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Math 675: Analytic Theory of Numbers
Solutions to problem set # 3

March 4, 2024

Recall that

¢(s) = sil N 8/1 t{si}ldt

whenever ¢ > 0. Thus, whenever o > 1/2 (say), we certainly have

1 > {t > {t
C(s)zs_l—i—l— . t£+}1dt—(s—1) . t£+}1dt

1 = {t}
= 1— —1).
s—l+ . t8+1dt+0(|3 )
Now, since =2 — =+ = ¢=2(1 —¢=(5=1) = $=2(1 — ¢~ (s=Dogt) for all ¢ € [1, 00), it follows
using the power series for z — e* centered at 0 that t=2 — ¢t~tD) = t=2(1 — (1 + O(|s —
1|logt))) = O(|s — 1|t~2logt) in a neighborhood of s = 1. Thus,
= {t} = {t} > {t}logt = {t}

ts+1

1
in a neighborhood of s = 1. We can thus deduce that
1
= — -1
() = —= +7+0(s— 1)
in a neighborhood of s = 1.

(a) We have, by definition, that by(0) = 1 = by(1). Now suppose that n > 1. Then, we have
that

1

1 1
o:(n+1)/0 bn(:z:)d:c:/o (n+1)bn(x)dx:/0 V. oy (2)de = b (1) — bss (0):

Thus, b,(0) = b, (1) for all n > 2 as well. It follows that b,(0) = b,(1) whenever n # 1.
This implies that B, (x) is continuous and periodic when n # 1. Similarly, when n > 1,
since [ By(t)dt = 0 for any m € N, we have

i 1 e} bnr1({z}) = bnt1(0) _ Bny1(x) — Bnsa
/O By(t)dt = n+1/0 (n 4 1)by, (t)dt = p— — . ,

(b) By partial summation and writing [t| = ¢ — {t}, we have

b b b
S s =0l - [ 1o =erf, - [waes [0 rwae

a<n<b



Integrating by parts gives f tff(t)dt = tf(t ‘ f f(t)dt. Thus,

/f dt+/{t}f

Since B (t) = {t} — 1/2, we get f {t}f/(t f By ( dt+M so that
b
/ f(t) dt+ f( )+/ Bi(t)f'(t)dt,

which is the desired identity for £k = 1. We will proceed by induction, having done the
base case k = 1. Suppose that the identity holds for a general k£ > 1, so that

/f dt+z (r=1) (p)— (=D (q k+1/ Byt k' dt.

We have that f; %!(k)(t)dt equals

a<n<b

a<n<b

a<n<b

b
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by integrating by parts Using that a,b € Z, so that Biii(a) = Bit1(b) = Bgy1, we
B (k)
btain ZAOIPOL B (19 )9 @) 5o that

() (Tt 1)!
k+1 k-+1)
By (t) f*H (1)
)i+ (r=1) () fr-D) (g k+2/ dt,
a<n<b / f Z ( ) f k+ 1
as desired.
Note that, when k& = 0, we have

1 1
/ Bk(x)e—szmac(ir — / e—27rzma:dx — 1m:0-
0 0

When k = 1, we have that fol Bp(x)e™ 2™y equals

1 1 1
» 1 , 5 m=0 1 -1
—2mimz —2mimx 2
dz — = dz = — lpo=1
/0.%'6 X 2/0 e X {_ 1 m#o 9 m=0 m7$027m-m

2mim

by integrating by parts. This proves the desired identity in the £ = 1 case. Note that,
when m = 0 and k£ > 1, we have fol By(z)e ?mmedy = fo By(z)dxr = 0, proving the
desired identity in this case as well. We now proceed by mductlon supposing that

1
; k!
B —27mmzd —
for a general k > 1 and m # 0. Then, m#)% equals

1 1 L
/ (k+ 1)Bk(x)e’2mmxdx = / B;C_H(a:)eﬁmmxdx — 2m'm/ Bk+1($)672mmxdx
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by integrating by parts. Dividing through by 27wim yields

1
o k+1)!
B 27rzmxd — (
/0 k+1 (ZL’)E €T m7#0 (27Tim)k+1 5

as desired.

Note that, when k > 2, the Fourier series ), . (2;1’;; )ke%”’” of Bi(z) is absolutely

convergent. Since each such By is continuous, it follows that the Fourier series converges
to By(x) pointwise, i.e., that

k! eZm'mz
By(z) = - Nk k
(27i) e m
when k£ > 2.
Let k > 1. Then, by the previous part, Boyi1 = Bag4+1(0) = —(2(27:.)%2:1 M0 ﬁ,

which equals

T 2ri)T 2. m2k+1 + Z 2k+1 = r > T > —a5r1 | =0

m=1 m:l m=1 m=1

We also have that

1 —1)F1(2k)! 1 (—1)F1(2k)! 1
Bay, = Bax(0) = 2m 2k Z m2k T (2m)% 2 Z m2k —  92k—172k Z m2k

m##0 m>1 m>1

Rearranging yields
oy 2212k By

k) = (-0 g

Let n > 1, so that bglk)(x) =nn—-1)---(n+1—k)b,_g(z) for all k = 1,...,n. Thus,

BE0) =n(n—1) - (n+1—k)by_(0) =n(n—1)---(n+1—k)By_y. It follows that
the k' coefficient of by, (z) is (}) Bp—r, so that

Integrating both sides over [0, 1] yields
1 & (n+1 1 Rt
0= B,+—— B, = B,+—— B k-
n+z()k+1 "+n+1k2_1<k+1> k= Bat +1Z< ' ) ok

Rearranging gives B, = —(n+1)~! Z;L; ("zl)BnH,k, as desired. To compute ¢(2),¢(4),(6),
and ((8), we now just need to compute By, By, Bg, and Bg using the fact that By = 1,
Bog11 =0 for all £ > 1, and this recurrence. We have B} = —

m=—5 (o) (3)%) -5
(s ()m(5)m) =50

3

1
2

By=—

U] =



and
Bg = —

| =

(e (o (o () -

78

Thus, ((2) = &, ¢(4) = I3, ((6) = &, and ¢(8) = ghg-

By Euler-Maclaurin summation, we have

k+1 N
-3 s+r—2 —s+1-r _/ s+k —s—k—1
E ns / t5ds— < - )(N 1) 1 Bpy1(t) 1 t dt

for all N € N, since %t* = (=1)s(s+1)- - (s+r—1)t" = (=) (T ) =
(—l)Tr!(er:_l)t*S*’" for all » € N. Letting s > 1, shifting the index on the sum on the
right-hand side, and taking N — oo then yields

_ —s r+1 s+r—1 B s+k /OO —s—k—1
g(s)_1+/1 ds+ Y r+1( . > (k+1> 1 Biy1 ()t dt

0<r<k
S Bryi(s+r—1 s+k /oo k-1
= o — B t)t—* dt
s—1+zr+1( r > <k+1 1 k1 (t) ’
0<r<k

since floo t—5ds = S_%

Note that > 5, <, éf:f (5+;_1) being a polynomial in s for every integer k > 0, is entire,
s+

as is (k+1) The integral [~ Byy1(t)t~*"""'dt converges absolutely whenever o > —k,
and thus defines an analytic function in this half-plane. It follows that, for every integer

k>0,
s By (s+r—1 s+k /°° Ce—k—1
— B ) dt.
s—1+0<zr;kr+l< r > <k+1> 1 b (t)

is a meromorphic function on the half-plane ¢ > —k that is analytic except for a simple
pole at s = 1 with residue 1. Since the above equals ((s) for s € (1,00), by the principle
of analytic continuation, we can meromorphically continue ((s) to the whole complex
plane with its only singularity being a simple pole at s = 1 with residue 1.

Note that 7* is multiplicative and thus, by looking at the values of 7* on prime powers,
that

2 _9—5)\2
F(s) = Dr*(s) = S[[<1_1p8> =022 = (- 2o

for o > 1. Let § > 0 and S > 1 be parameters to be chosen later, and assume that « > 0

satisfies x — % € Z. We apply Perron’s formula with ¢ =1+ loém to obtain
1 c+iS ds xl—l—c 1 ¢ 0 1
T(zx)=— F f—+ 0| — —_ + — —
(z) 271 /C_l-s (s) s + S Z nélx — n| + S ch

x/2<n<2x n=1

1 [etis ds xlogx
= — F S*— 4+ 0 .
omi ) T ( S )



Let Rs s denote the rectangular contour with vertices at ¢ 1.5, § 1.5 traversed coun-

terclockwise. Inside of this contour, % has a pole of order 2 at s = 1 with residue
5 log 22+ 5 (27—1), where we have used the first problem and the power series expansions

(1 i _
Loy (- 1i(s—1), 2% =2 3252 °§,w> (s—1)7,and (1-27%) = £ +2log 2(s—1)+...
to help compute the residue. Thus,

1 c+iS d 0+1S c+iS d
— F(s)xs—s f(10g256+2'y—1 —</ / / >F5x3
2mi Jo_;s s 2 271 is 51iS s

Using that ¢(s) <. (1 + [t|)(1=9+¢/2)/2 whenever |s — 1| > 1 and o € [0,1 + ¢], that
|6 + it] <5 1+ [t], and that |1 — 2797%] < 14279 <« 1 for all real ¢, we can bound

6+1iS d S
/ Fls)a' 5 <es 336/ (14 [¢])~0+</2dt < 2°S1-0+</2
5—isS S s
and, assuming x > S,
ctiS c c/2
ds S N
F(s)x®— 56/2/ S72%do <« ——— (2.
/E:l:z'S ()" <eo L0 TS (w9 (5>

Thus,

rlogx  51-s1e/2 5/ LN
g +2°S + )< )

x
‘T(x) ~3 (log2x + 2y — 1)) g8 log(x/S

Choosing S = /z bounds the above by <. s at/2He/2 o p1/240/24e/2 4 g 1/24¢/4 Taking
0 = ¢ yields the desired asymptotic.

(b) By D7*(s) = (1 — 27°)((s)?, we have

S Iy Ty s
n=1 n=1 n=1

*

T(n/2
3 (nﬁ)

neN
n even

S
Il
—

for o > 1. Thus,
n odd

)
7(n) —7(n/2) n even
for all n € N. It follows that T*(z) = T'(x) — }_ n<e 7(n/2) =T(2) = 3., <;/pT(n) =

n even

T(x)—T(x/2). Using the asymptotic for T'(z) from class, we conclude that 7% (x) equals

zlogz + (27— 1)z — glog(w/Q) — (27— 1);1 +O0(Vz) = = (log2z + (2 — 1)) + O(V=).

M\&

5. Both of the desired asymptotics can be proven using either elementary methods or Perron’s
formula. We will use Perron’s formula in our solutions.

(a) Let f: NN — {0, 1} denote the indicator function of the cube-frees. Then f is multiplica-
tive, and

_ —3s s
Df(s)=[[(t+p+p7>) =]1 11 _];_S - <C((33)>



for o > 1. Let § > 0 and T > 1 be a parameter to be chosen later, and assume that
x > 0 satisfies = € % + Z. We apply Perron’s formula with ¢ = 1 + to obtain that
the number of cube-free integers below x equals

L[ Ls) ds ) (wlog
27t Jo_ir C(3s) s T

1
logx

Let Rr denote the rectangular contour with vertices at ¢ + 4T, 1 + 4T traversed coun-

((s)a*

terclockwise. Inside of this contour, Gs)s has a simple pole at s = 1 with residue Gy

Thus,

1 c+iT C(S) SdS T 1 /1/2+2T / /C-HT Sds
p— = — .
2mi Joor C(3s)" s C(3) 2mi \ Jijpir 12— J1j244iT s

Note that, whenever s > %, we have

1 >, pu(n) =1
= < — < L
C(?’S) — n3s nz:l n3/2

Using this esimate, along with that ¢(s) < (1 + [¢t])=779/2 whenever |s — 1| > 1 and
o €[0,14 6] and that |o +it| < 1 + || for o € [1/2,1 + J], we can bound

1/244T <(8) ds T
/ 5= s \/5/ (1+ ’t’)(1/2+5)/2_1dt < ﬁT1/4+6/2,
1/2—ir C(3s) s _T

and

ctiT C( ) dS 5 c s
/ — <5 T! 1)/2/ T=24%do <5 TOD/271/4y,
1/24iT C(35) s /2

Thus, picking 6 = 1/8, we have that the number of cube-free integers below z equals

L rlogx 1/25/16 —11/16
+O< + g /2a/16 116
¢(3) T

Choosing T = /x yields that the number of cube-free integers below z equals

T 21/32
@ T

whenever z € 1 5 + Z is positive. This estimate can be extended to all z > 0 by noting
that ‘ L»’CéB/Q Lxé( g/g‘ < 1, which can be absorbed into the error term O(x2'/32). We

conclude that the number of cube-frees below x > 0 is ~ ﬁ

First, observe that n € N is cube-full if and only if n = a?b*c® for some a, b, c € N, and
that this representation is unique when be is squarefree. Indeed, if n = p{** - - - pj'* is the
prime factorization of n, then we have

k
_ L3)(m;—1) 3\(m-—2>

b= Hpi and

i=1

HE??-



which determines a as well. Thus,

c 2
DI = X i = CBIF).

a,b,ceN

where F(s) := 3} .en %, when o > 1. Observe that F(s) converges absolutely for

o> %, and thus in analytic in this half-plane, and, further, satisfies F'(s) < 1 when
o> 1%, say. We, thus, have Df(s) = ((3s)F(s) for all s € C by the principle of analytic
continuation. Let 6 > 0 and T > 1 be parameters to be chosen later, and assume that
x > 0 satisfies x € % + Z. We apply Perron’s formula with ¢ = % + @ to obtain that

the number of cube-full integers below = equals

1 c+iT 1/3
() F()2° % + 0 (””log“> .

21t Jo_ir S T

Let R denote the rectangular contour with vertices at ¢ + ¢1" and % =+ ¢T" traversed

((3s)F(s)

counterclockwise. Inside of this contour, " has a simple pole at s = % with

residue 3F(1/3)x/3. Thus,

c+i /18+1 c—1 c+i
1 +T((33)F(s)x5dé:9 — 3P(1/3)2/3— L ( /5 P /5 - /5 o > C(35)F(s)

21t Jo i 2w\ Js5/18—iT J18—ir  J5/184iT

Using, yet again, that ((s) <; (14 [t|)1=7+%)/2 whenever |s — 1| > 1 and o € [0,1 + d],
and that |0 +it| < 1+ [¢| for o € [5/18,1], we can bound

5/18+iT ds T
/ C(38)F(8)x8— <s x5/18/ (1 + ‘3t|)(1/6+6)/271dt <5 JZ5/18T(1/6+6)/2
5/18—iT s _r

and

ctiT c
/ C(BS)F(S)J:S§ <; T(51)/2/ T-39/2,40 45 s TO-1/2-5/12,1/3,
5/18+iT s 5/18

Thus, picking 6 = 1/6, we have that the number of cube-full integers below z equals
213 log x _
3F(1/3)2'3 + O | =725 4 2?1876 1 p=3/61/3 )
T

1/18

Choosing T' =« yields that the number of cube-full integers below x equals

3F(1/3)z3 + O <$31/108)

whenever x € % + Z. This estimate can be extended to all x > 0 by noting that

3F(1/3)(|z] 4+ 1/2)/3 — 3F(1/3)(|z] — 1/2)"/? < 1, which can be absorbed into the

error term. We therefore conclude that the number of cube-fulls below x > 0 is ~
u(be)® '\ 1/3

3 Db ceN pirssrm ) T /7-



