# Math 675: Analytic Theory of Numbers Solutions to problem set \# 2 

February 12, 2024

1. (a) Note that

$$
\#\{(n, m): n, m \leq x \text { and } \operatorname{gcd}(n, m)=1\}=\sum_{n, m \leq x} \delta(\operatorname{gcd}(n, m))=\sum_{n, m \leq x} \sum_{d \mid \operatorname{gcd}(n, m)} \mu(d)
$$

by Möbius inversion. Since $d|\operatorname{gcd}(n, m) \Longleftrightarrow d| n$ and $d \mid m$, this equals

$$
\sum_{d \leq x} \mu(d) \sum_{n, m \leq \frac{x}{d}} 1=\sum_{d \leq x} \mu(d)\left(\frac{x}{d}+O(1)\right)^{2}=x^{2} \sum_{d \leq x} \frac{\mu(d)}{d^{2}}+O(x \log x)
$$

To finish, note that $\sum_{d \leq x} \frac{\mu(d)}{d^{2}}=\sum_{d=1}^{\infty} \frac{\mu(d)}{d^{2}}+O\left(\sum_{d>x} \frac{1}{d^{2}}\right)=\frac{1}{\zeta(2)}+O\left(\frac{1}{x}\right)$. Thus, since $\zeta(2)=\frac{\pi^{2}}{6}$, we conclude that

$$
\#\{(n, m): n, m \leq x \text { and } \operatorname{gcd}(n, m)=1\}=\frac{6}{\pi^{2}} x^{2}+O(x \log x)
$$

(b) Observe that $n \mapsto \mu(n)^{2}$ is the indicator function of the squarefrees, and that

$$
\sum_{n=1}^{\infty} \frac{\mu(n)^{2}}{n^{s}}=\prod_{p}\left(1+\frac{1}{p^{s}}\right)=\prod_{p}\left(\frac{1-\frac{1}{p^{2 s}}}{1-\frac{1}{p^{s}}}\right)=\frac{\zeta(s)}{\zeta(2 s)}
$$

whenever $\sigma>1$. Since $\frac{1}{\zeta(2 s)}=\sum_{n=1}^{\infty} \frac{\mu(n)}{\left(n^{2}\right)^{s}}$, it follows that $\mu(n)^{2}=1 \star f$, where

$$
f(n)= \begin{cases}\mu(m) & n=m^{2} \text { for some } m \in \mathbf{N} \\ 0 & \text { otherwise }\end{cases}
$$

Thus, $\#\{n \leq x: n$ is squarefree $\}$ equals

$$
\sum_{a b \leq x} f(b)=\sum_{b \leq x} f(b) \sum_{a \leq \frac{x}{b}} 1=\sum_{b \leq x} f(b)\left(\frac{x}{b}+O(1)\right)=x \sum_{c \leq \sqrt{x}} \frac{\mu(c)}{c^{2}}+O(\sqrt{x})
$$

since $f$ is bounded and supported on the squares. Analogously to the previous part, we have that $\sum_{c \leq \sqrt{x}} \frac{\mu(c)}{c^{2}}=\frac{1}{\zeta(2)}+O\left(x^{-1 / 2}\right)$. We conclude that

$$
\#\{n \leq x: n \text { is squarefree }\}=\frac{6}{\pi^{2}} x+O(\sqrt{x}) .
$$

(c) Observe that $n \mapsto \sum_{a^{2} b^{3}=n} \mu(b)^{2}$ equals the indicator function of the squarefulls, since $n$ is squarefull if and only if $n=a^{2} b^{3}$ for some $a, b \in \mathbf{N}^{2}$, and each squarefull $n$ has a unique factorization as $n=a^{2} b^{3}$ with $b$ squarefree. Thus, with $f$ as in the previous part, we have that $\#\{n \leq x: n$ is squarefull $\}$ equals

$$
\sum_{a^{2} b^{3} \leq x} \mu(b)^{2}=\sum_{a^{2} b^{3} \leq x} \sum_{c \mid b} f(c)=\sum_{a^{2} b^{3} \leq x} \sum_{c^{2} \mid b} \mu(c)=\sum_{c \leq x^{1 / 6}} \mu(c) \sum_{a^{2} b^{3} \leq \frac{x}{c^{6}}} 1 .
$$

We will now estimate $\sum_{a^{2} b^{3} \leq y} 1$ for a general $y>0$ using the hyperbola method:

$$
\sum_{a^{2} b^{3} \leq y} 1=\sum_{a \leq y^{1 / 5}} \sum_{b^{3} \leq \frac{y}{a^{2}}} 1+\sum_{b \leq y^{1 / 5}} \sum_{a^{2} \leq \frac{y}{b^{3}}} 1-\sum_{a, b \leq y^{1 / 5}} 1 .
$$

The first sum on the right-hand side is

$$
\sum_{a \leq y^{1 / 5}} \sum_{b^{3} \leq \frac{y}{a^{2}}} 1=\sum_{a \leq y^{1 / 5}}\left[\left(\frac{y}{a^{2}}\right)^{1 / 3}+O(1)\right]=3 y^{2 / 5}+\zeta(2 / 3) y^{1 / 3}+O\left(y^{1 / 5}\right),
$$

where we have used partial summation to obtain $\sum_{a \leq z} a^{-2 / 3}=3 z^{1 / 3}-2+\frac{2}{3} \int_{1}^{\infty} \frac{\{t\}}{t^{5 / 3}} \mathrm{~d} t+$ $O\left(z^{-2 / 3}\right)$ the fact that $\zeta(s)=\frac{s}{s-1}-s \int_{1}^{\infty} \frac{\{t\}}{t^{s+1}} \mathrm{~d} t$ whenever $\sigma>0$ to obtain that $-2+$ $\frac{2}{3} \int_{1}^{\infty} \frac{\{t\}}{t^{5 / 3}} \mathrm{~d} t=\zeta(2 / 3)$. The second sum is

$$
\sum_{b \leq y^{1 / 5}} \sum_{a^{2} \leq \frac{y}{b^{3}}} 1=\sum_{b \leq y^{1 / 5}}\left[\left(\frac{y}{b^{3}}\right)^{1 / 2}+O(1)\right]=\zeta(3 / 2) y^{1 / 2}-2 y^{2 / 5}+O\left(y^{1 / 5}\right)
$$

where we have used partial summation to obtain that $\sum_{b \leq z} b^{-3 / 2}=3-\frac{3}{2} \int_{1}^{\infty} \frac{\{t\}}{t^{5 / 2}} \mathrm{~d} t-$ $2 z^{-1 / 2}+O\left(z^{-3 / 2}\right)$ and the fact that $\zeta(s)=\frac{s}{s-1}-s \int_{1}^{\infty} \frac{\{t\}}{t^{s+1}} \mathrm{~d} t$ whenever $\sigma>0$ to obtain that $3-\frac{3}{2} \int_{1}^{\infty} \frac{\{t\}}{t^{5 / 2}} \mathrm{~d} t=\zeta(3 / 2)$. Finally, the third sum is $\left(y^{1 / 5}+O(1)\right)^{2}=y^{2 / 5}+O\left(y^{1 / 5}\right)$, so that we have that $\sum_{a^{2} b^{3} \leq y} 1$ equals
$3 y^{2 / 5}+\zeta(2 / 3) y^{1 / 3}+\zeta(3 / 2) y^{1 / 2}-2 y^{2 / 5}-y^{2 / 5}+O\left(y^{1 / 5}\right)=\zeta(3 / 2) y^{1 / 2}+\zeta(2 / 3) y^{1 / 3}+O\left(y^{1 / 5}\right)$
Plugging this back into our estimate for the number of squarefulls below $x$ yields

$$
\sum_{c \leq x^{1 / 6}} \mu(c)\left(\zeta(3 / 2)\left(\frac{x}{c^{6}}\right)^{1 / 2}+\zeta(2 / 3)\left(\frac{x}{c^{6}}\right)^{1 / 3}+O\left(\left(\frac{x}{c^{6}}\right)^{1 / 5}\right)\right)
$$

which equals
$\zeta(3 / 2) x^{1 / 2} \sum_{c \leq x^{1 / 6}} \frac{\mu(c)}{c^{3}}+\zeta(2 / 3) x^{1 / 3} \sum_{c \leq x^{1 / 6}} \frac{\mu(c)}{c^{2}}+O\left(x^{1 / 5}\right)=\frac{\zeta(3 / 2)}{\zeta(3)} x^{1 / 2}+\frac{\zeta(2 / 3)}{\zeta(2)} x^{1 / 3}+O\left(x^{1 / 5}\right)$,
where we have used that $\sum_{c \leq x^{1 / 6}} \frac{\mu(c)}{c^{3}}=\frac{1}{\zeta(3)}+O\left(x^{-1 / 3}\right)$ and $\sum_{c \leq x^{1 / 6}} \frac{\mu(c)}{c^{2}}=\frac{1}{\zeta(2)}+$ $O\left(x^{-1 / 6}\right)$. We conclude that

$$
\#\{n \leq x: n \text { is squarefull }\}=\frac{\zeta(3 / 2)}{\zeta(3)} x^{1 / 2}+\frac{\zeta(2 / 3)}{\zeta(2)} x^{1 / 3}+O\left(x^{1 / 5}\right)
$$

2. (a) i. First, suppose that $n=p_{1} \cdots p_{k}$ is squarefree. Then $-\mu(n) \log n=-(-1)^{k} \log n$, while on the other hand, since $\mu \star 1=\delta$ and $\Lambda$ is supported on prime powers,

$$
(\mu \star(\Lambda-1)+\delta)(n)=(\mu \star \Lambda)(n)=\sum_{i=1}^{k}(-1)^{k-1} \log p_{i}=-(-1)^{k} \log n
$$

If $n$ is not squarefree, then $-\mu(n) \log n=0$, and we split up into two subcases: 1 ) $n=p^{a} m$ where $a \geq 2, m$ is squarefree, and $p \nmid m$ or 2$) n$ is divisible by the square of two distinct primes $p_{1}$ and $p_{2}$. In the first subcase, we have $(\mu \star(\Lambda-1)+\delta)(n)=$ $(\mu \star \Lambda)(n)=\mu(p m) \Lambda\left(p^{a-1}\right)+\mu(m) \Lambda\left(p^{a}\right)=-\mu(m) \log p+\mu(m) \log p=0$. In the second subcase, we have that $(\mu \star(\Lambda-1)+\delta)(n)=(\mu \star \Lambda)(n)=0$ since if $m \ell=n$ with $m$ squarefree, then $p_{1} p_{2} \mid \ell$, which would force $\Lambda(\ell)=0$, and thus all terms of the sum $\sum_{d \mid n} \mu(d) \Lambda(n / d)$ must be zero.
ii. First, by the previous subpart, we have that $-\sum_{n \leq x} \mu(n) \log n$ equals $\sum_{a b \leq x} \mu(a)(\Lambda-1)(b)+1=\sum_{a \leq x} \mu(a)\left(\psi\left(\frac{x}{a}\right)-\left\lfloor\frac{x}{a}\right\rfloor\right)+1=\sum_{a \leq x} \mu(a)\left(\psi\left(\frac{x}{a}\right)-\frac{x}{a}\right)+O(x)$.

Since we are assuming the prime number theorem, we have that $\psi(x / a)=(1+$ $o(1)) x / a$. Thus,

$$
\sum_{a \leq x} \mu(a)\left(\psi\left(\frac{x}{a}\right)-\frac{x}{a}\right)=O(x)+o\left(x \sum_{a \leq x} \frac{1}{a}\right)=o(x \log x) .
$$

It follows that $m(x):=\sum_{n \leq x} \mu(n) \log n=o(x \log x)$. We will use partial summation, writing $\mu(n)$ as $\mu(n) \log n \frac{1}{\log n}$, to conclude:

$$
\sum_{n \leq x} \mu(n)=\frac{m(x)}{\log x}+\int_{2}^{x} \frac{m(t)}{t(\log t)^{2}} \mathrm{~d} t=o(x) .
$$

(b) i. Recall that we showed $1 \star \Lambda=\log$ in class, which implies, by Möbius inversion, that $\mu \star \log =\Lambda$. Thus, we have

$$
\mu \star f-2 \gamma \delta=\mu \star \log -\mu \star \tau+2 \gamma \delta-2 \gamma \delta=\Lambda-\mu \star 1 \star 1=\Lambda-1,
$$

since $\tau=1 \star 1, \mu \star 1=\delta$, and $\delta \star g=g$ for any arithmetic function $g$.
ii. Recalling from class that $\sum_{n \leq x} \log n=x \log x-x+O(\log x)$ and $\sum_{n \leq x} \tau(n)=$ $x \log x+(2 \gamma-1) x+O(\sqrt{x})$, we have

$$
\sum_{n \leq x} f(n)=x \log x-x-x \log x-(2 \gamma-1) x+2 \gamma\lfloor x\rfloor+O(\sqrt{x}) \ll \sqrt{x} .
$$

iii. Note that

$$
\psi(x)-x=\sum_{n \leq x}(\Lambda-1)(n)+O(1)=\sum_{n \leq x}(\mu \star f)(n)+O(1) .
$$

In addition to the estimate from the previous subpart, we will also need a bound on $\sum_{n \leq x} \frac{|f(n)|}{n}$. By the triangle inequality, $\sum_{n \leq x} \frac{|f(n)|}{n} \leq \sum_{n \leq x} \frac{\log n}{n}+\sum_{n \leq x} \frac{\tau(n)}{n}+O(1)$, and by partial summation,

$$
\sum_{n \leq x} \frac{\log n}{n}=\frac{\lfloor x\rfloor \log x}{x}+\int_{1}^{x} \frac{\lfloor t\rfloor(\log t-1)}{t^{2}} \mathrm{~d} t=\int_{1}^{x} \frac{\log t}{t} \mathrm{~d} t+O(\log x) \ll(\log x)^{2}
$$

and

$$
\sum_{n \leq x} \frac{\tau(n)}{n} \ll \log x+\int_{1}^{x} \frac{t \log t}{t^{2}} \mathrm{~d} t \ll(\log x)^{2}
$$

Thus, $\sum_{n \leq x} \frac{|f(n)|}{n} \ll(\log x)^{2}$. Now, we will use the hyperbola method to estimate $\sum_{n \leq x}(\mu \star f)(n)=\sum_{a b \leq x} \mu(a) f(b)$. Let $y z=x$ be parameters to be chosen later. Then we have

$$
\sum_{a b \leq x} \mu(a) f(b)=\sum_{a \leq y} \mu(a) \sum_{b \leq x / a} f(b)+\sum_{b \leq z} f(b) \sum_{\substack{a \leq x / b}} \mu(a)-\sum_{\substack{a \leq y \\ b \leq z}} \mu(a) f(b) .
$$

For the first sum, we have

$$
\sum_{a \leq y} \mu(a) \sum_{b \leq x / a} f(b) \ll \sum_{a \leq y} \sqrt{\frac{x}{a}} \ll \sqrt{x y} .
$$

For the second sum, since we can assume that there exists a $g:[0, \infty) \rightarrow[0, \infty)$ such that $g(w) \rightarrow 0$ as $w \rightarrow \infty$ for which $\left|\sum_{n \leq w} \mu(w)\right| \leq w g(w)$, we have

$$
\left|\sum_{b \leq z} f(b) \sum_{a \leq x / b} \mu(a)\right| \leq \sum_{b \leq z}|f(b)| g\left(\frac{x}{b}\right) \frac{x}{b} \ll x(\log z)^{2} \sup _{w \in[x / z, x]} g(w) .
$$

For the third sum, we have

$$
\sum_{\substack{a \leq y \\ b \leq z}} \mu(a) f(b) \ll \sqrt{z} y g(y)
$$

Putting everything together, we have

$$
\sum_{n \leq x}(\mu \star f)(n) \ll \sqrt{x y}+x(\log z)^{2} \sup _{w \in[x / z, x]} g(w)+\sqrt{z} y g(y),
$$

and just need to pick $y$ and $z$ suitably. Let $\varepsilon \in(0,1)$, and set $y=\varepsilon^{2} x$. Then $z=\varepsilon^{-2}$, and our bound becomes

$$
\sum_{n \leq x}(\mu \star f)(n) \ll \varepsilon x+x(\log \varepsilon)^{2} \sup _{w \in\left[\varepsilon^{2} x, x\right]} g(w)+\varepsilon x g\left(\epsilon^{2} x\right) .
$$

Since $g(w) \rightarrow 0$ as $w \rightarrow \infty$, there exists a $K>0$ such that $|g(w)| \leq \frac{\varepsilon}{(\log \varepsilon)^{2}}$ whenever $w \geq K$. Thus, for all $x \geq \frac{K}{\varepsilon^{2}}$, we must have $\sum_{n \leq x}(\mu \star f)(n) \ll \varepsilon x$ for all $\varepsilon>0$. That is, $\sum_{n \leq x}(\mu \star f)(n)=o(x)$. It follows that $\psi(x)-x=o(x)$, which is equivalent to the statement that $\psi(x) \sim x$.
3. (a) By the structure theorem for finitely generated abelian groups, $a(n)$ is multiplicative and $a\left(q^{b}\right)=p(b)$ for all prime powers $q^{b}$, where $p(b)$ denotes the number of partitions of $b$ (i.e., tuples ( $\lambda_{1}, \ldots, \lambda_{k}$ ) of positive integers such that $\lambda_{1} \geq \cdots \geq \lambda_{k}$ and $\left.\lambda_{1}+\cdots+\lambda_{k}=b\right)$. Observe that

$$
\sum_{n=0}^{\infty} p(n) z^{n}=\prod_{j=1}^{\infty} \frac{1}{1-z^{j}}
$$

whenever $|z|<1$. Indeed, the product on the right-hand side converges absolutely by the test stated in class since $\left|\left(1-z^{j}\right)^{-1}-1\right|=\left|z^{j}\right|\left|\left(1-z^{j}\right)^{-1}\right|<_{r}|z|^{j}$ whenever $|z| \leq r<1$, and the partial sums on the left-hand side above satisfy $\sum_{n=1}^{N} p(n)|z|^{n} \leq$ $\prod_{j=1}^{N}\left(1-|z|^{j}\right)^{-1} \leq \prod_{j=1}^{\infty}\left(1-|z|^{j}\right)^{-1}$ and so also $\sum_{n=1}^{\infty} p(n) z^{n}$ also converges absolutely since the sequence $\sum_{n=1}^{N} p(n)|z|^{n}$ of partial sums is increasing and bounded. It follows that $\sum_{j=0}^{\infty} \frac{a\left(q^{j}\right)}{q^{j s}}=\prod_{j=1}^{\infty}\left(1-q^{-j s}\right)^{-1}$ whenever $\sigma>1$. Now, it follows that

$$
\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}=\prod_{q}\left(\prod_{j=1}^{\infty} \frac{1}{1-q^{-j s}}\right)
$$

whenever $\sigma>1$. Indeed, the product on the right-hand side converges absolutely because its reciprocal converges absolutely, since $\sum_{q} \sum_{j=1}^{\infty} q^{-j \sigma} \ll \sum_{q} q^{-\sigma} \ll{ }_{\sigma} 1$, and the lefthand side converges absolutely because the partial sums $\sum_{n=1}^{N} a(n) n^{-\sigma}$ are increasing and bounded (by $\prod_{q} \prod_{j=1}^{\infty}\left(1-q^{-j \sigma}\right)^{-1}$ ). Finally, absolutely convergent infinite products are invariant under rearrangement, so we conclude that

$$
\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}=\prod_{j=1}^{\infty} \prod_{q} \frac{1}{1-q^{-j s}}=\prod_{j=1}^{\infty} \zeta(j s)
$$

whenever $\sigma>1$.
(b) Let $b: \mathbf{N} \rightarrow \mathbf{R}$ denote the arithmetic function defined by

$$
\sum_{n=1}^{\infty} \frac{c(n)}{n^{s}}=\prod_{j=3}^{\infty} \zeta(j s)
$$

for $\sigma>1$. It follows from the previous part that the left-hand and right-hand sides above are an absolutely convergent Dirichlet series and infinite product, respectively, and also that $a=1 \star 1_{\square \star c}$, where $1_{\square}$ denotes the indicator function of the squares. Also observe that $c$ is supported on the cubefulls, and since $\sum_{q} \sum_{j=3}^{\infty} q^{-j \sigma} \ll \sum_{q} q^{-3 \sigma}<_{\sigma} 1$ whenever $\sigma>\frac{1}{3}$, the Dirichlet series $\mathcal{D} c(s)$ is absolutely convergent when $\sigma>\frac{1}{3}$. By the hyperbola method,

$$
\sum_{k m^{2} \leq y} 1=\sum_{k \leq y^{1 / 3}} \sum_{m \leq \sqrt{\frac{y}{k}}} 1+\sum_{m \leq y^{1 / 3}} \sum_{k \leq \frac{y}{m^{2}}} 1-\sum_{k, m \leq y^{1 / 3}} 1=\zeta(2) y+\zeta(1 / 2) \sqrt{y}+O\left(y^{1 / 3}\right)
$$

since $\sum_{k \leq y^{1 / 3}} \sum_{m \leq \sqrt{\frac{y}{k}}} 1=\sum_{k \leq y^{1 / 3}}\left(\sqrt{\frac{y}{k}}+O(1)\right)=2 y^{2 / 3}+\zeta(1 / 2) y^{1 / 2}+O\left(y^{1 / 3}\right)$, where we have used partial summation to obtain $\sum_{k \leq z} k^{-1 / 2}=2 z^{1 / 2}+\zeta(1 / 2)+O\left(z^{-1 / 2}\right)$, and $\sum_{m \leq y^{1 / 3}} \sum_{k \leq \frac{y}{m^{2}}} 1=\sum_{m \leq y^{1 / 3}}\left(\frac{y}{m^{2}}+O(1)\right)=\zeta(2) y-y^{2 / 3}+O\left(y^{1 / 3}\right)$, where we have used partial summation to obtain $\sum_{m>z} \frac{1}{m^{2}}=\zeta(2)-\sum_{m \leq z} \frac{1}{m^{2}}=-z^{-1}+O\left(z^{-2}\right)$. It follows that $\sum_{n \leq x} a(n)=\sum_{k m^{2} \ell \leq x} c(\ell)$ equals

$$
\sum_{\ell \leq x} c(\ell)\left(\zeta(2) \frac{x}{\ell}+\zeta(1 / 2) \frac{\sqrt{x}}{\sqrt{\ell}}+O\left(\left(\frac{x}{\ell}\right)^{1 / 3}\right)\right)=x \zeta(2) \sum_{\ell \leq x} \frac{c(\ell)}{\ell}+O\left(\sqrt{x}+x^{1 / 3} \sum_{\ell \leq x} \frac{c(\ell)}{\ell^{1 / 3}}\right)
$$

Bounding $\sum_{\ell>x} \frac{c(\ell)}{\ell} \leq x^{-1 / 2} \sum_{\ell>x} \frac{c(\ell)}{\ell^{1 / 2}} \ll x^{-1 / 2}$ and $\sum_{\ell \leq x} \frac{c(\ell)}{\ell^{1 / 3}} \leq x^{1 / 6} \sum_{\ell \leq x} \frac{c(\ell)}{\ell^{1 / 2}} \ll x^{1 / 6}$ yields

$$
\sum_{n \leq x} a(n)=x \zeta(2) \mathcal{D} c(1)+O(\sqrt{x})=x \prod_{k=2}^{\infty} \zeta(k)+O(\sqrt{x}),
$$

as desired.
4. (a) Since an absolutely convergent series is also convergent, it follows immediately from the definitions that $\sigma_{c} \leq \sigma_{a}$. If $F(s)$ converges, then $|f(n)|=o\left(n^{\sigma}\right)$. So, for all $\varepsilon>0$, we have $|f(n)|<_{\varepsilon} n^{\sigma_{c}+\varepsilon / 2}$, and thus $\frac{|f(n)|}{n^{\sigma_{c}+1+\varepsilon}}<_{\varepsilon} \frac{1}{n^{1+\varepsilon / 2}}$. It follows that $F\left(\sigma_{c}+1+\varepsilon\right)$ is absolutely convergent. Since $\varepsilon>0$ was arbitrary, this implies that $\sigma_{a} \leq \sigma_{c}+1$.
(b) First, suppose that $\sigma_{c}<+\infty$. Then $F\left(\sigma_{c}+1\right)$ certainly converges, and so $|f(n)| \ll n^{\sigma_{c}+1}$. Now suppose that there exists a $\theta \in \mathbf{R}$ such that $|f(n)| \ll n^{\theta}$. Then $\frac{|f(n)|}{n^{\theta+3 / 2}} \ll n^{-3 / 2}$, so $F(\theta+3 / 2)$ converges absolutely, and thus certainly converges. It follows that $\sigma_{c} \leq$ $\theta+3 / 2<+\infty$.
(c) An example where $\sigma_{a}=\sigma_{c}$ is $\zeta(s)$, since $\zeta(s)$ is absolutely convegent when $\sigma>1$, but the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges (and if $\sigma_{c}<1$, then the theorem we proved in class would force $\sum_{n=1}^{\infty} \frac{1}{n}$ to converge). An example where $\sigma_{a}=\sigma_{c}+1$ is $F(s)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{s}}$, since $\sigma_{a}=1$ in this case by the same reasoning as for $\zeta(s)$ and $\sigma_{c}=0$ in this case since $F(\sigma)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{\sigma}}$ converges for all $\sigma>0$ by the alternating series test.
5. (a) Let $t \in \mathbf{R}$. By partial summation, we have

$$
\sum_{n=1}^{N} \frac{(-1)^{n} n^{-i t}}{(\log 2 n)^{2}}=\frac{f(N)}{(\log 2 N)^{2}}+2 \int_{1}^{N} \frac{f(y)}{y(\log 2 y)^{3}} \mathrm{~d} y
$$

for all $N \in \mathbf{N}$, where $f(y)=\sum_{n \leq y}(-1)^{n} n^{-i t}$. Observe that $f(y)$ equals
$\sum_{n \leq \frac{y}{2}}\left((2 n)^{-i t}-(2 n+1)^{-i t}\right)+O(1) \ll 1+\sum_{n \leq \frac{y}{2}}\left|1-e^{-i t \log (1+1 / 2 n)}\right|<_{t} 1+\sum_{n \leq \frac{y}{2}} \frac{1}{n}<_{t} \log 2 y$.
where we have used that $\left|e^{i u}-1\right| \ll|u|$ for all $u \in \mathbf{R}$, which follows from considering the power series for $e^{z}$, and that $\log (1+\delta) \leq \delta$ for all $\delta>0$. It follows that

$$
\sum_{n=1}^{N} \frac{(-1)^{n} n^{-i t}}{(\log 2 n)^{2}}=2 \int_{1}^{\infty} \frac{f(y)}{y(\log 2 y)^{3}} \mathrm{~d} y+O_{t}\left(\frac{1}{\log 2 N}\right)
$$

since the integral $\int_{1}^{\infty} \frac{f(y)}{y(\log 2 y)^{3}} \mathrm{~d} y$ is absolutely convergent and $\int_{N}^{\infty} \frac{f(y)}{y(\log 2 y)^{3}} \mathrm{~d} y<_{t} \frac{1}{\log 2 N}$ by the estimate $|f(y)|<_{t} \log 2 y$. Thus, $F(i t)$ converges.
(b) It follows from the previous part that $F(s)$ is absolutely convergent whenever $\sigma>1$, and thus $H(s)=F(s)^{2}$ when $\sigma>1$ and $h:=f \star f$, where $f(n)=\frac{(-1)^{n}}{(\log 2 n)^{2}}$. Consider the sequence of integers $a_{n}:=(3 \cdot 5 \cdot 7 \cdot 11 \cdot 13)^{n}$. We will show that $h\left(a_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$, from which it follows that $H(i t)$ diverges for all $t \in \mathbf{R}$ since then $\left|h\left(a_{n}\right) a_{n}^{-i t}\right|=h\left(a_{n}\right)$ would be unbounded. Since all divisors of $a_{n}$ are odd, we have

$$
h\left(a_{n}\right)=\sum_{d \mid a_{n}} \frac{1}{(\log 2 d)^{2}(\log 2 n / d)^{2}} \geq \frac{\tau\left(a_{n}\right)}{\left(\log 2 a_{n}\right)^{4}} .
$$

Note also that $\tau\left(a_{n}\right)=(n+1)^{5}$ and, since $a_{n}=15015^{n}, n=\frac{\log a_{n}}{\log 15015}$. Thus, $\tau\left(a_{n}\right) \geq$ $\left(\frac{\log a_{n}}{\log 15015}\right)^{5}$. It follows that $h\left(a_{n}\right) \gg \frac{\left(\log a_{n}\right)^{5}}{\left(\log 2 a_{n}\right)^{4}}$ and hence, since $a_{n} \rightarrow \infty$ as $n \rightarrow \infty$ and $\frac{(\log x)^{5}}{(\log 2 x)^{4}} \rightarrow \infty$ as $x \rightarrow \infty$, that $h\left(a_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$.

