Math 675: Analytic Theory of Numbers
Solutions to problem set # 4

March 31, 2024

(a) We just need to be a bit more careful proving the explicit formula than we were in class.
We showed that, when [T — v| > @ with 7' > 2 and = > 2 is not an integer,
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for any odd positive integer N. To compute C?,(0), recall from the previous homework

that, for o > —1,
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= — - dt.
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This immediately yields ¢(0) = —% We will also use this expression to compute ¢'(0).

By the above, we have, since f > ii(r) dt is analytic in 0 > —1,
1 1 s2+s/d [ Bt 25+ 1 [ By(t)
"(8) = ——s + —= — — dt ) — dt
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for 0 > —1. Thus,

e 1 1 [ Ba(t)
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We can compute 5 f )t by Euler—Maclaurin summation and Stirling’s formula.
Indeed, for integer NV, the former yields

logN -1 1 [N By(t)

loo — _ N_ - _ - dt
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and the latter yields

logN 1 1
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Combining these, we get
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and taking N — oo shows that % lN Biét) dt =1- 1—12 —|—%log 27r. Thus, ¢'(0) = —% log 27,
and we conclude that C?/(0) = log 27.
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Now, as in class, we can bound Y 72| &~ <2 232 £- < o2 since z > 2. Thus,

Y(z) =o — Z xfp —log2n 4+ O <; ((logggT)2 + loga?> + x_Q)

ST (z)

when [T — 7| > @ for all nontrivial zeros p = B + iy with 2,7 > 2 and x not an
integer. Since, for any T > 2, there are < log T nontrivial zeros of zeta with imaginary
part in [T, T 4 1], we may select a 7" € [T, T + 1] such that |77 —~| > @. As in class,

xP

2T<p|<T ZI< zlogT o4 that we have, in fact, that

T

[vI<T (z)

for all z,T > 2 with x not an integer. Now, let N € N be not a prime power, and set
x =N+ ﬁ, say, and T = N2. Then ¢(x) = 1)(NN), and the above yields

N + )’
Y(N)=N — NV + §w)” —log 27 + o(1)
[y[<N? P
=N — Z — —log 27w + o(1),
[v[<N?

as desired.

Suppose by way of contradiction that ((s) has only finitely many nontrivial zeros, and
denote the set of such zeros by S. Note that, since log(1 —z) = —> 7, % for all

|z| < 1, we have y ;2 % = —1log (1 —272). Thus, being a bit more careful in the

argument above, we have

P(z) =2 — ETf — %log (1-272) ~log2r + O (; ((log aT)? + 1(2;:5))

for all , T > 2 with x not an integer. For each fixed noninteger z > 2, we get, by taking
T — oo, that

Set f(z) =2 —3_ g % — %log (1—272) —log2r for x > 2, and note that f(z) is a
continuous function of . We have ¢(5 + ¢) = (5) = log5 + ¢ (4) = logh + ¥(5 — ¢)
for all € € (0,1/2), say. Thus, lim, ,5- f(z) = lim,_,g+ ¥(5 — €) # lim,_,o+ (5 +¢) =
lim, .5+ f(x), which contradicts that f(x) is continuous. We conclude that {(s) must

have infinitely many nontrivial zeros.

Recall that, by the functional equation for ((s), if p = 8 + iy is a nontrivial zero, then
so is 1 — 8 — 4y. Thus, since there is at least one nontrivial zero p by the previous part
of the problem, at least one of p or 1 — p will be a nontrivial zero with real part at least
%, which is, obviously, greater than % — ¢ for all € > 0.



Now let € > 0. Then the above tells us that ((s) has a nontrivial zero p with 8 > 1 —£, so
that %(s) must have at least two poles in the half-plane o > %—5: at s =1and at s = p.

Suppose by way of contradiction that 1 (z) = = + O(z/?79), ie., ¥(z) — 2 <« /272,

Define the Dirichlet series
= A(n) —1
Fls)i= Y S

n=1

which converges absolutely for o > 1, and note that —%(s) = F(s)+((s) for o > 1. By
partial summation, we have

T A(m)—1  ¢(N)-N Nop(t) — ¢
; pram Ns —i—s/l tsTdt

for all N € N and s € C. The assumption that ¢)(z) — z < z/2~¢ thus implies
that F(s) converges whenever ¢ > I — ¢, and so F(s) is analytic in this half-plane.
Since ((s) is analytic except for a simple pole at s = 1, it follows that F(s) + ((s)
is analytic in the half-plane o > % — ¢ except for a simple pole at s = 1. But, since
—%’(s) = F(s) + ((s) whenever o > 3 — ¢ by the principle of analytic continuation, this
contradicts that —%(s) has at least two poles in the half-plane ¢ > 3 —e. Thus, we

cannot have ¥ (z) = 2 + O(z'/27%).

In class, we showed that %/(s) < 1 when o > 2, so it suffices to consider o € [1 —d;/2,2].
By the lemma from class, we have
¢ 1

c¥ =5

1
= > +O0(log(ls| +2)),
5—p
ly—t|<1
so that, by the assumption that |t| > 3 and o — > m for all nontrivial zeros of
¢(s), we have
!

i(s) <log(ls| +2)+ 3 log(lf] +2) < log? ],

[y—t|<1
since there are < log(|t| +2) < log |t| (as |t| > 3) nontrivial zeros of ((s), counted with
multiplicity, satisfying |y —t| < 1 and |s| +2 =< [¢| for s with o € [1 —;/2,2] and |t| > 3.
First of all, note that when o > 1 + §;, we have

¢

c)

< — A(n) < — logn 1 OOlogacd 1 |
<> e = > pite S L e by <log t]
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. 1 . . . . .
since nolgf; is decreasing for n > 3. So, it remains to prove the desired bound when

o €[l —46,/2,14 ;). For such o and for all |t| > 3, we have, again by the lemma in
class, that

¢ ¢ , 1 1
= -1 = E — 1
C(Uﬂt) C( ok it) LS \oHit—p 1+ 6 +it—p + O logli)
1+5t—0'
= . . + O (log [t]) .
|V§<1 (c+it—p)(1+ 6 + it — p) (log ¢])



Thus, for all o € [1 —6;/2,14 6;) and |t| > 3, since |1 + 0 + it — p| < |o + it — p| for all
nontrivial zeros p, we have

!/

¢ . 1 1
(o +1it)| < log |t| + —— - .
C( ) el log |¢| vg:ﬂ |14 ¢ + it — p|?

Since |21| Re{z} Re{ } for all z € C, we have

1 1 1 5 1
- R %R SR
2 11+ 0 + it — pJ2 2 140, e{1+5t+it—p} 3 Req D 140, +it—p

y—t|<1 h—tl<1 st
Since
Re{ Y _ —Re{gl(1+5)}+0(10 [t]) < log |[t|
Ttoitrit—p( ¢ ' g o

[v—tI<1

we conclude that $ (O‘ +it) < log [t].

Let s =0 +it witho > 1— % and [t| > 3. First of all, since % log ((s) = C?/(s), we have

1+6t C/
10g§(1+5t+it)—log§(a+it):/ C(l/lc—i-zt)d
Thus, whenever o < 1 + d;, we have
[log (1 + 0 + it) — log {(o + it)| <o log |t < 1

by the previous part of the problem. Since we know from class that log ((s) = >, > Wlks =

Yoo % for o > 1, we can bound

. . A(n 1
llog (14 6; + it)| < Z (10gn()n)1+5t =log((1+ ;) < log5—t + O(1) < loglog |t| + O(1).

Thus, |log((s)| < loglog|t| +O(1) whenever o € [1 — %, 1+ ¢;] and |¢t| > 3. This bound

trivially follows from the bound log ((s) < log < ) +O( ) when o > 1+6; and |t| > 3,
completing the proof in general.

Note that, like in our proof of the prime number theorem, it suffices to prove the result
for x € % + Z. By Perron’s formula, for such x > 2 with and = > T > 2, we have

el 1 ds xlogx
ZM 27”/czT C()x3+0< T >

n<x

where ¢ = 1+ @, so that ¢ < z. Set a =1 — %T and let Ry denote the rectangular
contour (traversed counterclockwise) with vertices at ¢ +¢7" and o £ ¢T". Note that Ry



is completely contained within the region o > 1 — %t. Since - Z“"(SS) is analytic in an open

neighborhood of Ry, we have 5= fRT %(Ss)ds = 0. Thus,

c+iT 5 c—iT 5 c+iT 75
ds <« / ds‘ + / ds’ +
/ciT s¢(s) a—ir 5G(8) a+iT s¢(s)

To bound each of these, we will use that

a+iT

z.S
ds
a—iT SC(S) ‘
1
@ = |exp(—log ((s))| = exp(— Re{log ((s)}) < log |t|
on R by the previous part of the problem. For the integrals over the horizontal lines,
we thus have .
R ’ logT /C x
ds| < —— | 27do < —,
/a:I:iT s¢(s) T J, T

and for the integral along the vertical strip, we have

atiT s T
x logt 9
ds| < :BO‘/ dt < z%(logT)“.
/a—iT s((s) _rtf+1
Hence,
xlogx
Z puin) < Tg + 2%(log T)%
n<x

We can write 2% as __—7—"=1——=. Thus, in order to get the desired bound, we will want
p(logz/2logT)

to select T such that logT =< /logx. So, we take T' = exp(\/log x), which is smaller
than x for = sufficiently large. This yields

20 o)

n<x
for some absolute constant ¢ > 0, as desired.

These bounds (or stronger) were proven for ¢ > 1 unconditionally in the previous prob-
lem. So, we may assume that o € [1/2 4 ¢,1]. Let s = o + it for such o and for |t| > 2.
Then, by the lemma from class,

¢

1
¢ > Is—pl + O (log([t] +2)) <. log|t|

y—t|<1

o)<

_7|s—1]+|

since the distance from s to any nontrivial zero is at least ¢ by the assumption of RH.
For the other bound, we have log ((1 + it) < log|t| from the previous problem, so that

1 /

llog ¢(s)] < |log ¢(1 + it)| +/ ¢

(x +1it)

dz <. log |t]

as well.

One way to do this is to re-prove the version of the Phragmén—Lindeldf principle from
class, modifying the argument for logarithmic growth. Or, we can just use the three
circles theorem from complex analysis:



Theorem 1. Let ri,79 € R with 0 < r; < ry, f(z) be holmorphic on the annulus
|z| € (r1,72), and r € (r1,72). Denote the mazxima of f on the three circles |z| = r1,
|z| = re, and |z| = r, respectively, by My, Ms, and M. Then,
Mlog % < Miog %Méog ﬁ .

Note that the desired bounds follow trivially when o > 1 + ¢, so we may as well assume
that o < 1 + . Since we are assuming RH, log((s) is holomorphic in ¢ > 1/2. Let
s€Cwithl+e>0>1%+cand|t| > 2 and let o9 € (1,£) be a parameter to be
chosen shortly. We apply the three circles theorem to f(s) = log((s) with the circles
centered at og + ¢t with radii 1 = o9 — (1 + %), r=o09— o, and ro = g9 — % The
maximum M; of log ¢ on the circle |z — (og + it)| = r1 is <. 1, and, by the previous
part, the maximum Ms of log ¢ on the circle |z — (o9 +it)| = r9 is <. log [t|. The desired
bound log ¢(s) <. (log [t])?™ax{1=70}+ thus follows immediately from the three circles
theorem by taking o9 = loglogt, since

1+e/2—0
log(r/rl) . log (1 + 00—1—5/2>

1 B 1/2
o8ra/m)og (14 42

—2(1—0)+e+0. (1>

a0

The proof that %(s) <. (log [t])?max{1=0:0}+¢ is jdentical, except that, since ¢ has a
pole at s = 1, one also has to notice that the assumption |¢| > 2 ensures that the annulus
r1 < |z — (09p +it)| < r2 does not contain z = 1.

Finally, to deduce the Lindel6f Hypothesis, the above tells us that

1

for all £ > 0, so that {(1/2 + it) <. t° follows from the Phragmén—Lindel6f principle.

First, assume RH. By the explicit formula, we have

Ya)=z— Y 40 (%(bgﬂﬁ) .

[vI<T p

for all 2,7 > 2 with = € } + Z. By RH, ‘ZIWIST %‘ < 2M2(log T)2. Taking T = 22 in

the above and using that |¢)(x) — ¢ (x + y)| < logz for all z > 2 and y € [0, 1], we thus

obtain that ¢(z) = 2 + O (z¥/?(log 2)?) = z + O (z1/%*%).

For the other direction, we argue as in the first problem. Let ¢ > 0 and F(s) be

the Dirichlet series from the third part of the first problem. Suppose that ¥ (z) = x +

0] (xl/ 2+€). Then, F(s) converges, and is thus analytic, in the half-plane o > %—Fe. Since
R

—%(s) =F(s) +((s) for all o > % + ¢ as well by the principle of analytic continuation,

and F'(s) + ((s) is analytic except for a simple pole at s = 1, it follows that —%’(s) is
analytic except for a simple pole at s = 1 in the half-plane o > % + ¢. Since —%(5)
has a pole wherever ((s) has a zero, it follows that ((s) has no nontrivial zeros p with
g > % + €. Since € > 0 was arbitrary, we conclude that any nontrivial zero p of ((s)
must satisfy g < % By the functional equation, if p is a nontrivial zero of ((s), then
1 — pis as well. It follows that any nontrivial zero of ((s) must have 8 = 3, i.e., that

29
RH must hold.



(b) First, assume RH, and let € > 0. We argue as in the fourth part of the second problem,
except that we can take a contour that goes further into the critical strip. As before, it
suffices to prove the result for z € % + Z. We have, by Perron’s formula, that, whenever

x>T > 2,
il ds xlogx
s 0]
ZM 27”\/c T g( )x 5 " ( T >

n<x

where ¢ =1 + @, so that ¢ < x. Set a = % + 5 and let Ry denote the rectangular

contour (traversed counterclockwise) with vertices at ¢ &+ ¢7" and o £ ¢T". Note that Ry

is completely contained within the region o > % + €. Since Sg(ss) is analytic in an open

neighborhood of Ry (by the assumption of RH), we have % J Ry %(ss)ds = 0. Thus,
c—iT s a+iT s

c+iT 5 T c+iT s
= d - —~ d e
/[ﬂﬁ S )R Ay J£+iT SC(s) 3’*‘ i 5C()

We can now bound the three integrals on the right- hand side using the estimates from
the previous problem, which tells us that ( <. |t|#/?, say. For the integrals over the
horizontal lines, we thus have

Te/2

ctiT 5 T
d —_— 7d _—
/aiz’T s((s) e /ax 7 T

and for the integral along the vertical strip, we have
a+iT s
x
/ ds
a—iT SC(S)

xlogm T
ZM + T + x1/2+€/2T€/2(logT)2.

ds|.

ds‘ +

T €

t

<e :EO‘/ \t\‘ 4‘_ 1dt < z\?He2Te 2 (10g T2,
-T

Hence,

n<x

Taking T = \/z then yields

For the other direction, we again argue analogously to the first problem. Set M(x) :=
n). Let € > 0, so tha T) Lz . By partial summation, we have
n<a (1), Let € > 0, so that M 1/2+¢ By partial ti h

N
Souln) M) M
ns NS 1 ts+1
n=1
for all N € N and s € C. Since M(z) < xY/2%2 it follows that >.°° ng) converges
whenever ¢ > = —|—€ and thus is analytic in this half-plane. But, Zn 1 T(LZ) C( ) when

o > 1, and thus this relation holds in the wider half-plane o > 5 + € by the principle
of analytic continuation. Since ﬁ has a pole wherever ((s) has a zero, it follows from
the analyticity of ﬁ ino > % + ¢ that ((s) has no zeros with o > % + €. Since e > 0

was arbitrary, we thus have that any nontrivial zero of ((s) satisfies § < % Again, since
1 — p is a nontrivial zero of {(s) whenever p is a nontrivial zero, we conclude that any
nontrivial zero of ((s) satisfies § = %, i.e., RH holds.



