Math 675: Analytic Theory of Numbers
Solutions to problem set # 3

March 4, 2024

1. Recall that
\[
\zeta(s) = \frac{s}{s - 1} - s \int_1^\infty \frac{\{t\}}{ts+1}dt
\]
whenever \(\sigma > 0\). Thus, whenever \(\sigma > 1/2\) (say), we certainly have
\[
\zeta(s) = \frac{1}{s - 1} + 1 - \int_1^\infty \frac{\{t\}}{ts+1}dt - (s - 1) \int_1^\infty \frac{\{t\}}{ts+1}dt
= \frac{1}{s - 1} + 1 - \int_1^\infty \frac{\{t\}}{ts+1}dt + O(|s - 1|).
\]
Now, since \(t^{-2} - t^{-(s+1)} = t^{-2}(1 - t^{-(s-1)}) = t^{-2}(1 - e^{-(s-1)\log t})\) for all \(t \in [1, \infty)\), it follows using the power series for \(z \mapsto e^z\) centered at 0 that \(t^{-2} - t^{-(s+1)} = t^{-2}(1 - (1 + O(|s - 1|\log t))) = O(|s - 1|t^{-2}\log t)\) in a neighborhood of \(s = 1\). Thus,
\[
\int_1^\infty \frac{\{t\}}{ts+1}dt = \int_1^\infty \frac{\{t\}}{t^2}dt + O\left(|s - 1|\int_1^\infty \frac{\{t\}\log t}{t^2}dt\right) = \int_1^\infty \frac{\{t\}}{t^2}dt + O(|s - 1|)
\]
in a neighborhood of \(s = 1\). We can thus deduce that
\[
\zeta(s) = \frac{1}{s - 1} + \gamma + O(|s - 1|)
\]
in a neighborhood of \(s = 1\).

2. \(\text{(a)}\) We have, by definition, that \(b_0(0) = 1 = b_0(1)\). Now suppose that \(n \geq 1\). Then, we have that
\[
0 = (n + 1) \int_0^1 b_n(x)dx = \int_0^1 (n + 1)b_n(x)dx = \int_0^1 b'_n(x)dx = b_{n+1}(1) - b_{n+1}(0).
\]
Thus, \(b_n(0) = b_n(1)\) for all \(n \geq 2\) as well. It follows that \(b_n(0) = b_n(1)\) whenever \(n \neq 1\). This implies that \(B_n(x)\) is continuous and periodic when \(n \neq 1\). Similarly, when \(n \geq 1\), since \(\int_0^m B_n(t)dt = 0\) for any \(m \in \mathbb{N}\), we have
\[
\int_0^x B_n(t)dt = \frac{1}{n + 1} \int_0^{\{x\}} (n + 1)b_n(t)dt = \frac{b_{n+1}(\{x\}) - b_{n+1}(0)}{n + 1} = \frac{B_{n+1}(x) - B_{n+1}}{n + 1}.
\]
\(\text{(b)}\) By partial summation and writing \([t] = t - \{t\}\), we have
\[
\sum_{a < n \leq b} f(n) = \int_a^b \{t\} f(t)dt = \int_a^b [t] f'(t)dt = \int_a^b t f(t)dt + \int_a^b \{t\} f'(t)dt.
\]
Integrating by parts gives \(f_a^b tf'(t)dt = tf(t)|_a^b - f_a^b f(t)dt \). Thus,

\[
\sum_{a<n\leq b} f(n) = \int_a^b f(t)dt + \int_a^b \{t\} f'(t)dt.
\]

Since \(B_1(t) = \{t\} - 1/2 \), we get \(\int_a^b \{t\} f'(t)dt = \int_a^b B_1(t)f'(t)dt + \frac{f(b) - f(a)}{2} \), so that

\[
\sum_{a<n\leq b} f(n) = \int_a^b f(t)dt + \frac{f(b) - f(a)}{2} + \int_a^b B_1(t)f'(t)dt,
\]

which is the desired identity for \(k = 1 \). We will proceed by induction, having done the base case \(k = 1 \). Suppose that the identity holds for a general \(k \geq 1 \), so that

\[
\sum_{a<n\leq b} f(n) = \int_a^b f(t)dt + \sum_{r=1}^{k} \frac{(-1)^r B_r}{r!} (f^{(r-1)}(b) - f^{(r-1)}(a)) + (-1)^{k+1} \int_a^b \frac{B_{k+1}(t)f^{(k)}(t)}{k!} dt.
\]

We have that \(\int_a^b \frac{B_k(t)f^{(k)}(t)}{k!} dt \) equals

\[
\int_a^b \frac{(k+1)B_k(t)f^{(k)}(t)}{(k+1)!} dt = \int_a^b \frac{B_{k+1}(t)f^{(k)}(t)}{(k+1)!} dt = \int_a^b \frac{B_{k+1}(t)f^{(k+1)}(t)}{(k+1)!} dt
\]

by integrating by parts. Using that \(a, b \in \mathbb{Z} \), so that \(B_{k+1}(a) = B_{k+1}(b) = B_{k+1} \), we obtain \(\frac{B_{k+1}(t)f^{(k)}(t)}{(k+1)!} |_a^b = B_{k+1}(f^{(k)}(b) - f^{(k)}(a)) \), so that

\[
\sum_{a<n\leq b} f(n) = \int_a^b f(t)dt + \sum_{r=1}^{k+1} \frac{(-1)^r B_r}{r!} (f^{(r-1)}(b) - f^{(r-1)}(a)) + (-1)^{k+2} \int_a^b \frac{B_{k+1}(t)f^{(k+1)}(t)}{(k+1)!} dt,
\]

as desired.

(c) Note that, when \(k = 0 \), we have

\[
\int_0^1 B_k(x)e^{-2\pi imx}dx = \int_0^1 e^{-2\pi imx}dx = 1_{m=0}.
\]

When \(k = 1 \), we have that \(\int_0^1 B_k(x)e^{-2\pi imx}dx \) equals

\[
\int_0^1 xe^{-2\pi imx}dx - \frac{1}{2} \int_0^1 e^{-2\pi imx}dx = \begin{cases} \frac{1}{2} & m = 0 \\ -\frac{1}{2\pi im} & m \neq 0 \end{cases}
\]

by integrating by parts. This proves the desired identity in the \(k = 1 \) case. Note that, when \(m = 0 \) and \(k \geq 1 \), we have \(\int_0^1 B_k(x)e^{-2\pi imx}dx = \int_0^1 B_k(x)dx = 0 \), proving the desired identity in this case as well. We now proceed by induction, supposing that

\[
\int_0^1 B_k(x)e^{-2\pi imx}dx = -1_{m \neq 0} \frac{k!}{(2\pi im)^k}
\]

for a general \(k \geq 1 \) and \(m \neq 0 \). Then, \(-1_{m \neq 0} \frac{(k+1)!}{(2\pi im)^{k+1}} \) equals

\[
\int_0^1 (k+1)B_k(x)e^{-2\pi imx}dx = \int_0^1 B_{k+1}(x)e^{-2\pi imx}dx = 2\pi im \int_0^1 B_{k+1}(x)e^{-2\pi imx}dx
\]
by integrating by parts. Dividing through by $2\pi im$ yields

$$
\int_0^1 B_{k+1}(x)e^{-2\pi imx}dx = -1_{m\neq 0} \frac{(k+1)!}{(2\pi im)^{k+1}},
$$
as desired.

Note that, when $k \geq 2$, the Fourier series $\sum_{m\neq 0} \frac{-k!}{(2\pi im)^2} e^{2\pi imx}$ of $B_k(x)$ is absolutely convergent. Since each such B_k is continuous, it follows that the Fourier series converges to $B_k(x)$ pointwise, i.e., that

$$
B_k(x) = -\frac{k!}{(2\pi i)^k} \sum_{m\neq 0} \frac{e^{2\pi imx}}{m^k}
$$

when $k \geq 2$.

(d) Let $k \geq 1$. Then, by the previous part, $B_{2k+1} = B_{2k+1}(0) = -\frac{(2k+1)!}{(2\pi i)^{2k+1}} \sum_{m\neq 0} \frac{1}{m^{2k+1}}$, which equals

$$
-\frac{(2k+1)!}{(2\pi i)^{2k+1}} \left(\sum_{m=1}^{\infty} \frac{1}{m^{2k+1}} + \sum_{m=1}^{\infty} \frac{1}{(-m)^{2k+1}} \right) = -\frac{(2k+1)!}{(2\pi i)^{2k+1}} \left(\sum_{m=1}^{\infty} \frac{1}{m^{2k+1}} - \sum_{m=1}^{\infty} \frac{1}{m^{2k+1}} \right) = 0.
$$

We also have that

$$
B_{2k} = B_{2k}(0) = -\frac{(2k)!}{(2\pi i)^{2k}} \sum_{m\neq 0} \frac{1}{m^{2k}} = -\frac{(-1)^k}{(2\pi i)^{2k}} \sum_{m=1}^{\infty} \frac{1}{m^{2k}} = -\frac{(-1)^k(2k)!}{2^{2k-1} \pi^{2k}} \sum_{m=1}^{\infty} \frac{1}{m^{2k}}.
$$

Rearranging yields

$$
\zeta(2k) = (-1)^k \frac{2^{2k-1} \pi^{2k} B_{2k}}{(2k)!}.
$$

(e) Let $n \geq 1$, so that $b_n^{(k)}(x) = n(n-1) \cdots (n+1-k)b_{n-k}(x)$ for all $k = 1, \ldots, n$. Thus, $b_n^{(k)}(0) = n(n-1) \cdots (n+1-k)b_{n-k}(0) = n(n-1) \cdots (n+1-k)B_{n-k}$. It follows that the k^{th} coefficient of $b_n(x)$ is $\binom{n}{k} B_{n-k}$, so that

$$
b_n(x) = B_n + \sum_{k=1}^{n} \binom{n}{k} B_{n-k} x^k.
$$

Integrating both sides over $[0,1]$ yields

$$
0 = B_n + \sum_{k=1}^{n} \binom{n}{k} B_{n-k} = B_n + \frac{1}{n+1} \sum_{k=1}^{n} \binom{n+1}{k+1} B_{n-k} = B_n + \frac{1}{n+1} \sum_{k=2}^{n+1} \binom{n+1}{k} B_{n+1-k}.
$$

Rearranging gives $B_n = -(n+1)^{-1} \sum_{k=2}^{n+1} \binom{n+1}{k} B_{n+1-k}$, as desired. To compute $\zeta(2), \zeta(4), \zeta(6)$, and $\zeta(8)$, we now just need to compute B_2, B_4, B_6, and B_8 using the fact that $B_0 = 1$, $B_{2k+1} = 0$ for all $k \geq 1$, and this recurrence. We have $B_1 = -\frac{1}{2}$,

$$
B_2 = -\frac{1}{3} \left(\binom{3}{2} B_1 + \binom{3}{3} B_0 \right) = \frac{1}{6},
$$

$$
B_4 = -\frac{1}{5} \left(\binom{5}{3} B_2 + \binom{5}{4} B_1 + \binom{5}{5} B_0 \right) = -\frac{1}{30}.
$$

3
3. (a) By Euler–Maclaurin summation, we have
\[
\sum_{n=2}^{N} \frac{1}{n^s} = \int_{1}^{N} t^{-s} \, dt - \sum_{r=1}^{k+1} \frac{B_r}{r} \left(\frac{s + r - 2}{r - 1} \right) (N^{-s+1-r} - 1) - \int_{1}^{N} B_{k+1}(t) \left(\frac{s + k}{k + 1} \right) t^{-s-k-1} \, dt
\]
for all \(N \in \mathbb{N} \), since \(\frac{d^r}{dt^r} t^{-s} = (-1)^r s(s+1) \cdots (s+r-1) t^{-s-r} = (-1)^r r! \left(\frac{s + r - 1}{s - 1} \right) t^{-s-r} \) for all \(r \in \mathbb{N} \). Letting \(s > 1 \), shifting the index on the sum on the right-hand side, and taking \(N \to \infty \) then yields
\[
\zeta(s) = 1 + \int_{1}^{\infty} t^{-s} \, dt + \sum_{0 \leq r \leq k} \frac{B_{r+1}}{r+1} \left(\frac{s + r - 1}{r} \right) - \left(\frac{s + k}{k + 1} \right) \int_{1}^{\infty} B_{k+1}(t) t^{-s-k-1} \, dt
\]
\[
= \frac{s}{s-1} + \sum_{0 \leq r \leq k} \frac{B_{r+1}}{r+1} \left(\frac{s + r - 1}{r} \right) - \left(\frac{s + k}{k + 1} \right) \int_{1}^{\infty} B_{k+1}(t) t^{-s-k-1} \, dt,
\]
since \(\int_{1}^{\infty} t^{-s} \, dt = \frac{1}{s-1} \).

(b) Note that \(\sum_{0 \leq r \leq k} \frac{B_{r+1}}{r+1} \left(\frac{s + r - 1}{r} \right) \), being a polynomial in \(s \) for every integer \(k \geq 0 \), is entire, as is \(\left(\frac{s + k}{k + 1} \right) \). The integral \(\int_{1}^{\infty} B_{k+1}(t) t^{-s-k-1} \, dt \) converges absolutely whenever \(\sigma > -k \), and thus defines an analytic function in this half-plane. It follows that, for every integer \(k \geq 0 \),
\[
\frac{s}{s-1} + \sum_{0 \leq r \leq k} \frac{B_{r+1}}{r+1} \left(\frac{s + r - 1}{r} \right) - \left(\frac{s + k}{k + 1} \right) \int_{1}^{\infty} B_{k+1}(t) t^{-s-k-1} \, dt.
\]
is a meromorphic function on the half-plane \(\sigma > -k \) that is analytic except for a simple pole at \(s = 1 \) with residue 1. Since the above equals \(\zeta(s) \) for \(s \in (1, \infty) \), by the principle of analytic continuation, we can meromorphically continue \(\zeta(s) \) to the whole complex plane with its only singularity being a simple pole at \(s = 1 \) with residue 1.

4. (a) Note that \(\tau^* \) is multiplicative and thus, by looking at the values of \(\tau^* \) on prime powers, that
\[
F(s) := D\tau^*(s) = \frac{1}{1 - 2^{-s}} \prod_{p>2} \left(\frac{1}{1 - p^{-s}} \right)^{2} = \frac{(1 - 2^{-s})^2}{1 - 2^{-s}} \zeta(s)^2 = (1 - 2^{-s}) \zeta(s)^2
\]
for \(\sigma > 1 \). Let \(\delta > 0 \) and \(S \geq 1 \) be parameters to be chosen later, and assume that \(x > 0 \) satisfies \(x - \frac{1}{2} \in \mathbb{Z} \). We apply Perron’s formula with \(c = 1 + \frac{1}{\log x} \) to obtain
\[
T(x) = \frac{1}{2\pi i} \int_{c-iS}^{c+iS} F(s)x^s \frac{ds}{s} + O \left(\frac{x^{1+c}}{S} \sum_{x/2<n\leq 2x} \frac{1}{n^c} + \frac{x^c}{S} \sum_{n=1}^{\infty} \frac{1}{n^c} \right)
\]
\[
= \frac{1}{2\pi i} \int_{c-iS}^{c+iS} F(s)x^s \frac{ds}{s} + O \left(\frac{x \log x}{S} \right).
\]
Let $R_{\delta,S}$ denote the rectangular contour with vertices at $c \pm iS$, $\delta \pm iS$ traversed counterclockwise. Inside of this contour, \(\frac{F(s)x^s}{s} \) has a pole of order 2 at $s = 1$ with residue $\frac{\pi}{2} \log 2 + \frac{\pi}{2}(2\gamma - 1)$, where we have used the first problem and the power series expansions $\frac{1}{s} = \sum_{j=0}^{\infty} \frac{(-1)^j(s-1)^j}{j!}$, $x^s = x \sum_{j=0}^{\infty} \frac{(\log x)^j}{j!}(s-1)^j$, and $(1 - 2^{-s}) = \frac{1}{2} + \log 2 + (s-1) + \ldots$ to help compute the residue. Thus,

\[
\frac{1}{2\pi i} \int_{c-iS}^{c+iS} F(s)x^s \frac{ds}{s} = \frac{x}{2} (\log 2x + 2\gamma - 1) - \frac{1}{2\pi i} \left(\int_{\delta-iS}^{\delta+iS} + \int_{c-iS}^{c+iS} - \int_{\delta+iS}^{c+iS} \right) F(s)x^s \frac{ds}{s}.
\]

Using that $\zeta(s) \ll \epsilon (1 + |t|)^{(1 - \sigma + \epsilon/2)/2}$ whenever $|s - 1| \gg 1$ and $\sigma \in [0, 1 + \epsilon]$, that $|\delta + it| \gg 1 + |t|$, and that $|1 - 2^{-\delta - it}| \ll 1 + 2^{-\delta} \ll 1$ for all real t, we can bound

\[
\int_{\delta-iS}^{\delta+iS} F(s)x^s \frac{ds}{s} \ll_{\epsilon, \delta} x^\delta \int_{-S}^{S} (1 + |t|)^{-\delta + \epsilon/2} dt \ll x^\delta S^{1-\delta + \epsilon/2}
\]

and, assuming $x > S$,

\[
\int_{\delta+iS}^{c+iS} F(s)x^s \frac{ds}{s} \ll_{\epsilon, \delta} S^{\epsilon/2} \int_{\delta}^{c} S^{-\sigma} x^\sigma d\sigma \ll \frac{S^{\epsilon/2}}{\log(x/S)} (x/S)^{c}.
\]

Thus,

\[
|T(x) - \frac{x}{2} (\log 2x + 2\gamma - 1)| \ll \epsilon, \delta \quad \frac{x \log x}{S} + x^\delta S^{1-\delta + \epsilon/2} + \frac{S^{\epsilon/2}}{\log(x/S)} (x/S)^{c}.
\]

Choosing $S = \sqrt{x}$ bounds the above by $\ll \epsilon, \delta \quad x^{1/2+\epsilon/2} + x^{1/2+\delta/2+\epsilon/2} + x^{1/2+\epsilon/4}$. Taking $\delta = \epsilon$ yields the desired asymptotic.

(b) By $D\tau^s (s) = (1 - 2^{-s}) \zeta(s)^2$, we have

\[
\sum_{n=1}^{\infty} \frac{\tau^s (n)}{n^s} = \sum_{n=1}^{\infty} \frac{\tau (n)}{n^s} - \sum_{n=1}^{\infty} \frac{\tau (n)}{(2n)^s} = \sum_{n=1}^{\infty} \frac{\tau (n)}{n^s} - \sum_{n \in \mathbb{N} \text{ even}} \frac{\tau(n/2)}{n^s}
\]

for $\sigma > 1$. Thus,

\[
\tau^s (n) = \begin{cases}
\tau (n) & \text{n odd} \\
\tau (n) - \tau (n/2) & \text{n even}
\end{cases}
\]

for all $n \in \mathbb{N}$. It follows that $T^* (x) = T(x) - \sum_{n \text{ even}}^{} \tau(n/2) = T(x) - \sum_{n \leq x/2}^{} \tau(n) = T(x) - T(x/2)$. Using the asymptotic for $T(x)$ from class, we conclude that $T^* (x)$ equals

\[
x \log x + (2\gamma - 1)x - \frac{x}{2} \log(x/2) - (2\gamma - 1)\frac{x}{2} + O(\sqrt{x}) = \frac{x}{2} (\log 2x + (2\gamma - 1)) + O(\sqrt{x}).
\]

5. Both of the desired asymptotics can be proven using either elementary methods or Perron’s formula. We will use Perron’s formula in our solutions.

(a) Let $f : \mathbb{N} \rightarrow \{0, 1\}$ denote the indicator function of the cube-frees. Then f is multiplicative, and

\[
D \tau^s (s) = \prod_{p}^{} (1 + p^{-s} + p^{-2s}) = \prod_{p}^{} \frac{1 - p^{-3s}}{1 - p^{-s}} = \frac{\zeta (s)}{\zeta(3s)}
\]
for $\sigma > 1$. Let $\delta > 0$ and $T \geq 1$ be a parameter to be chosen later, and assume that $x > 0$ satisfies $x \in \frac{1}{2} + \mathbb{Z}$. We apply Perron’s formula with $c = 1 + \frac{1}{\log x}$ to obtain that the number of cube-free integers below x equals

$$\frac{1}{2\pi i} \int_{c-iT}^{c+iT} \frac{\zeta(s)}{\zeta(3s)} \frac{x^s}{s} ds + O\left(\frac{x \log x}{T}\right).$$

Let R_T denote the rectangular contour with vertices at $c \pm iT$, $\frac{1}{2} \pm iT$ traversed counterclockwise. Inside of this contour, $\frac{\zeta(s)x^s}{\zeta(3s)s}$ has a simple pole at $s = 1$ with residue $\frac{x}{\zeta(3)}$. Thus,

$$\frac{1}{2\pi i} \int_{c-iT}^{c+iT} \frac{\zeta(s)}{\zeta(3s)} \frac{x^s}{s} ds = \frac{1}{\zeta(3)} \int_{1/2-iT}^{1/2+iT} \frac{\zeta(s)}{\zeta(3s)} \frac{x^s}{s} ds + O\left(\frac{x \log x}{T}\right).$$

Note that, whenever $s \geq 1$, we have

$$\frac{1}{\zeta(3s)} = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^{3s}} \ll \sum_{n=1}^{\infty} \frac{1}{n^{3/2}} \ll 1.$$

Using this estimate, along with that $\zeta(s) \ll_{\delta} (1 + |t|)^{(1-\sigma+\delta)/2}$ whenever $|s - 1| \gg 1$ and $0 \leq \sigma \leq 1 + \delta$, we can bound

$$\int_{1/2-iT}^{1/2+iT} \frac{\zeta(s)}{\zeta(3s)} \frac{x^s}{s} ds \ll_{\delta} \sqrt{x} \int_{-T}^{T} (1 + |t|)^{(1/2+\delta)/2-1/2} dt \ll \sqrt{x} T^{1/4+\delta/2}.$$

and

$$\int_{1/2\pm iT}^{c \pm iT} \frac{\zeta(s)}{\zeta(3s)} \frac{x^s}{s} ds \ll_{\delta} T^{(\delta-1)/2} \int_{1/2}^{c} T^{-\sigma/2} x^\sigma d\sigma \ll_{\delta} T^{(\delta-1)/2-1/4} x.$$

Thus, picking $\delta = 1/8$, we have that the number of cube-free integers below x equals

$$\frac{x}{\zeta(3)} + O\left(x \log x + x^{1/2} T^{5/16} + x T^{-11/16}\right).$$

Choosing $T = \sqrt{x}$ yields that the number of cube-free integers below x equals

$$\frac{x}{\zeta(3)} + O(x^{21/32})$$

whenever $x \in \frac{1}{2} + \mathbb{Z}$ is positive. This estimate can be extended to all $x > 0$ by noting that $\left|\frac{x^{1/2}}{\zeta(3)} - \frac{x^{-1/2}}{\zeta(3)}\right| \ll 1$, which can be absorbed into the error term $O(x^{21/32})$. We conclude that the number of cube-frees below $x > 0$ is $\sim \frac{x}{\zeta(3)}$.

(b) First, observe that $n \in \mathbb{N}$ is cube-full if and only if $n = a^3 b^4 c^5$ for some $a, b, c \in \mathbb{N}$, and that this representation is unique when bc is squarefree. Indeed, if $n = p_1^{m_1} \cdots p_k^{m_k}$ is the prime factorization of n, then we have

$$b = \prod_{i=1}^{k} p_i^{13(m_i-1)} \quad \text{and} \quad c = \prod_{i=1}^{k} p_i^{13(m_i-2)},$$

where m_i are the exponents in the prime factorization of n, and b and c are the unique representations of n as $a^3 b^4 c^5$. We can express n as $n = \prod_{i=1}^{k} p_i^{13(m_i-1)} \cdot \prod_{i=1}^{k} p_i^{13(m_i-2)}$, and by the uniqueness of the prime factorization, this expression is unique. This completes the proof that n is cube-full if and only if $n = a^3 b^4 c^5$.

which determines \(a \) as well. Thus,

\[
\mathcal{D}f(s) = \sum_{a,b,c \in \mathbb{N}} \frac{\mu(bc)^2}{(a^3b^4c^5)^s} = \zeta(3s)F(s),
\]

where \(F(s) := \sum_{b,c \in \mathbb{N}} \frac{\mu(bc)^2}{(b^2c^5)^s} \), when \(\sigma > 1 \). Observe that \(F(s) \) converges absolutely for \(\sigma > \frac{1}{3} \), and thus in analytic in this half-plane, and, further, satisfies \(F(s) \ll 1 \) when \(\sigma \geq \frac{5}{18} \), say. We, thus, have \(\mathcal{D}f(s) = \zeta(3s)F(s) \) for all \(s \in \mathbb{C} \) by the principle of analytic continuation. Let \(\delta > 0 \) and \(T \geq 1 \) be parameters to be chosen later, and assume that \(x > 0 \) satisfies \(x \in \frac{1}{2} + \mathbb{Z} \). We apply Perron’s formula with \(c = \frac{1}{3} + \frac{1}{\log x} \) to obtain that the number of cube-full integers below \(x \) equals

\[
\frac{1}{2\pi i} \int_{c-iT}^{c+iT} \zeta(s)F(s)x^s \frac{ds}{s} + O\left(\frac{x^{1/3} \log x}{T}\right).
\]

Let \(R_T \) denote the rectangular contour with vertices at \(c \pm iT \) and \(\frac{5}{18} \pm iT \) traversed counterclockwise. Inside of this contour, \(\frac{\zeta(3s)F(s)x^s}{s} \) has a simple pole at \(s = \frac{1}{3} \) with residue \(3F(1/3)x^{1/3} \). Thus,

\[
\frac{1}{2\pi i} \int_{c-iT}^{c+iT} \zeta(3s)F(s)x^s \frac{ds}{s} = 3F(1/3)x^{1/3} - \frac{1}{2\pi i} \left(\int_{5/18-iT}^{5/18+iT} + \int_{5/18-iT}^{c-iT} + \int_{c+iT}^{5/18+iT} \right) \zeta(3s)F(s)x^s \frac{ds}{s}.
\]

Using, yet again, that \(\zeta(s) \ll \delta (1 + |t|)^{(1-\sigma+\delta)/2} \) whenever \(|s-1| \gg 1 \) and \(\sigma \in [0, 1+\delta] \), and that \(|\sigma + it| \asymp 1 + |t| \) for \(\sigma \in [5/18, 1] \), we can bound

\[
\int_{5/18-iT}^{5/18+iT} \zeta(3s)F(s)x^s \frac{ds}{s} \ll \delta x^{5/18} \int_{-T}^{T} (1+|3t|)^{(1/6+\delta)/2-1} dt \ll \delta x^{5/18} T^{(1/6+\delta)/2}
\]

and

\[
\int_{5/18-iT}^{c+iT} \zeta(3s)F(s)x^s \frac{ds}{s} \ll \delta T^{(\delta-1)/2} \int_{5/18}^{c} T^{-3\delta/2} x^\sigma d\sigma \ll \delta T^{(\delta-1)/2-5/12} x^{1/3}.
\]

Thus, picking \(\delta = 1/6 \), we have that the number of cube-full integers below \(x \) equals

\[
3F(1/3)x^{1/3} + O\left(\frac{x^{1/3} \log x}{T} + x^{5/18} T^{1/6} + T^{-5/6} x^{1/3}\right).
\]

Choosing \(T = x^{1/18} \) yields that the number of cube-full integers below \(x \) equals

\[
3F(1/3)x^{1/3} + O\left(x^{31/108}\right)
\]

whenever \(x \in \frac{1}{2} + \mathbb{Z} \). This estimate can be extended to all \(x > 0 \) by noting that \(3F(1/3)(|x| + 1/2)^{1/3} - 3F(1/3)(|x| - 1/2)^{1/3} \ll 1 \), which can be absorbed into the error term. We therefore conclude that the number of cube-fulls below \(x > 0 \) is \(~ 3 \left(\sum_{b,c \in \mathbb{N}} \frac{\mu(bc)^2}{b^3/3^2/3} \right) x^{1/3} \).