
Math 675: Analytic Theory of Numbers

Solutions to problem set # 2

February 12, 2024

1. (a) Note that

#{(n,m) : n,m ≤ x and gcd(n,m) = 1} =
∑
n,m≤x

δ(gcd(n,m)) =
∑
n,m≤x

∑
d|gcd(n,m)

µ(d)

by Möbius inversion. Since d | gcd(n,m) ⇐⇒ d | n and d | m, this equals∑
d≤x

µ(d)
∑

n,m≤x
d

1 =
∑
d≤x

µ(d)
(x
d

+O(1)
)2

= x2
∑
d≤x

µ(d)

d2
+O(x log x).

To finish, note that
∑

d≤x
µ(d)
d2

=
∑∞

d=1
µ(d)
d2

+O
(∑

d>x
1
d2

)
= 1

ζ(2) +O
(
1
x

)
. Thus, since

ζ(2) = π2

6 , we conclude that

#{(n,m) : n,m ≤ x and gcd(n,m) = 1} =
6

π2
x2 +O(x log x).

(b) Observe that n 7→ µ(n)2 is the indicator function of the squarefrees, and that

∞∑
n=1

µ(n)2

ns
=
∏
p

(
1 +

1

ps

)
=
∏
p

(
1− 1

p2s

1− 1
ps

)
=

ζ(s)

ζ(2s)

whenever σ > 1. Since 1
ζ(2s) =

∑∞
n=1

µ(n)
(n2)s

, it follows that µ(n)2 = 1 ? f , where

f(n) =

{
µ(m) n = m2 for some m ∈ N

0 otherwise
.

Thus, #{n ≤ x : n is squarefree} equals∑
ab≤x

f(b) =
∑
b≤x

f(b)
∑
a≤x

b

1 =
∑
b≤x

f(b)
(x
b

+O(1)
)

= x
∑
c≤
√
x

µ(c)

c2
+O(

√
x)

since f is bounded and supported on the squares. Analogously to the previous part, we
have that

∑
c≤
√
x
µ(c)
c2

= 1
ζ(2) +O

(
x−1/2

)
. We conclude that

#{n ≤ x : n is squarefree} =
6

π2
x+O(

√
x).
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(c) Observe that n 7→
∑

a2b3=n µ(b)2 equals the indicator function of the squarefulls, since
n is squarefull if and only if n = a2b3 for some a, b ∈ N2, and each squarefull n has a
unique factorization as n = a2b3 with b squarefree. Thus, with f as in the previous part,
we have that #{n ≤ x : n is squarefull} equals∑

a2b3≤x

µ(b)2 =
∑

a2b3≤x

∑
c|b

f(c) =
∑

a2b3≤x

∑
c2|b

µ(c) =
∑
c≤x1/6

µ(c)
∑

a2b3≤ x
c6

1.

We will now estimate
∑

a2b3≤y 1 for a general y > 0 using the hyperbola method:∑
a2b3≤y

1 =
∑

a≤y1/5

∑
b3≤ y

a2

1 +
∑
b≤y1/5

∑
a2≤ y

b3

1−
∑

a,b≤y1/5
1.

The first sum on the right-hand side is∑
a≤y1/5

∑
b3≤ y

a2

1 =
∑

a≤y1/5

[( y
a2

)1/3
+O(1)

]
= 3y2/5 + ζ(2/3)y1/3 +O(y1/5),

where we have used partial summation to obtain
∑

a≤z a
−2/3 = 3z1/3−2+ 2

3

∫∞
1
{t}
t5/3

dt+

O(z−2/3) the fact that ζ(s) = s
s−1 − s

∫∞
1
{t}
ts+1 dt whenever σ > 0 to obtain that −2 +

2
3

∫∞
1
{t}
t5/3

dt = ζ(2/3). The second sum is

∑
b≤y1/5

∑
a2≤ y

b3

1 =
∑
b≤y1/5

[( y
b3

)1/2
+O(1)

]
= ζ(3/2)y1/2 − 2y2/5 +O(y1/5)

where we have used partial summation to obtain that
∑

b≤z b
−3/2 = 3 − 3

2

∫∞
1
{t}
t5/2

dt −
2z−1/2 +O(z−3/2) and the fact that ζ(s) = s

s−1 − s
∫∞
1
{t}
ts+1 dt whenever σ > 0 to obtain

that 3− 3
2

∫∞
1
{t}
t5/2

dt = ζ(3/2). Finally, the third sum is (y1/5 +O(1))2 = y2/5 +O(y1/5),
so that we have that

∑
a2b3≤y 1 equals

3y2/5+ζ(2/3)y1/3+ζ(3/2)y1/2−2y2/5−y2/5+O(y1/5) = ζ(3/2)y1/2+ζ(2/3)y1/3+O(y1/5)

Plugging this back into our estimate for the number of squarefulls below x yields∑
c≤x1/6

µ(c)

(
ζ(3/2)

( x
c6

)1/2
+ ζ(2/3)

( x
c6

)1/3
+O

(( x
c6

)1/5))
,

which equals

ζ(3/2)x1/2
∑
c≤x1/6

µ(c)

c3
+ζ(2/3)x1/3

∑
c≤x1/6

µ(c)

c2
+O(x1/5) =

ζ(3/2)

ζ(3)
x1/2+

ζ(2/3)

ζ(2)
x1/3+O(x1/5),

where we have used that
∑

c≤x1/6
µ(c)
c3

= 1
ζ(3) + O(x−1/3) and

∑
c≤x1/6

µ(c)
c2

= 1
ζ(2) +

O(x−1/6). We conclude that

#{n ≤ x : n is squarefull} =
ζ(3/2)

ζ(3)
x1/2 +

ζ(2/3)

ζ(2)
x1/3 +O(x1/5).
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2. (a) i. First, suppose that n = p1 · · · pk is squarefree. Then −µ(n) log n = −(−1)k log n,
while on the other hand, since µ ? 1 = δ and Λ is supported on prime powers,

(µ ? (Λ− 1) + δ)(n) = (µ ? Λ)(n) =
k∑
i=1

(−1)k−1 log pi = −(−1)k log n.

If n is not squarefree, then −µ(n) log n = 0, and we split up into two subcases: 1)
n = pam where a ≥ 2, m is squarefree, and p - m or 2) n is divisible by the square
of two distinct primes p1 and p2. In the first subcase, we have (µ? (Λ− 1) + δ)(n) =
(µ ? Λ)(n) = µ(pm)Λ(pa−1) + µ(m)Λ(pa) = −µ(m) log p + µ(m) log p = 0. In the
second subcase, we have that (µ ? (Λ− 1) + δ)(n) = (µ ? Λ)(n) = 0 since if m` = n
with m squarefree, then p1p2 | `, which would force Λ(`) = 0, and thus all terms of
the sum

∑
d|n µ(d)Λ(n/d) must be zero.

ii. First, by the previous subpart, we have that −
∑

n≤x µ(n) log n equals∑
ab≤x

µ(a)(Λ−1)(b)+1 =
∑
a≤x

µ(a)
(
ψ
(x
a

)
−
⌊x
a

⌋)
+1 =

∑
a≤x

µ(a)
(
ψ
(x
a

)
− x

a

)
+O(x).

Since we are assuming the prime number theorem, we have that ψ(x/a) = (1 +
o(1))x/a. Thus,

∑
a≤x

µ(a)
(
ψ
(x
a

)
− x

a

)
= O(x) + o

x∑
a≤x

1

a

 = o(x log x).

It follows thatm(x) :=
∑

n≤x µ(n) log n = o(x log x). We will use partial summation,

writing µ(n) as µ(n) log n 1
logn , to conclude:∑

n≤x
µ(n) =

m(x)

log x
+

∫ x

2

m(t)

t(log t)2
dt = o (x) .

(b) i. Recall that we showed 1 ?Λ = log in class, which implies, by Möbius inversion, that
µ ? log = Λ. Thus, we have

µ ? f − 2γδ = µ ? log−µ ? τ + 2γδ − 2γδ = Λ− µ ? 1 ? 1 = Λ− 1,

since τ = 1 ? 1, µ ? 1 = δ, and δ ? g = g for any arithmetic function g.

ii. Recalling from class that
∑

n≤x log n = x log x − x + O(log x) and
∑

n≤x τ(n) =
x log x+ (2γ − 1)x+O(

√
x), we have∑

n≤x
f(n) = x log x− x− x log x− (2γ − 1)x+ 2γbxc+O(

√
x)�

√
x.

iii. Note that

ψ(x)− x =
∑
n≤x

(Λ− 1)(n) +O(1) =
∑
n≤x

(µ ? f)(n) +O(1).

In addition to the estimate from the previous subpart, we will also need a bound on∑
n≤x

|f(n)|
n . By the triangle inequality,

∑
n≤x

|f(n)|
n ≤

∑
n≤x

logn
n +

∑
n≤x

τ(n)
n +O(1),

and by partial summation,∑
n≤x

log n

n
=
bxc log x

x
+

∫ x

1

btc(log t− 1)

t2
dt =

∫ x

1

log t

t
dt+O(log x)� (log x)2
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and ∑
n≤x

τ(n)

n
� log x+

∫ x

1

t log t

t2
dt� (log x)2.

Thus,
∑

n≤x
|f(n)|
n � (log x)2. Now, we will use the hyperbola method to estimate∑

n≤x(µ ? f)(n) =
∑

ab≤x µ(a)f(b). Let yz = x be parameters to be chosen later.
Then we have∑

ab≤x
µ(a)f(b) =

∑
a≤y

µ(a)
∑
b≤x/a

f(b) +
∑
b≤z

f(b)
∑
a≤x/b

µ(a)−
∑
a≤y
b≤z

µ(a)f(b).

For the first sum, we have∑
a≤y

µ(a)
∑
b≤x/a

f(b)�
∑
a≤y

√
x

a
� √xy.

For the second sum, since we can assume that there exists a g : [0,∞) → [0,∞)

such that g(w)→ 0 as w →∞ for which
∣∣∣∑n≤w µ(w)

∣∣∣ ≤ wg(w), we have∣∣∣∣∣∣
∑
b≤z

f(b)
∑
a≤x/b

µ(a)

∣∣∣∣∣∣ ≤
∑
b≤z
|f(b)|g

(x
b

) x
b
� x(log z)2 sup

w∈[x/z,x]
g(w).

For the third sum, we have ∑
a≤y
b≤z

µ(a)f(b)�
√
zyg(y).

Putting everything together, we have∑
n≤x

(µ ? f)(n)� √xy + x(log z)2 sup
w∈[x/z,x]

g(w) +
√
zyg(y),

and just need to pick y and z suitably. Let ε ∈ (0, 1), and set y = ε2x. Then
z = ε−2, and our bound becomes∑

n≤x
(µ ? f)(n)� εx+ x(log ε)2 sup

w∈[ε2x,x]
g(w) + εxg(ε2x).

Since g(w)→ 0 as w →∞, there exists a K > 0 such that |g(w)| ≤ ε
(log ε)2

whenever

w ≥ K. Thus, for all x ≥ K
ε2

, we must have
∑

n≤x(µ ? f)(n) � εx for all ε > 0.
That is,

∑
n≤x(µ?f)(n) = o(x). It follows that ψ(x)−x = o(x), which is equivalent

to the statement that ψ(x) ∼ x.

3. (a) By the structure theorem for finitely generated abelian groups, a(n) is multiplicative and
a(qb) = p(b) for all prime powers qb, where p(b) denotes the number of partitions of b (i.e.,
tuples (λ1, . . . , λk) of positive integers such that λ1 ≥ · · · ≥ λk and λ1 + · · · + λk = b).
Observe that

∞∑
n=0

p(n)zn =
∞∏
j=1

1

1− zj
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whenever |z| < 1. Indeed, the product on the right-hand side converges absolutely
by the test stated in class since

∣∣(1− zj)−1 − 1
∣∣ = |zj |

∣∣(1− zj)−1∣∣ �r |z|j whenever

|z| ≤ r < 1, and the partial sums on the left-hand side above satisfy
∑N

n=1 p(n)|z|n ≤∏N
j=1(1− |z|j)−1 ≤

∏∞
j=1(1− |z|j)−1 and so also

∑∞
n=1 p(n)zn also converges absolutely

since the sequence
∑N

n=1 p(n)|z|n of partial sums is increasing and bounded. It follows

that
∑∞

j=0
a(qj)
qjs

=
∏∞
j=1(1− q−js)−1 whenever σ > 1. Now, it follows that

∞∑
n=1

a(n)

ns
=
∏
q

 ∞∏
j=1

1

1− q−js


whenever σ > 1. Indeed, the product on the right-hand side converges absolutely because
its reciprocal converges absolutely, since

∑
q

∑∞
j=1 q

−jσ �
∑

q q
−σ �σ 1, and the left-

hand side converges absolutely because the partial sums
∑N

n=1 a(n)n−σ are increasing
and bounded (by

∏
q

∏∞
j=1(1−q−jσ)−1). Finally, absolutely convergent infinite products

are invariant under rearrangement, so we conclude that

∞∑
n=1

a(n)

ns
=
∞∏
j=1

∏
q

1

1− q−js
=
∞∏
j=1

ζ(js)

whenever σ > 1.

(b) Let b : N→ R denote the arithmetic function defined by

∞∑
n=1

c(n)

ns
=

∞∏
j=3

ζ(js)

for σ > 1. It follows from the previous part that the left-hand and right-hand sides
above are an absolutely convergent Dirichlet series and infinite product, respectively,
and also that a = 1?1� ?c, where 1� denotes the indicator function of the squares. Also
observe that c is supported on the cubefulls, and since

∑
q

∑∞
j=3 q

−jσ �
∑

q q
−3σ �σ 1

whenever σ > 1
3 , the Dirichlet series Dc(s) is absolutely convergent when σ > 1

3 . By the
hyperbola method,∑
km2≤y

1 =
∑

k≤y1/3

∑
m≤
√

y
k

1 +
∑

m≤y1/3

∑
k≤ y

m2

1−
∑

k,m≤y1/3
1 = ζ(2)y + ζ(1/2)

√
y +O(y1/3),

since
∑

k≤y1/3
∑

m≤
√

y
k

1 =
∑

k≤y1/3
(√

y
k +O(1)

)
= 2y2/3+ζ(1/2)y1/2+O(y1/3), where

we have used partial summation to obtain
∑

k≤z k
−1/2 = 2z1/2 + ζ(1/2) +O(z−1/2), and∑

m≤y1/3
∑

k≤ y

m2
1 =

∑
m≤y1/3

( y
m2 +O(1)

)
= ζ(2)y − y2/3 + O(y1/3), where we have

used partial summation to obtain
∑

m>z
1
m2 = ζ(2) −

∑
m≤z

1
m2 = −z−1 + O(z−2). It

follows that
∑

n≤x a(n) =
∑

km2`≤x c(`) equals

∑
`≤x

c(`)

(
ζ(2)

x

`
+ ζ(1/2)

√
x√
`

+O

((x
`

)1/3))
= xζ(2)

∑
`≤x

c(`)

`
+O

√x+ x1/3
∑
`≤x

c(`)

`1/3

 .
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Bounding
∑

`>x
c(`)
` ≤ x−1/2

∑
`>x

c(`)

`1/2
� x−1/2 and

∑
`≤x

c(`)

`1/3
≤ x1/6

∑
`≤x

c(`)

`1/2
� x1/6

yields ∑
n≤x

a(n) = xζ(2)Dc(1) +O(
√
x) = x

∞∏
k=2

ζ(k) +O(
√
x),

as desired.

4. (a) Since an absolutely convergent series is also convergent, it follows immediately from the
definitions that σc ≤ σa. If F (s) converges, then |f(n)| = o(nσ). So, for all ε > 0, we

have |f(n)| �ε n
σc+ε/2, and thus |f(n)|

nσc+1+ε �ε
1

n1+ε/2 . It follows that F (σc + 1 + ε) is
absolutely convergent. Since ε > 0 was arbitrary, this implies that σa ≤ σc + 1.

(b) First, suppose that σc < +∞. Then F (σc+1) certainly converges, and so |f(n)| � nσc+1.

Now suppose that there exists a θ ∈ R such that |f(n)| � nθ. Then |f(n)|
nθ+3/2 � n−3/2,

so F (θ + 3/2) converges absolutely, and thus certainly converges. It follows that σc ≤
θ + 3/2 < +∞.

(c) An example where σa = σc is ζ(s), since ζ(s) is absolutely convegent when σ > 1, but
the harmonic series

∑∞
n=1

1
n diverges (and if σc < 1, then the theorem we proved in class

would force
∑∞

n=1
1
n to converge). An example where σa = σc + 1 is F (s) =

∑∞
n=1

(−1)n
ns ,

since σa = 1 in this case by the same reasoning as for ζ(s) and σc = 0 in this case since

F (σ) =
∑∞

n=1
(−1)n
nσ converges for all σ > 0 by the alternating series test.

5. (a) Let t ∈ R. By partial summation, we have

N∑
n=1

(−1)nn−it

(log 2n)2
=

f(N)

(log 2N)2
+ 2

∫ N

1

f(y)

y(log 2y)3
dy

for all N ∈ N, where f(y) =
∑

n≤y(−1)nn−it. Observe that f(y) equals∑
n≤ y

2

(
(2n)−it − (2n+ 1)−it

)
+O(1)� 1+

∑
n≤ y

2

∣∣∣1− e−it log(1+1/2n)
∣∣∣�t 1+

∑
n≤ y

2

1

n
�t log 2y.

where we have used that |eiu − 1| � |u| for all u ∈ R, which follows from considering
the power series for ez, and that log(1 + δ) ≤ δ for all δ > 0. It follows that

N∑
n=1

(−1)nn−it

(log 2n)2
= 2

∫ ∞
1

f(y)

y(log 2y)3
dy +Ot

(
1

log 2N

)
,

since the integral
∫∞
1

f(y)
y(log 2y)3

dy is absolutely convergent and
∫∞
N

f(y)
y(log 2y)3

dy �t
1

log 2N

by the estimate |f(y)| �t log 2y. Thus, F (it) converges.

(b) It follows from the previous part that F (s) is absolutely convergent whenever σ > 1,

and thus H(s) = F (s)2 when σ > 1 and h := f ? f , where f(n) = (−1)n
(log 2n)2

. Consider the

sequence of integers an := (3 · 5 · 7 · 11 · 13)n. We will show that h(an)→∞ as n→∞,
from which it follows that H(it) diverges for all t ∈ R since then |h(an)a−itn | = h(an)
would be unbounded. Since all divisors of an are odd, we have

h(an) =
∑
d|an

1

(log 2d)2(log 2n/d)2
≥ τ(an)

(log 2an)4
.
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Note also that τ(an) = (n + 1)5 and, since an = 15015n, n = log an
log 15015 . Thus, τ(an) ≥

( log an
log 15015)5. It follows that h(an) � (log an)5

(log 2an)4
and hence, since an → ∞ as n → ∞ and

(log x)5

(log 2x)4
→∞ as x→∞, that h(an)→∞ as n→∞.
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