Math 675: Analytic Theory of Numbers Solutions to problem set \# 3

March 4, 2024

1. Recall that

$$
\zeta(s)=\frac{s}{s-1}-s \int_{1}^{\infty} \frac{\{t\}}{t^{s+1}} \mathrm{~d} t
$$

whenever $\sigma>0$. Thus, whenever $\sigma>1 / 2$ (say), we certainly have

$$
\begin{aligned}
\zeta(s) & =\frac{1}{s-1}+1-\int_{1}^{\infty} \frac{\{t\}}{t^{s+1}} \mathrm{~d} t-(s-1) \int_{1}^{\infty} \frac{\{t\}}{t^{s+1}} \mathrm{~d} t \\
& =\frac{1}{s-1}+1-\int_{1}^{\infty} \frac{\{t\}}{t^{s+1}} \mathrm{~d} t+O(|s-1|) .
\end{aligned}
$$

Now, since $t^{-2}-t^{-(s+1)}=t^{-2}\left(1-t^{-(s-1)}\right)=t^{-2}\left(1-e^{-(s-1) \log t}\right)$ for all $t \in[1, \infty)$, it follows using the power series for $z \mapsto e^{z}$ centered at 0 that $t^{-2}-t^{-(s+1)}=t^{-2}(1-(1+O(\mid s-$ $1 \mid \log t)))=O\left(|s-1| t^{-2} \log t\right)$ in a neighborhood of $s=1$. Thus,

$$
\int_{1}^{\infty} \frac{\{t\}}{t^{s+1}} \mathrm{~d} t=\int_{1}^{\infty} \frac{\{t\}}{t^{2}} \mathrm{~d} t+O\left(|s-1| \int_{1}^{\infty} \frac{\{t\} \log t}{t^{2}} \mathrm{~d} t\right)=\int_{1}^{\infty} \frac{\{t\}}{t^{2}} \mathrm{~d} t+O(|s-1|)
$$

in a neighborhood of $s=1$. We can thus deduce that

$$
\zeta(s)=\frac{1}{s-1}+\gamma+O(|s-1|)
$$

in a neighborhood of $s=1$.
2. (a) We have, by definition, that $b_{0}(0)=1=b_{0}(1)$. Now suppose that $n \geq 1$. Then, we have that

$$
0=(n+1) \int_{0}^{1} b_{n}(x) \mathrm{d} x=\int_{0}^{1}(n+1) b_{n}(x) \mathrm{d} x=\int_{0}^{1} b_{n+1}^{\prime}(x) \mathrm{d} x=b_{n+1}(1)-b_{n+1}(0) .
$$

Thus, $b_{n}(0)=b_{n}(1)$ for all $n \geq 2$ as well. It follows that $b_{n}(0)=b_{n}(1)$ whenever $n \neq 1$. This implies that $B_{n}(x)$ is continuous and periodic when $n \neq 1$. Similarly, when $n \geq 1$, since $\int_{0}^{m} B_{n}(t) \mathrm{d} t=0$ for any $m \in \mathbf{N}$, we have

$$
\int_{0}^{x} B_{n}(t) \mathrm{d} t=\frac{1}{n+1} \int_{0}^{\{x\}}(n+1) b_{n}(t) \mathrm{d} t=\frac{b_{n+1}(\{x\})-b_{n+1}(0)}{n+1}=\frac{B_{n+1}(x)-B_{n+1}}{n+1} .
$$

(b) By partial summation and writing $\lfloor t\rfloor=t-\{t\}$, we have

$$
\sum_{a<n \leq b} f(n)=\left.t f(t)\right|_{a} ^{b}-\int_{a}^{b}\lfloor t\rfloor f^{\prime}(t) \mathrm{d} t=\left.t f(t)\right|_{a} ^{b}-\int_{a}^{b} t f^{\prime}(t) \mathrm{d} t+\int_{a}^{b}\{t\} f^{\prime}(t) \mathrm{d} t
$$

Integrating by parts gives $\int_{a}^{b} t f^{\prime}(t) \mathrm{d} t=\left.t f(t)\right|_{a} ^{b}-\int_{a}^{b} f(t) \mathrm{d} t$. Thus,

$$
\sum_{a<n \leq b} f(n)=\int_{a}^{b} f(t) \mathrm{d} t+\int_{a}^{b}\{t\} f^{\prime}(t) \mathrm{d} t
$$

Since $B_{1}(t)=\{t\}-1 / 2$, we get $\int_{a}^{b}\{t\} f^{\prime}(t) \mathrm{d} t=\int_{a}^{b} B_{1}(t) f^{\prime}(t) \mathrm{d} t+\frac{f(b)-f(a)}{2}$, so that

$$
\sum_{a<n \leq b} f(n)=\int_{a}^{b} f(t) \mathrm{d} t+\frac{f(b)-f(a)}{2}+\int_{a}^{b} B_{1}(t) f^{\prime}(t) \mathrm{d} t
$$

which is the desired identity for $k=1$. We will proceed by induction, having done the base case $k=1$. Suppose that the identity holds for a general $k \geq 1$, so that

$$
\sum_{a<n \leq b} f(n)=\int_{a}^{b} f(t) \mathrm{d} t+\sum_{r=1}^{k} \frac{(-1)^{r} B_{r}}{r!}\left(f^{(r-1)}(b)-f^{(r-1)}(a)\right)+(-1)^{k+1} \int_{a}^{b} \frac{B_{k}(t) f^{(k)}(t)}{k!} \mathrm{d} t
$$

We have that $\int_{a}^{b} \frac{B_{k}(t) f^{(k)}(t)}{k!} \mathrm{d} t$ equals
$\int_{a}^{b} \frac{(k+1) B_{k}(t) f^{(k)}(t)}{(k+1)!} \mathrm{d} t=\int_{a}^{b} \frac{B_{k+1}^{\prime}(t) f^{(k)}(t)}{(k+1)!} \mathrm{d} t=\frac{\left.B_{k+1}(t) f^{(k)}(t)\right|_{a} ^{b}}{(k+1)!}-\int_{a}^{b} \frac{B_{k+1}(t) f^{(k+1)}(t)}{(k+1)!} \mathrm{d} t$
by integrating by parts. Using that $a, b \in \mathbf{Z}$, so that $B_{k+1}(a)=B_{k+1}(b)=B_{k+1}$, we obtain $\frac{\left.B_{k+1}(t) f^{(k)}(t)\right|_{a} ^{b}}{(k+1)!}=\frac{B_{k+1}\left(f^{(k)}(b)-f^{(k)}(a)\right)}{(k+1)!}$, so that
$\sum_{a<n \leq b} f(n)=\int_{a}^{b} f(t) \mathrm{d} t+\sum_{r=1}^{k+1} \frac{(-1)^{r} B_{r}}{r!}\left(f^{(r-1)}(b)-f^{(r-1)}(a)\right)+(-1)^{k+2} \int_{a}^{b} \frac{B_{k+1}(t) f^{(k+1)}(t)}{(k+1)!} \mathrm{d} t$
as desired.
(c) Note that, when $k=0$, we have

$$
\int_{0}^{1} B_{k}(x) e^{-2 \pi i m x} \mathrm{~d} x=\int_{0}^{1} e^{-2 \pi i m x} \mathrm{~d} x=1_{m=0}
$$

When $k=1$, we have that $\int_{0}^{1} B_{k}(x) e^{-2 \pi i m x} \mathrm{~d} x$ equals

$$
\int_{0}^{1} x e^{-2 \pi i m x} \mathrm{~d} x-\frac{1}{2} \int_{0}^{1} e^{-2 \pi i m x} \mathrm{~d} x=\left\{\begin{array}{ll}
\frac{1}{2} & m=0 \\
-\frac{1}{2 \pi i m} & m \neq 0
\end{array}-\frac{1}{2} 1_{m=0}=1_{m \neq 0} \frac{-1}{2 \pi i m}\right.
$$

by integrating by parts. This proves the desired identity in the $k=1$ case. Note that, when $m=0$ and $k \geq 1$, we have $\int_{0}^{1} B_{k}(x) e^{-2 \pi i m x} \mathrm{~d} x=\int_{0}^{1} B_{k}(x) \mathrm{d} x=0$, proving the desired identity in this case as well. We now proceed by induction, supposing that

$$
\int_{0}^{1} B_{k}(x) e^{-2 \pi i m x} \mathrm{~d} x=-1_{m \neq 0} \frac{k!}{(2 \pi i m)^{k}}
$$

for a general $k \geq 1$ and $m \neq 0$. Then, $-1_{m \neq 0} \frac{(k+1)!}{(2 \pi i m)^{k}}$ equals

$$
\int_{0}^{1}(k+1) B_{k}(x) e^{-2 \pi i m x} \mathrm{~d} x=\int_{0}^{1} B_{k+1}^{\prime}(x) e^{-2 \pi i m x} \mathrm{~d} x=2 \pi i m \int_{0}^{1} B_{k+1}(x) e^{-2 \pi i m x} \mathrm{~d} x
$$

by integrating by parts. Dividing through by $2 \pi i m$ yields

$$
\int_{0}^{1} B_{k+1}(x) e^{-2 \pi i m x} \mathrm{~d} x=-1_{m \neq 0} \frac{(k+1)!}{(2 \pi i m)^{k+1}}
$$

as desired.
Note that, when $k \geq 2$, the Fourier series $\sum_{m \neq 0} \frac{-k!}{(2 \pi i m)^{k}} 2^{2 \pi i m x}$ of $B_{k}(x)$ is absolutely convergent. Since each such B_{k} is continuous, it follows that the Fourier series converges to $B_{k}(x)$ pointwise, i.e., that

$$
B_{k}(x)=-\frac{k!}{(2 \pi i)^{k}} \sum_{m \neq 0} \frac{e^{2 \pi i m x}}{m^{k}}
$$

when $k \geq 2$.
(d) Let $k \geq 1$. Then, by the previous part, $B_{2 k+1}=B_{2 k+1}(0)=-\frac{(2 k+1)!}{(2 \pi i)^{2 k+1}} \sum_{m \neq 0} \frac{1}{m^{2 k+1}}$, which equals

$$
-\frac{(2 k+1)!}{(2 \pi i)^{2 k+1}}\left(\sum_{m=1}^{\infty} \frac{1}{m^{2 k+1}}+\sum_{m=1}^{\infty} \frac{1}{(-m)^{2 k+1}}\right)=-\frac{(2 k+1)!}{(2 \pi i)^{2 k+1}}\left(\sum_{m=1}^{\infty} \frac{1}{m^{2 k+1}}-\sum_{m=1}^{\infty} \frac{1}{m^{2 k+1}}\right)=0 .
$$

We also have that

$$
B_{2 k}=B_{2 k}(0)=-\frac{(2 k)!}{(2 \pi i)^{2 k}} \sum_{m \neq 0} \frac{1}{m^{2 k}}=\frac{(-1)^{k-1}(2 k)!}{(2 \pi)^{2 k}} 2 \sum_{m \geq 1} \frac{1}{m^{2 k}}=\frac{(-1)^{k-1}(2 k)!}{2^{2 k-1} \pi^{2 k}} \sum_{m \geq 1} \frac{1}{m^{2 k}}
$$

Rearranging yields

$$
\zeta(2 k)=(-1)^{k-1} \frac{2^{2 k-1} \pi^{2 k} B_{2 k}}{(2 k)!}
$$

(e) Let $n \geq 1$, so that $b_{n}^{(k)}(x)=n(n-1) \cdots(n+1-k) b_{n-k}(x)$ for all $k=1, \ldots, n$. Thus, $b_{n}^{(k)}(0)=n(n-1) \cdots(n+1-k) b_{n-k}(0)=n(n-1) \cdots(n+1-k) B_{n-k}$. It follows that the $k^{\text {th }}$ coefficient of $b_{n}(x)$ is $\binom{n}{k} B_{n-k}$, so that

$$
b_{n}(x)=B_{n}+\sum_{k=1}^{n}\binom{n}{k} B_{n-k} x^{k} .
$$

Integrating both sides over $[0,1]$ yields

$$
0=B_{n}+\sum_{k=1}^{n}\binom{n}{k} \frac{B_{n-k}}{k+1}=B_{n}+\frac{1}{n+1} \sum_{k=1}^{n}\binom{n+1}{k+1} B_{n-k}=B_{n}+\frac{1}{n+1} \sum_{k=2}^{n+1}\binom{n+1}{k} B_{n+1-k} .
$$

Rearranging gives $B_{n}=-(n+1)^{-1} \sum_{k=2}^{n+1}\binom{n+1}{k} B_{n+1-k}$, as desired. To compute $\zeta(2), \zeta(4), \zeta(6)$, and $\zeta(8)$, we now just need to compute B_{2}, B_{4}, B_{6}, and B_{8} using the fact that $B_{0}=1$, $B_{2 k+1}=0$ for all $k \geq 1$, and this recurrence. We have $B_{1}=-\frac{1}{2}$,

$$
\begin{gathered}
B_{2}=-\frac{1}{3}\left(\binom{3}{2} B_{1}+\binom{3}{3} B_{0}\right)=\frac{1}{6}, \\
B_{4}=-\frac{1}{5}\left(\binom{5}{3} B_{2}+\binom{5}{4} B_{1}+\binom{5}{5} B_{0}\right)=-\frac{1}{30},
\end{gathered}
$$

and

$$
B_{6}=-\frac{1}{7}\left(\binom{7}{3} B_{4}+\binom{7}{5} B_{2}+\binom{7}{6} B_{1}+\binom{7}{7} B_{0}\right)=\frac{1}{42} .
$$

Thus, $\zeta(2)=\frac{\pi^{2}}{6}, \zeta(4)=\frac{\pi^{4}}{90}, \zeta(6)=\frac{\pi^{6}}{945}$, and $\zeta(8)=\frac{\pi^{8}}{9450}$.
3. (a) By Euler-Maclaurin summation, we have
$\sum_{n=2}^{N} \frac{1}{n^{s}}=\int_{1}^{N} t^{-s} \mathrm{~d} s-\sum_{r=1}^{k+1} \frac{B_{r}}{r}\binom{s+r-2}{r-1}\left(N^{-s+1-r}-1\right)-\int_{1}^{N} B_{k+1}(t)\binom{s+k}{k+1} t^{-s-k-1} \mathrm{~d} t$
for all $N \in \mathbf{N}$, since $\frac{\mathrm{d}^{r}}{\mathrm{~d} t^{r}}{ }^{-s}=(-1)^{r} s(s+1) \cdots(s+r-1) t^{-s-r}=(-1)^{r} r!\binom{s+r-1}{s-1} t^{-s-r}=$ $(-1)^{r} r!\binom{s+r-1}{r} t^{-s-r}$ for all $r \in \mathbf{N}$. Letting $s>1$, shifting the index on the sum on the right-hand side, and taking $N \rightarrow \infty$ then yields

$$
\begin{aligned}
\zeta(s) & =1+\int_{1}^{\infty} t^{-s} \mathrm{~d} s+\sum_{0 \leq r \leq k} \frac{B_{r+1}}{r+1}\binom{s+r-1}{r}-\binom{s+k}{k+1} \int_{1}^{\infty} B_{k+1}(t) t^{-s-k-1} \mathrm{~d} t \\
& =\frac{s}{s-1}+\sum_{0 \leq r \leq k} \frac{B_{r+1}}{r+1}\binom{s+r-1}{r}-\binom{s+k}{k+1} \int_{1}^{\infty} B_{k+1}(t) t^{-s-k-1} \mathrm{~d} t,
\end{aligned}
$$

since $\int_{1}^{\infty} t^{-s} \mathrm{~d} s=\frac{1}{s-1}$.
(b) Note that $\sum_{0 \leq r \leq k} \frac{B_{r+1}}{r+1}\binom{s+r-1}{r}$, being a polynomial in s for every integer $k \geq 0$, is entire, as is $\binom{s+k}{k+1}$. The integral $\int_{1}^{\infty} B_{k+1}(t) t^{-s-k-1} \mathrm{~d} t$ converges absolutely whenever $\sigma>-k$, and thus defines an analytic function in this half-plane. It follows that, for every integer $k \geq 0$,

$$
\frac{s}{s-1}+\sum_{0 \leq r \leq k} \frac{B_{r+1}}{r+1}\binom{s+r-1}{r}-\binom{s+k}{k+1} \int_{1}^{\infty} B_{k+1}(t) t^{-s-k-1} \mathrm{~d} t
$$

is a meromorphic function on the half-plane $\sigma>-k$ that is analytic except for a simple pole at $s=1$ with residue 1 . Since the above equals $\zeta(s)$ for $s \in(1, \infty)$, by the principle of analytic continuation, we can meromorphically continue $\zeta(s)$ to the whole complex plane with its only singularity being a simple pole at $s=1$ with residue 1 .
4. (a) Note that τ^{*} is multiplicative and thus, by looking at the values of τ^{*} on prime powers, that

$$
F(s):=\mathcal{D} \tau^{*}(s)=\frac{1}{1-2^{-s}} \prod_{p>2}\left(\frac{1}{1-p^{-s}}\right)^{2}=\frac{\left(1-2^{-s}\right)^{2}}{1-2^{-s}} \zeta(s)^{2}=\left(1-2^{-s}\right) \zeta(s)^{2}
$$

for $\sigma>1$. Let $\delta>0$ and $S \geq 1$ be parameters to be chosen later, and assume that $x>0$ satisfies $x-\frac{1}{2} \in \mathbf{Z}$. We apply Perron's formula with $c=1+\frac{1}{\log x}$ to obtain

$$
\begin{aligned}
T(x) & =\frac{1}{2 \pi i} \int_{c-i S}^{c+i S} F(s) x^{s} \frac{\mathrm{~d} s}{s}+O\left(\frac{x^{1+c}}{S} \sum_{x / 2<n \leq 2 x} \frac{1}{n^{c}|x-n|}+\frac{x^{c}}{S} \sum_{n=1}^{\infty} \frac{1}{n^{c}}\right) \\
& =\frac{1}{2 \pi i} \int_{c-i S}^{c+i S} F(s) x^{s} \frac{\mathrm{~d} s}{s}+O\left(\frac{x \log x}{S}\right) .
\end{aligned}
$$

Let $R_{\delta, S}$ denote the rectangular contour with vertices at $c \pm i S, \delta \pm i S$ traversed counterclockwise. Inside of this contour, $\frac{F(s) x^{s}}{s}$ has a pole of order 2 at $s=1$ with residue $\frac{x}{2} \log 2 x+\frac{x}{2}(2 \gamma-1)$, where we have used the first problem and the power series expansions $\frac{1}{s}=\sum_{j=0}^{\infty}(-1)^{j}(s-1)^{j}, x^{s}=x \sum_{j=0}^{\infty} \frac{(\log x)^{j}}{j!}(s-1)^{j}$, and $\left(1-2^{-s}\right)=\frac{1}{2}+2 \log 2(s-1)+\ldots$ to help compute the residue. Thus,
$\frac{1}{2 \pi i} \int_{c-i S}^{c+i S} F(s) x^{s} \frac{\mathrm{~d} s}{s}=\frac{x}{2}(\log 2 x+2 \gamma-1)-\frac{1}{2 \pi i}\left(\int_{\delta-i S}^{\delta+i S}+\int_{\delta-i S}^{c-i S}-\int_{\delta+i S}^{c+i S}\right) F(s) x^{s} \frac{\mathrm{~d} s}{s}$.
Using that $\zeta(s)<_{\varepsilon}(1+|t|)^{(1-\sigma+\varepsilon / 2) / 2}$ whenever $|s-1| \gg 1$ and $\sigma \in[0,1+c]$, that $|\delta+i t| \asymp_{\delta} 1+|t|$, and that $\left|1-2^{-\delta-i t}\right| \leq 1+2^{-\delta} \ll 1$ for all real t, we can bound

$$
\int_{\delta-i S}^{\delta+i S} F(s) x^{s} \frac{\mathrm{~d} s}{s}<_{\varepsilon, \delta} x^{\delta} \int_{-S}^{S}(1+|t|)^{-\delta+\varepsilon / 2} \mathrm{~d} t \ll x^{\delta} S^{1-\delta+\varepsilon / 2}
$$

and, assuming $x>S$,

$$
\int_{\delta \pm i S}^{c \pm i S} F(s) x^{s} \frac{\mathrm{~d} s}{s}<_{\varepsilon, \delta} S^{\varepsilon / 2} \int_{\delta}^{c} S^{-\sigma} x^{\sigma} \mathrm{d} \sigma \ll \frac{S^{\varepsilon / 2}}{\log (x / S)}\left(\frac{x}{S}\right)^{c} .
$$

Thus,

$$
\left|T(x)-\frac{x}{2}(\log 2 x+2 \gamma-1)\right|<_{\varepsilon, \delta} \frac{x \log x}{S}+x^{\delta} S^{1-\delta+\varepsilon / 2}+\frac{S^{\varepsilon / 2}}{\log (x / S)}\left(\frac{x}{S}\right)^{c}
$$

Choosing $S=\sqrt{x}$ bounds the above by $<_{\varepsilon, \delta} x^{1 / 2+\varepsilon / 2}+x^{1 / 2+\delta / 2+\varepsilon / 2}+x^{1 / 2+\varepsilon / 4}$. Taking $\delta=\varepsilon$ yields the desired asymptotic.
(b) By $\mathcal{D} \tau^{*}(s)=\left(1-2^{-s}\right) \zeta(s)^{2}$, we have

$$
\sum_{n=1}^{\infty} \frac{\tau^{*}(n)}{n^{s}}=\sum_{n=1}^{\infty} \frac{\tau(n)}{n^{s}}-\sum_{n=1}^{\infty} \frac{\tau(n)}{(2 n)^{s}}=\sum_{n=1}^{\infty} \frac{\tau(n)}{n^{s}}-\sum_{\substack{n \in \mathbf{N} \\ n \text { even }}} \frac{\tau(n / 2)}{n^{s}}
$$

for $\sigma>1$. Thus,

$$
\tau^{*}(n)= \begin{cases}\tau(n) & n \text { odd } \\ \tau(n)-\tau(n / 2) & n \text { even }\end{cases}
$$

for all $n \in \mathbf{N}$. It follows that $T^{*}(x)=T(x)-\sum_{\substack{n \leq x \\ n \text { even }}} \tau(n / 2)=T(x)-\sum_{n \leq x / 2} \tau(n)=$ $T(x)-T(x / 2)$. Using the asymptotic for $T(x)$ from class, we conclude that $T^{*}(x)$ equals $x \log x+(2 \gamma-1) x-\frac{x}{2} \log (x / 2)-(2 \gamma-1) \frac{x}{2}+O(\sqrt{x})=\frac{x}{2}(\log 2 x+(2 \gamma-1))+O(\sqrt{x})$.
5. Both of the desired asymptotics can be proven using either elementary methods or Perron's formula. We will use Perron's formula in our solutions.
(a) Let $f: \mathbf{N} \rightarrow\{0,1\}$ denote the indicator function of the cube-frees. Then f is multiplicative, and

$$
\mathcal{D} f(s)=\prod_{p}\left(1+p^{-s}+p^{-2 s}\right)=\prod_{p} \frac{1-p^{-3 s}}{1-p^{-s}}=\frac{\zeta(s)}{\zeta(3 s)}
$$

for $\sigma>1$. Let $\delta>0$ and $T \geq 1$ be a parameter to be chosen later, and assume that $x>0$ satisfies $x \in \frac{1}{2}+\mathbf{Z}$. We apply Perron's formula with $c=1+\frac{1}{\log x}$ to obtain that the number of cube-free integers below x equals

$$
\frac{1}{2 \pi i} \int_{c-i T}^{c+i T} \frac{\zeta(s)}{\zeta(3 s)} x^{s} \frac{\mathrm{~d} s}{s}+O\left(\frac{x \log x}{T}\right) .
$$

Let R_{T} denote the rectangular contour with vertices at $c \pm i T, \frac{1}{2} \pm i T$ traversed counterclockwise. Inside of this contour, $\frac{\zeta(s) x^{s}}{\zeta(3 s) s}$ has a simple pole at $s=1$ with residue $\frac{x}{\zeta(3)}$. Thus,

$$
\frac{1}{2 \pi i} \int_{c-i T}^{c+i T} \frac{\zeta(s)}{\zeta(3 s)} x^{s} \frac{\mathrm{~d} s}{s}=\frac{x}{\zeta(3)}-\frac{1}{2 \pi i}\left(\int_{1 / 2-i T}^{1 / 2+i T}+\int_{1 / 2-i T}^{c-i T}+\int_{1 / 2+i T}^{c+i T}\right) \frac{\zeta(s)}{\zeta(3 s)} x^{s} \frac{\mathrm{~d} s}{s} .
$$

Note that, whenever $s \geq \frac{1}{2}$, we have

$$
\frac{1}{\zeta(3 s)}=\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{3 s}} \ll \sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}} \ll 1
$$

Using this esimate, along with that $\zeta(s)<_{\delta}(1+|t|)^{(1-\sigma+\delta) / 2}$ whenever $|s-1| \gg 1$ and $\sigma \in[0,1+\delta]$ and that $|\sigma+i t| \asymp 1+|t|$ for $\sigma \in[1 / 2,1+\delta]$, we can bound

$$
\int_{1 / 2-i T}^{1 / 2+i T} \frac{\zeta(s)}{\zeta(3 s)} x^{s} \frac{\mathrm{~d} s}{s} \ll \delta \sqrt{x} \int_{-T}^{T}(1+|t|)^{(1 / 2+\delta) / 2-1} \mathrm{~d} t \ll \sqrt{x} T^{1 / 4+\delta / 2} .
$$

and

$$
\int_{1 / 2 \pm i T}^{c \pm i T} \frac{\zeta(s)}{\zeta(3 s)} x^{s} \frac{\mathrm{~d} s}{s} \ll_{\delta} T^{(\delta-1) / 2} \int_{1 / 2}^{c} T^{-\sigma / 2} x^{\sigma} \mathrm{d} \sigma \ll_{\delta} T^{(\delta-1) / 2-1 / 4} x .
$$

Thus, picking $\delta=1 / 8$, we have that the number of cube-free integers below x equals

$$
\frac{x}{\zeta(3)}+O\left(\frac{x \log x}{T}+x^{1 / 2} T^{5 / 16}+x T^{-11 / 16}\right) .
$$

Choosing $T=\sqrt{x}$ yields that the number of cube-free integers below x equals

$$
\frac{x}{\zeta(3)}+O\left(x^{21 / 32}\right)
$$

whenever $x \in \frac{1}{2}+\mathbf{Z}$ is positive. This estimate can be extended to all $x>0$ by noting that $\left|\frac{\lfloor x\rfloor+1 / 2}{\zeta(3)}-\frac{\lfloor x\rfloor-1 / 2}{\zeta(3)}\right| \ll 1$, which can be absorbed into the error term $O\left(x^{21 / 32}\right)$. We conclude that the number of cube-frees below $x>0$ is $\sim \frac{x}{\zeta(3)}$.
(b) First, observe that $n \in \mathbf{N}$ is cube-full if and only if $n=a^{3} b^{4} c^{5}$ for some $a, b, c \in \mathbf{N}$, and that this representation is unique when $b c$ is squarefree. Indeed, if $n=p_{1}^{m_{1}} \cdots p_{k}^{m_{k}}$ is the prime factorization of n, then we have

$$
b=\prod_{i=1}^{k} p_{i}^{1_{3 \mid\left(m_{i}-1\right)}} \quad \text { and } \quad c=\prod_{i=1}^{k} p_{i}^{1_{3 \mid\left(m_{i}-2\right)}}
$$

which determines a as well. Thus,

$$
\mathcal{D} f(s)=\sum_{a, b, c \in \mathbf{N}} \frac{\mu(b c)^{2}}{\left(a^{3} b^{4} c^{5}\right)^{s}}=\zeta(3 s) F(s),
$$

where $F(s):=\sum_{b, c \in \mathbf{N}} \frac{\mu(b c)^{2}}{\left(b^{4} c^{5}\right)^{s}}$, when $\sigma>1$. Observe that $F(s)$ converges absolutely for $\sigma>\frac{1}{4}$, and thus in analytic in this half-plane, and, further, satisfies $F(s) \ll 1$ when $\sigma \geq \frac{5}{18}$, say. We, thus, have $\mathcal{D} f(s)=\zeta(3 s) F(s)$ for all $s \in \mathbf{C}$ by the principle of analytic continuation. Let $\delta>0$ and $T \geq 1$ be parameters to be chosen later, and assume that $x>0$ satisfies $x \in \frac{1}{2}+\mathbf{Z}$. We apply Perron's formula with $c=\frac{1}{3}+\frac{1}{\log x}$ to obtain that the number of cube-full integers below x equals

$$
\frac{1}{2 \pi i} \int_{c-i T}^{c+i T} \zeta(s) F(s) x^{s} \frac{\mathrm{~d} s}{s}+O\left(\frac{x^{1 / 3} \log x}{T}\right) .
$$

Let R_{T} denote the rectangular contour with vertices at $c \pm i T$ and $\frac{5}{18} \pm i T$ traversed counterclockwise. Inside of this contour, $\frac{\zeta(3 s) F(s) x^{s}}{s}$ has a simple pole at $s=\frac{1}{3}$ with residue $3 F(1 / 3) x^{1 / 3}$. Thus,

$$
\frac{1}{2 \pi i} \int_{c-i T}^{c+i T} \zeta(3 s) F(s) x^{s} \frac{\mathrm{~d} s}{s}=3 F(1 / 3) x^{1 / 3}-\frac{1}{2 \pi i}\left(\int_{5 / 18-i T}^{5 / 18+i T}+\int_{5 / 18-i T}^{c-i T}+\int_{5 / 18+i T}^{c+i T}\right) \zeta(3 s) F(s) x^{s} \frac{\mathrm{~d} s}{s} .
$$

Using, yet again, that $\zeta(s)<_{\delta}(1+|t|)^{(1-\sigma+\delta) / 2}$ whenever $|s-1| \gg 1$ and $\sigma \in[0,1+\delta]$, and that $|\sigma+i t| \asymp 1+|t|$ for $\sigma \in[5 / 18,1]$, we can bound

$$
\int_{5 / 18-i T}^{5 / 18+i T} \zeta(3 s) F(s) x^{s} \frac{\mathrm{~d} s}{s}<_{\delta} x^{5 / 18} \int_{-T}^{T}(1+|3 t|)^{(1 / 6+\delta) / 2-1} \mathrm{~d} t<_{\delta} x^{5 / 18} T^{(1 / 6+\delta) / 2}
$$

and

$$
\int_{5 / 18 \pm i T}^{c \pm i T} \zeta(3 s) F(s) x^{s} \frac{\mathrm{~d} s}{s} \ll_{\delta} T^{(\delta-1) / 2} \int_{5 / 18}^{c} T^{-3 \sigma / 2} x^{\sigma} \mathrm{d} \sigma<_{\delta} T^{(\delta-1) / 2-5 / 12} x^{1 / 3} .
$$

Thus, picking $\delta=1 / 6$, we have that the number of cube-full integers below x equals

$$
3 F(1 / 3) x^{1 / 3}+O\left(\frac{x^{1 / 3} \log x}{T}+x^{5 / 18} T^{1 / 6}+T^{-5 / 6} x^{1 / 3}\right)
$$

Choosing $T=x^{1 / 18}$ yields that the number of cube-full integers below x equals

$$
3 F(1 / 3) x^{1 / 3}+O\left(x^{31 / 108}\right)
$$

whenever $x \in \frac{1}{2}+\mathbf{Z}$. This estimate can be extended to all $x>0$ by noting that $3 F(1 / 3)(\lfloor x\rfloor+1 / 2)^{1 / 3}-3 F(1 / 3)(\lfloor x\rfloor-1 / 2)^{1 / 3} \ll 1$, which can be absorbed into the error term. We therefore conclude that the number of cube-fulls below $x>0$ is \sim $3\left(\sum_{b, c \in \mathbf{N}} \frac{\mu(b c)^{2}}{b^{4 / 3} c^{5 / 3}}\right) x^{1 / 3}$.

