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Math 675: Analytic Theory of Numbers
Solutions to problem set # 2

February 12, 2024

Note that

#{(n,m):n,m <z and ged(n,m) =1} = Z d(ged(n,m)) Z Z p(d)

n,m<x n,m<z d|ged(n,m)

by Mébius inversion. Since d | ged(n,m) <= d | n and d | m, this equals

dopd) D> 1= pu(d) (§+0(1))2:x2 'uc(i;i)—l—O(xlog:r).

d<z nm<g d<z d<z

To finish, note that Zd<x d2 =0 “5;1 +0 (X gow 72) = 757 + O (2). Thus, since
¢(2) = % we conclude that

#{(n,m) :n,m <z and ged(n,m) =1} = %xz + O(zlog x).
T
Observe that n +— u(n)? is the indicator function of the squarefrees, and that
o) 1
p(n)? 1 - ¢(s)
= 1 —_— = =
S I (o) <TI0 ) =

p p®

whenever o > 1. Since C(l =3, (’;(T”))S, it follows that u(n)? = 1% f, where

2s)

fn) = {,u(m) n =m? for some m € N.

0 otherwise

Thus, #{n < z : n is squarefree} equals

S =Y s Y 1= 5w (L row) = ¥ M o

ab<x <z aly b<z c<Vz

since f is bounded and supported on the squares. Analogously to the previous part, we
have that ) e ﬁg) + O (z71/%). We conclude that

<Vz 2

#{n < z :n is squarefree} = %a: + O0(Vx).
7r



(c) Observe that n + Y 25—, 11(b)? equals the indicator function of the squarefulls, since
n is squarefull if and only if n = a?b® for some a,b € N2, and each squarefull n has a
unique factorization as n = a?b® with b squarefree. Thus, with f as in the previous part,
we have that #{n < x : n is squarefull} equals

>oou®?=> > fle= > D> )= pe Y L

a2b3<x a?b3<z clb a2b3<z c2|b c<zxl/6 a2b3§c%

We will now estimate Za253<y 1 for a general y > 0 using the hyperbola method:

door=> Y1+ > >oi- Y L

a?b3<y a<yl/5 <ty b<yl/®a?< a,b<yl/5

The first sum on the right-hand side is

Z Z Z [( )1/3 ()] = 3575 + ¢(2/3)y"% + O(y/?),

a§y1/5 bdg% a<y1/5
where we have used partial summation to obtain ), a=2/3 =313 9 +% floo t{s%dtwL
O(z *2/3) the fact that ¢(s) fl tii}l dt whenever o > 0 to obtain that —2 +

2 fl t{st/}g dt = ¢(2/3). The second sum is

. 2 1= [(bya)mw(l)] = C(3/2w"” — 27 + 0'"?)

b<yl/5a?< % b<yl/s
where we have used partial summation to obtain that Zb< L b 3/2 = -3 fl tgt/]; dt —
22712 ¢ O( —3/2) and the fact that ((s) = =+ — s I t£+}1 dt whenever o > 0 to obtain
that 3— 2 [| tgt/é dt = ¢(3/2). Finally, the thlrd sum is (y/° +0(1))% = y*/° + O(y/?),

so that we have that }_ 25, 1 equals

3y2/5+¢(2/3)y 3 +¢(3/2)yM 2 2y — 25+ O(y' /%) = ((3/2)yM 2 +¢(2/3)y 3 +O(y'/?)

Plugging this back into our estimate for the number of squarefulls below x yields
rN1/2 rA\1/3 rA\1/5

PIgIe (e (5)" +eem (5) " +o((5)7)).

which equals

¢(3/2)x 1/2 Z M +¢(2/3)x 1/3 Z N 1/5):Cé?zé)2)x1/2+C22(é)) 1/3+O( 1/5)

c<gl/6 c<gl/6

where we have used that . i/ % = ﬁ + O(z~/3) and D e<al/o % = ﬁ +
O(x~1/6). We conclude that

C(3/2)x1/2 n <(2/3>x1/3+0(x1/5).

#{n <z :n is squarefull} = ) {2



2.

(a) i

il.

ii.

iii.

First, suppose that n = py---py is squarefree. Then —pu(n)logn = —(—1)¥logn,
while on the other hand, since y*1 = ¢§ and A is supported on prime powers,

k
(ux (A =1)+6)(n) = (nx A)(n) = > _(=1)*"logp; = —(—1)" log n.
i=1
If n is not squarefree, then —p(n)logn = 0, and we split up into two subcases: 1)
n = p*m where a > 2, m is squarefree, and p { m or 2) n is divisible by the square
of two distinct primes p; and pe. In the first subcase, we have (u*x(A—1)49)(n) =
(nx A)(n) = ppm)A(P*") + p(m)A(p®) = —p(m)logp + u(m)logp = 0. In the
second subcase, we have that (ux (A —1)+9)(n) = (u*A)(n) =0 since if ml =n
with m squarefree, then pips | £, which would force A(¢) = 0, and thus all terms of
the sum ., p(d)A(n/d) must be zero.

First, by the previous subpart, we have that —>_ _ u(n)logn equals

> @A)+ =Y (0 (¢ (5) = |2 )+1= 2 w@ (v (5) - 2 )+0@).
ab<z a<z a<z

Since we are assuming the prime number theorem, we have that ¢(z/a) = (1 +
o(1))z/a. Thus,

Z,u(a) <1/1 (2) - g) =0(z)+o xZé = o(zlogx).

a<lx alx

It follows that m(z) := }_, ., u(n)logn = o(xlog z). We will use partial summation,
writing p(n) as p(n)log n@, to conclude:

m(x T om(t
Z,u(n) - lo;a,? +/2 t(loét))th =o(@).

n<x

i. Recall that we showed 1+ A = log in class, which implies, by M&bius inversion, that

@ *log = A. Thus, we have
prxf—2v0=puxlog—pu*17+270 -2 =A—pux1x1=A-1,

since T =1%1, ux1 =0, and § x g = g for any arithmetic function g.
Recalling from class that }° _ logn = zlogz — z + O(logz) and >, ., 7(n) =
zlogz + (2y — 1) + O(y/x), we have

Zf(n) =zlogz —x —zlogw — (2y — 1)z + 2v|z| + O(v/7) < V.
Note thaju
Y(a)—z =Y (A=1)n)+0(1)=> (uxf)(n)+0(1).

In addition to the estimate from the previous subpart, we will also need a bound on

Y n<e —lf(nn”. By the triangle inequality, ), ., L:N < n<a loin—l—znggg @—1—0(1),
and by partial summation,

logn |z]logz T t](logt —1) T logt
Z - + 2 dt = 5
n i 1 t 1 t

dt + O(log z) < (log z)?

n<z



3.

and

tlogt
ZT(nn)<<loga:+/ og dt < (logz)?.
1

n<x

Thus, >, -, |f(nn)‘ < (logz)2. Now, we will use the hyperbola method to estimate

Yon<a(tx f)(n) = X p<p (@) f(b). Let yz = x be parameters to be chosen later.
Then we have

Yo ula) )= nla) Y fO)+YF0) D pla) =Y pla)f(b)

ab<zx a<y b<z/a b<z a<z/b a<y
<

For the first sum, we have

S 3 10 <X\ [E < v

a<y b<z/a asly

For the second sum, since we can assume that there exists a g : [0,00) — [0, 00)

n<w

such that g(w) — 0 as w — oo for which ’Z w(w )‘ < wg(w), we have

SoF0) Y w@)| < 1FO)g () T < allog)? sup glw).

b<z a<z/b b<z welx/z,x]

For the third sum, we have

> ula)f(b) < Vzyg(y)-

a<ly
b<z

Putting everything together, we have

D (pxfn) < ay+a(logz)® sup  g(w) +vzyg(y),

n<w weE[z/z,]
and just need to pick y and z suitably. Let ¢ € (0,1), and set y = €2z. Then
2z = ¢~ 2, and our bound becomes

Z(,u *x f)(n) < ex + z(loge)? sup g(w) + exg(x).

n<x wele?z, )

Since g(w) — 0 as w — oo, there exists a K > 0 such that |g(w)| < Tozo)? whenever

(logs
w > K. Thus, for all z > 552, we must have > _ (u* f)(n) < ex for all € > 0.
That is, >, <, (ux f)(n) = o(x). It follows that ¢(z) — 2z = o(z), which is equivalent
to the statement that ¢(z) ~ x.

(a) By the structure theorem for finitely generated abelian groups, a(n) is multiplicative and
a(q?) = p(b) for all prime powers ¢*, where p(b) denotes the number of partitions of b (i.e.,
tuples (A1,...,A\x) of positive integers such that A\; > --- > A\ and A\ +--- 4+ A\ = b).
Observe that

o.) o0 1
> rm =11
n=0 j=1



whenever |z| < 1. Indeed, the product on the right-hand side converges absolutely
by the test stated in class since |(1—29)"t —1| = [29][(1 — 27)7!| <, |z|/ whenever
|z| < r < 1, and the partial sums on the left-hand side above satisfy 25:1 p(n)|z|™ <
Hj-vzl(l —|zP)7t < [12,(1 - 2]7)~1 and so also Yo% | p(n)z" also converges absolutely

since the sequence Zf:[:l p(n)|z|™ of partial sums is increasing and bounded. It follows

that 322, qjs =[[2,(1 - q7%)! whenever o > 1. Now, it follows that
oo oo
a(n) 1
SECAN § 0y
n=1 q \j=1

whenever ¢ > 1. Indeed, the product on the right-hand side converges absolutely because
its reciprocal converges absolutely, since Zq Z;; < Zq q % <, 1, and the left-

hand side converges absolutely because the partial sums 25:1 a(n)n~% are increasing

and bounded (by [] ‘ H;’il (1—¢~79)~1). Finally, absolutely convergent infinite products
are invariant under rearrangement, so we conclude that

y A [T - - II<u9

n=1 7=1 ¢q

-4

whenever o > 1.

Let b: N — R denote the arithmetic function defined by

> T ets)
j=3

n=1

for ¢ > 1. It follows from the previous part that the left-hand and right-hand sides
above are an absolutely convergent Dirichlet series and infinite product, respectively,
and also that a = 1x1g*c¢, where 1 denotes the indicator function of the squares. Also
observe that c is supported on the cubefulls, and since Zq Z(;ig < Zq <, 1
whenever o > %, the Dirichlet series Dc(s) is absolutely convergent when o > % By the
hyperbola method,

Soi= > S 1+ Y S > 1=¢@u+ /25 + 0w,

km2<y k<yl/3 mg\/% m<yl/3 kg# k,m<yl/3

since Yeyis Ly /71 = Lheyts (\/%Jr 0(1)) — 2234 ¢(1/2)y1 2+ O(y1/?), where
we have used partial summation to obtain >, . k=12 = 22124 ¢(1/2) + O(271/?), and
> m<yl/3 Zkg% L=, <yus (Zz+0()) = ¢(2)y — y?/3 + O(y'/3), where we have
used partial summation to obtain ) 1 =¢2) -3 L= 21+ 0. It

m>z m2 m<z m2

follows that -, a(n) =3}, 2<, c(f) equals

Sett) (cof +cam¥VEro((5)")) mwer X o (Ve T 47

<z <z <z



Bounding .., ¢ < 27230,
yields

¢ _ ¢ ¢
;1(7/2 < 2712 and Zegx ;1(/% < g1/6 Zegx (?1(7/2 < zl/6

> aln) = a((2)De(1) + O(V) = 2 [ [ ¢(k) + O(Vx),
k=2

n<x

as desired.

Since an absolutely convergent series is also convergent, it follows immediately from the
definitions that o. < 04. If F(s) converges, then |f(n)| = o(n?). So, for all € > 0, we
have |f(n)| <. n*/2, and thus nl,{(ﬁ)ls <e nHlE/Q. It follows that F(o. + 1+ ¢) is
absolutely convergent. Since € > 0 was arbitrary, this implies that o, < o, + 1.

First, suppose that o, < 4+00. Then F(o.+1) certainly converges, and so | f(n)| < no*L.
Now suppose that there exists a # € R such that |f(n)| < n’. Then Jﬁg% < n32,
so F(0 + 3/2) converges absolutely, and thus certainly converges. It follows that o, <
0 +3/2 < +oo.

An example where o, = o, is ((s), since ((s) is absolutely convegent when o > 1, but
the harmonic series Y 7, % diverges (and if 0. < 1, then the theorem we proved in class
would force Y°° | 1 to converge). An example where 0, = 0.+ 11is F(s) = > o0, (—7115)"’

since o, = 1 in this case by the same reasoning as for {(s) and o, = 0 in this case since

F(o)=>>" Gl converges for all ¢ > 0 by the alternating series test.

n=1 no

Let t € R. By partial summation, we have
N

) LT () NP L ()
2 (log2n)? — (log2N)? +2/1 y(long)sdy

n=1

for all N € N, where f(y) = Engy(—l)”n_”. Observe that f(y) equals

. . . 1
> ((2n) = (2n+ 1)) 4+0(1) < 1+ ) ‘1 — e MoaHL2M | 143 ~ < log2y.

y y y
n<3 n<3 n<3

where we have used that |e®* — 1| < |u| for all v € R, which follows from considering
the power series for e, and that log(1 + §) < for all § > 0. It follows that

N

(=1)"n~" /oo f(y) 1
-~ =2 ——= d
nz_:l (log 2n)? 1 y(log2y)3 y+ 0O log2N )’
since the integral floo %dy is absolutely convergent and f ](\),O %dy <4 m

by the estimate | f(y)| < log2y. Thus, F(it) converges.

It follows from the previous part that F'(s) is absolutely convergent whenever o > 1,

and thus H(s) = F(s)2 when o > 1 and h := f x f, where f(n) = %. Consider the

sequence of integers a, := (3-5-7-11-13)". We will show that h(a,) — oo as n — oo,
from which it follows that H(it) diverges for all + € R since then |h(ay)a, | = h(ay)

would be unbounded. Since all divisors of a,, are odd, we have

1 S T(an)

o) = 2 Togzaogn/dP > Tog2a)*



Note also that 7(a,) = (n + 1)% and, since a,, = 15015", n = 102’%;515. Thus, 7(a,) >
( log an

= 8sn=)?. It follows that h(an) > % and hence, since a, — 0o as n — oo and
(log z)°

Tog )T —* 00 a8 & — 00, that h(a,) — 0o as n — oo.




