{2}$. Since $\frac{x^{s}}{s \zeta(s)}$ is analytic in an open neighborhood of R_{T}, we have $\frac{1}{2 \pi i} \int_{R_{T}} \frac{x^{s}}{s \zeta(s)} \mathrm{d} s=0$. Thus,

$$
\int_{c-i T}^{c+i T} \frac{x^{s}}{s \zeta(s)} \mathrm{d} s \ll\left|\int_{\alpha-i T}^{c-i T} \frac{x^{s}}{s \zeta(s)} \mathrm{d} s\right|+\left|\int_{\alpha+i T}^{c+i T} \frac{x^{s}}{s \zeta(s)} \mathrm{d} s\right|+\left|\int_{\alpha-i T}^{\alpha+i T} \frac{x^{s}}{s \zeta(s)} \mathrm{d} s\right|
$$

To bound each of these, we will use that

$$
\left|\frac{1}{\zeta(s)}\right|=|\exp (-\log \zeta(s))|=\exp (-\operatorname{Re}\{\log \zeta(s)\}) \ll \log |t|
$$

on R_{T} by the previous part of the problem. For the integrals over the horizontal lines, we thus have

$$
\left|\int_{\alpha \pm i T}^{c \pm i T} \frac{x^{s}}{s \zeta(s)} \mathrm{d} s\right| \ll \frac{\log T}{T} \int_{\alpha}^{c} x^{\sigma} \mathrm{d} \sigma \ll \frac{x}{T},
$$

and for the integral along the vertical strip, we have

$$
\left|\int_{\alpha-i T}^{\alpha+i T} \frac{x^{s}}{s \zeta(s)} \mathrm{d} s\right| \ll x^{\alpha} \int_{-T}^{T} \frac{\log t}{|t|+1} \mathrm{~d} t \ll x^{\alpha}(\log T)^{2} .
$$

Hence,

$$
\sum_{n \leq x} \mu(n) \ll \frac{x \log x}{T}+x^{\alpha}(\log T)^{2}
$$

We can write x^{α} as $\frac{x}{\exp (\log x / 2 \log T)}$. Thus, in order to get the desired bound, we will want to select T such that $\log T \asymp \sqrt{\log x}$. So, we take $T=\exp (\sqrt{\log x})$, which is smaller than x for x sufficiently large. This yields

$$
\sum_{n \leq x} \mu(n) \ll \frac{x}{\exp (c \sqrt{\log x})}
$$

for some absolute constant $c>0$, as desired.
3. (a) These bounds (or stronger) were proven for $\sigma \geq 1$ unconditionally in the previous problem. So, we may assume that $\sigma \in[1 / 2+\varepsilon, 1]$. Let $s=\sigma+i t$ for such σ and for $|t| \geq 2$. Then, by the lemma from class,

$$
\left|\frac{\zeta^{\prime}}{\zeta}(s)\right| \leq \frac{1}{|s-1|}+\sum_{|\gamma-t| \leq 1} \frac{1}{|s-\rho|}+O(\log (|t|+2))<_{\varepsilon} \log |t|
$$

since the distance from s to any nontrivial zero is at least ε by the assumption of RH. For the other bound, we have $\log \zeta(1+i t) \ll \log |t|$ from the previous problem, so that

$$
|\log \zeta(s)| \leq|\log \zeta(1+i t)|+\int_{\sigma}^{1}\left|\frac{\zeta^{\prime}}{\zeta}(x+i t)\right| \mathrm{d} x<_{\varepsilon} \log |t|
$$

as well.
(b) One way to do this is to re-prove the version of the Phragmén-Lindelöf principle from class, modifying the argument for logarithmic growth. Or, we can just use the three circles theorem from complex analysis:

Theorem 1. Let $r_{1}, r_{2} \in \mathbf{R}$ with $0<r_{1}<r_{2}, f(z)$ be holmorphic on the annulus $|z| \in\left(r_{1}, r_{2}\right)$, and $r \in\left(r_{1}, r_{2}\right)$. Denote the maxima of f on the three circles $|z|=r_{1}$, $|z|=r_{2}$, and $|z|=r$, respectively, by M_{1}, M_{2}, and M. Then,

$$
M^{\log \frac{r_{2}}{r_{1}}} \leq M_{1}^{\log \frac{r_{2}}{r}} M_{2}^{\log \frac{r}{r_{1}}} .
$$

Note that the desired bounds follow trivially when $\sigma \geq 1+\varepsilon$, so we may as well assume that $\sigma<1+\varepsilon$. Since we are assuming RH, $\log \zeta(s)$ is holomorphic in $\sigma>1 / 2$. Let $s \in \mathbf{C}$ with $1+\varepsilon>\sigma \geq \frac{1}{2}+\varepsilon$ and $|t| \geq 2$, and let $\sigma_{0} \in(1, t)$ be a parameter to be chosen shortly. We apply the three circles theorem to $f(s)=\log \zeta(s)$ with the circles centered at $\sigma_{0}+i t$ with radii $r_{1}=\sigma_{0}-\left(1+\frac{\varepsilon}{2}\right), r=\sigma_{0}-\sigma$, and $r_{2}=\sigma_{0}-\frac{1+\varepsilon}{2}$. The maximum M_{1} of $\log \zeta$ on the circle $\left|z-\left(\sigma_{0}+i t\right)\right|=r_{1}$ is $<_{\varepsilon} 1$, and, by the previous part, the maximum M_{2} of $\log \zeta$ on the circle $\left|z-\left(\sigma_{0}+i t\right)\right|=r_{2}$ is $<_{\varepsilon} \log |t|$. The desired bound $\log \zeta(s)<_{\varepsilon}(\log |t|)^{2 \max \{1-\sigma, 0\}+\varepsilon}$ thus follows immediately from the three circles theorem by taking $\sigma_{0}=\log \log t$, since

$$
\frac{\log \left(r / r_{1}\right)}{\log \left(r_{2} / r_{1}\right)}=\frac{\log \left(1+\frac{1+\varepsilon / 2-\sigma}{\sigma_{0}-1-\varepsilon / 2}\right)}{\log \left(1+\frac{1 / 2}{\sigma_{0}-1-\varepsilon / 2}\right)}=2(1-\sigma)+\varepsilon+O_{\varepsilon}\left(\frac{1}{\sigma_{0}}\right) .
$$

The proof that $\frac{\zeta^{\prime}}{\zeta}(s)<_{\varepsilon}(\log |t|)^{2 \max \{1-\sigma, 0\}+\varepsilon}$ is identical, except that, since $\frac{\zeta^{\prime}}{\zeta}$ has a pole at $s=1$, one also has to notice that the assumption $|t| \geq 2$ ensures that the annulus $r_{1}<\left|z-\left(\sigma_{0}+i t\right)\right|<r_{2}$ does not contain $z=1$.
Finally, to deduce the Lindelöf Hypothesis, the above tells us that

$$
\zeta\left(\frac{1}{2}+\varepsilon+i t\right) \ll_{\varepsilon} 1
$$

for all $\varepsilon>0$, so that $\zeta(1 / 2+i t)<_{\varepsilon} t^{\varepsilon}$ follows from the Phragmén-Lindelöf principle.
4. (a) First, assume RH. By the explicit formula, we have

$$
\psi(x)=x-\sum_{|\gamma| \leq T} \frac{x^{\rho}}{\rho}+O\left(\frac{x}{T}(\log x T)^{2}\right) .
$$

for all $x, T \geq 2$ with $x \in \frac{1}{2}+\mathbf{Z}$. By RH, $\left|\sum_{|\gamma| \leq T} \frac{x^{\rho}}{\rho}\right| \leq x^{1 / 2}(\log T)^{2}$. Taking $T=x^{1 / 2}$ in the above and using that $|\psi(x)-\psi(x+y)| \ll \log x$ for all $x \geq 2$ and $y \in[0,1]$, we thus obtain that $\psi(x)=x+O\left(x^{1 / 2}(\log x)^{2}\right)=x+O_{\varepsilon}\left(x^{1 / 2+\varepsilon}\right)$.
For the other direction, we argue as in the first problem. Let $\varepsilon>0$ and $F(s)$ be the Dirichlet series from the third part of the first problem. Suppose that $\psi(x)=x+$ $O\left(x^{1 / 2+\varepsilon}\right)$. Then, $F(s)$ converges, and is thus analytic, in the half-plane $\sigma>\frac{1}{2}+\varepsilon$. Since $-\frac{\zeta^{\prime}}{\zeta}(s)=F(s)+\zeta(s)$ for all $\sigma>\frac{1}{2}+\varepsilon$ as well by the principle of analytic continuation, and $F(s)+\zeta(s)$ is analytic except for a simple pole at $s=1$, it follows that $-\frac{\zeta^{\prime}}{\zeta}(s)$ is analytic except for a simple pole at $s=1$ in the half-plane $\sigma>\frac{1}{2}+\varepsilon$. Since $-\frac{\zeta^{\prime}}{\zeta}(s)$ has a pole wherever $\zeta(s)$ has a zero, it follows that $\zeta(s)$ has no nontrivial zeros ρ with $\beta>\frac{1}{2}+\varepsilon$. Since $\varepsilon>0$ was arbitrary, we conclude that any nontrivial zero ρ of $\zeta(s)$ must satisfy $\beta \leq \frac{1}{2}$. By the functional equation, if ρ is a nontrivial zero of $\zeta(s)$, then $1-\rho$ is as well. It follows that any nontrivial zero of $\zeta(s)$ must have $\beta=\frac{1}{2}$, i.e., that RH must hold.
(b) First, assume RH, and let $\varepsilon>0$. We argue as in the fourth part of the second problem, except that we can take a contour that goes further into the critical strip. As before, it suffices to prove the result for $x \in \frac{1}{2}+\mathbf{Z}$. We have, by Perron's formula, that, whenever $x \geq T \geq 2$,

$$
\sum_{n \leq x} \mu(n)=\frac{1}{2 \pi i} \int_{c-i T}^{c+i T} \frac{1}{\zeta(s)} x^{s} \frac{\mathrm{~d} s}{s}+O\left(\frac{x \log x}{T}\right)
$$

where $c=1+\frac{1}{\log x}$, so that $x^{c} \asymp x$. Set $\alpha=\frac{1}{2}+\frac{\varepsilon}{2}$ and let R_{T} denote the rectangular contour (traversed counterclockwise) with vertices at $c \pm i T$ and $\alpha \pm i T$. Note that R_{T} is completely contained within the region $\sigma \geq \frac{1}{2}+\varepsilon$. Since $\frac{x^{s}}{s \zeta(s)}$ is analytic in an open neighborhood of R_{T} (by the assumption of RH), we have $\frac{1}{2 \pi i} \int_{R_{T}} \frac{x^{s}}{s \zeta(s)} \mathrm{d} s=0$. Thus,

$$
\int_{c-i T}^{c+i T} \frac{x^{s}}{s \zeta(s)} \mathrm{d} s \ll\left|\int_{\alpha-i T}^{c-i T} \frac{x^{s}}{s \zeta(s)} \mathrm{d} s\right|+\left|\int_{\alpha+i T}^{c+i T} \frac{x^{s}}{s \zeta(s)} \mathrm{d} s\right|+\left|\int_{\alpha-i T}^{\alpha+i T} \frac{x^{s}}{s \zeta(s)} \mathrm{d} s\right|
$$

We can now bound the three integrals on the right-hand side using the estimates from the previous problem, which tells us that $\frac{1}{\zeta(s)}<_{\varepsilon}|t|^{\varepsilon / 2}$, say. For the integrals over the horizontal lines, we thus have

$$
\left|\int_{\alpha \pm i T}^{c \pm i T} \frac{x^{s}}{s \zeta(s)} \mathrm{d} s\right| \lll \frac{T^{\varepsilon / 2}}{T} \int_{\alpha}^{c} x^{\sigma} \mathrm{d} \sigma \ll \frac{x}{T^{1-\varepsilon / 2}},
$$

and for the integral along the vertical strip, we have

$$
\left|\int_{\alpha-i T}^{\alpha+i T} \frac{x^{s}}{s \zeta(s)} \mathrm{d} s\right|<_{\varepsilon} x^{\alpha} \int_{-T}^{T} \frac{|t|^{\varepsilon}}{|t|+1} \mathrm{~d} t \ll x^{1 / 2+\varepsilon / 2} T^{\varepsilon / 2}(\log T)^{2}
$$

Hence,

$$
\sum_{n \leq x} \mu(n) \ll_{\varepsilon} \frac{x \log x}{T}+\frac{x}{T^{1-\varepsilon / 2}}+x^{1 / 2+\varepsilon / 2} T^{\varepsilon / 2}(\log T)^{2}
$$

Taking $T=\sqrt{x}$ then yields

$$
\sum_{n \leq x} \mu(n)<_{\varepsilon} x^{1 / 2+\varepsilon}
$$

For the other direction, we again argue analogously to the first problem. Set $M(x):=$ $\sum_{n \leq x} \mu(n)$. Let $\varepsilon>0$, so that $M(x) \ll x^{1 / 2+\varepsilon}$. By partial summation, we have

$$
\sum_{n=1}^{N} \frac{\mu(n)}{n^{s}}=\frac{M(N)}{N^{s}}+s \int_{1}^{N} \frac{M(t)}{t^{s+1}} \mathrm{~d} t
$$

for all $N \in \mathbf{N}$ and $s \in \mathbf{C}$. Since $M(x) \ll x^{1 / 2+\varepsilon}$, it follows that $\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}$ converges whenever $\sigma>\frac{1}{2}+\varepsilon$, and thus is analytic in this half-plane. But, $\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}=\frac{1}{\zeta(s)}$ when $\sigma>1$, and thus this relation holds in the wider half-plane $\sigma>\frac{1}{2}+\varepsilon$ by the principle of analytic continuation. Since $\frac{1}{\zeta(s)}$ has a pole wherever $\zeta(s)$ has a zero, it follows from the analyticity of $\frac{1}{\zeta(s)}$ in $\sigma>\frac{1}{2}+\varepsilon$ that $\zeta(s)$ has no zeros with $\sigma>\frac{1}{2}+\varepsilon$. Since $\varepsilon>0$ was arbitrary, we thus have that any nontrivial zero of $\zeta(s)$ satisfies $\beta \leq \frac{1}{2}$. Again, since $1-\rho$ is a nontrivial zero of $\zeta(s)$ whenever ρ is a nontrivial zero, we conclude that any nontrivial zero of $\zeta(s)$ satisfies $\beta=\frac{1}{2}$, i.e., RH holds.

