Math 675: Analytic Theory of Numbers
Solutions to problem set # 1

January 28, 2024

1. (a) Suppose first that n is squarefull. Note that 1 is squarefull since the definition p | n =
p? | n is vacuous in this case, and 1 = 12 - 13. If n > 1 is squarefull, then n has prime
factorization n = pi* pZ’“ with e; > 2 for each ¢ = 1,...,k, and so we can write

n = a’b? for a = p%el/%*e(el) . -p,Eek/ZJ*e(e’“) and b = pi(el) . ~p2(e’“), where we define

€: N — {0,1} by e(e) = 0 if e is even and €e(e) = 1 if e is odd. Indeed, if e is even,

then 2 ([§] — e(e)) + 3e(e) = 25 = e and, if e is odd, then 2 ([ 5] — €(e)) + 3e(e) =

2 (% - ) +3=e

Now suppose that n = a?b® for some a,b € N. If p is a prime for which p | n, then p | a?

or p | b3, and thus p | @ or p | b. In either case, p? | n. We conclude that n is squarefull.

(b) First of all, the squares are squarefull, so

#{n <z :n is squarefull} > [/z| > /z.
For the upper bound, we have

#{n < x :n is squarefull} < Z Z 1< Z i/ % < 2'VB3(o)' P < x.
0<VEb< YojE  asve

2. (a) Every integer n < N that is not squarefree is divisible by the square of at least one
prime, so we indeed have

AN =N -2 Y =N =Y | 5]

p n<N

(b) The first inequality follows from the fact that all primes greater than 2 are odd and
that not all odd integers are primes. The second inequality follows from the general
inequality 2k(2k +2) < (2k + 1)? using

SR U
2\2k 2k+2) 2k(2k+2)
The equality follows by telescoping.

(¢) By the previous two parts, we have

N N N N
p p
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(d)

Let n > 2, and consider the set S = {n—m : 1 < m < n and m is squarefree} C
{1,...,n—1}. By the previous part, we have |[S| = Q(n—1) > On the other hand,
the set of squarefree integers in {1,...,n—1} also has size greater than . Thus, S and
the squarefrees in {1,...,n—1} have nontr1v1al intersection by the plgeonhole principle.
It follows that there exist squarefree m,m’ € {1,...,n — 1} such that n = m + m’.

Observe that |i(x) — 0(x)| = ¢ (x) — O(x), so we have

[4( x)| = Zlogp< Z L ng logp < logx Z 1 <Vzloguw.

p*<z p<Vz p<VT
a>2

That ¢(z) ~ x <= 6(x) ~ z follows immediately from the first part, so it remains

.. 1 .
to show that m(z) ~ 7 <= 0(z) ~ 2. By writing n(z) = > -, ﬁgﬁ and applying
partial summation, we have

6(x) To0(t) 0(z) /“’C dt
(@) log © +/2 t(logt)? log © * o (logt)?
where we have used Chebyshev’s upper bound 0(t) < 1(t) < t. Since
/ﬂ»‘ dt _/\/5 dt +/x &t my T @
2 (logt)? — Jy  (logt)? = J 5 (logt)? (logz)* ~ (logz)*’

it follows that ’7r( ()

" logx
O(x) ~ x.

This immediately yields that 7(z) ~ =

T
< (log z)?" log z

Writing w(n) = >_, 1), we have

Zw(n) = Z le‘n = ZZ Ly = Z (i + O(l)) = zloglogz + O(x),

n<x nx p p<znlzx p<zx

where we have used Mertens’ second theorem.

We have
2
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n<x n<z n<x p,q n<x p n<z p#q

The first sum on the right-hand side equals xloglog z + O(x) by the previous part. For
the second sum on the right-hand side, we have

Zzlpqln— Zzlpqm—u’ﬂzf—FO

n<x p#£q pg<z nlz q<a:
P#q

where we have used that > >, <, 12, < X<, 2z <z and > pg<z 1 < 2 (by unique
factorization). Using the hyperbola method,

loglog £ + O(1
DETEED SED DD DI Pl A

pg<w p<f q<x/p P q<f P<Vz




which equals 2 ((log log z)? + O(log log z)) —(log log z+0(1))? = (log log z)?4+O(log log z)
since loglogy = loglog x + O(1) whenever /z < y < x. Putting everything together, we
conclude that >, , w(n)? equals
z ((loglog z)? 4 O(log log z)) + O (zloglog z) = z(loglog z)% 4+ O(z loglog z).
Note that, by the previous two parts,
Z lw(n) —loglogz|* = Z w(n)? —2loglog x Z w(n) + z(loglog z)? < zloglog x.

n<lx n<x nlx

Set E = {n <z :|w(n) —loglogz| > (loglogx)3/4}, say. Then
Z lw(n) — logloguv\2 > |E|(log logx)3/2
n<x
Comparing with the upper bound above, it follows that |E| < m. Thus, for

3/ Since

all but < \/logiW natural numbers n < z, |w(n) — loglogz| < (loglogx)
|loglogn — loglogz| < 1 for all \/z < n < =z, it follows that |w(n) — loglogn| <
(loglog z)3/4 for all but < @ natural numbers n < x. This implies the weaker

qualitative statement that w(n) ~ loglogn for all but o(z) natural numbers n < z.

Let n € N, and note that there is an obvious bijection f from
{(dl,...,dk) e NF . dy---dy, :n} = {(d,(dl,...,dk_l)) ENXNLd n, dy-dyy =

given by f(dl, NN ,dk) = (dl, (dg, ey dkfl)).
Observe, first, that both D7(s) and ¢(s) = D1(s) (and thus ((s)* as well) are absolutely

convergent in the half-plane ¢ > 1. The previous part says that 7, = 7,1 x 1 for all
k times

—
k>2. Thus, 7 =1%---x1, and so D7(s) = D(1%---x1)(s) = ((s)*.
We will use the hyperbola method. In class, we showed that anx T(n) =xlogx+ (2y—
1)z + O(y/z), and using the first part, we have

domn)=> N rd= > rm)= Y > rm+ Y > rm)— Y r(m).

n<lx n<z dln nm<z n<zl/3m<z/n m<z2/3 n<z/m n<gl/3

m<z?/3

For the first sum, we have

T T x ZT
S Y rm= Y (Iog+(2’y—1)+0<\/>>>
n<zl/3m<z/n n<gl/3 " " " "
2

for some constants cq, ca € R, where we have used that

logn + lo Y(t+ f(t)(1 —logt
yoln Sy [ 4 SO0 ),

= z(log z)(log = + cr1zlog x + cox 4+ O(z*log ),

n<y

a3

Y (1—logt) * f(t)(1 —logt) < (1 —1logt) logy)
=1 - —=dt - ———dt + dt +
o8y /1 t ! /1 o /y ! Y

2 2

1 2

_ (logy) +C+O<logy>
2 Yy




for some function f(z) < 1 and constant ¢ € R by partial summation. For the second
sum on the right-hand side,

SO = X wm) (= +0)
m
m<z2/3 n<z/m m<x2/3
_ x(log ;;2/3)2 4 eszlog 223 4+ ey + O (x2/3)

for some constants c3, c4 € R, where we have used that

ZT(m) _ylogy+(2'y—1)y+g(y)+/yt10gt+(2'v—1)t+g(t)dt
1

2
<y m Y t

(log y)2 / 1
= ——42ylogy+c+0(—
2 NG
for some function g(z) < /z and constant ¢’ € R by partial summation. Finally, for
the third sum, we have

Z r(m) = |/ <x2/3 log 2%/ + (2y — 1)z?? + O (:cl/?’)) = csx log x+cex+0 <x2/3 log :1;)
1/3
2/3

n<zx
m<x

for some constants cs5, cg € R. Putting everything together yields

1 (1/3)2  (2/3)2
ZT(TL) = (3 | /2 ) + ( /2 ) ) z(logz)* 4 crxlogx + cgx + O <a:2/3 logm>
n<x
for some constants c¢7, cg € R. Since %— % + (2/23)2 = %, this is the desired asymptotic.

We proceed via induction, arguing analogously to the previous part. So assume that,

for a general k > 2, there exists a polynomial P, € R|z] of degree k — 1 and with leading

coefficient ﬁ such that

> 7i(n) = yPi(logy) + O (yl‘l/k(log y)“)
n<ly
for all y > 2. Using the first part, we have that ) _ 7k11(n) equals

NI mwldy =D wm)= D D wm+ D> D wmm)— D> (m).

n<z dln nm<x n<gl/(k+1) m<z/n m<zk/(k+1) n<z/m n<gl/(k+1)
m<gh/(E+1)

For the first sum on the right-hand side, we have

YD) wm= > <2Pk (logz>+0<(z>11/k (logx)k;—2>>

n<gzl/(k+1) m<z/n n<gl/(k+1)

=z Z %Pk (log %) +0 (:El_l/(k+1)(log x)k_2> .

ngxl/(lﬁ—l)



Observe that Py (log £) equals

1 k— .
Py (logx —logn) = 'Z < > (log z)*(—logn)* 1=+ Z #(log z)*(logn)’*
=0 i+i' <k—1
for some a; 7 € R. Thus, it suffices to obtain asymptotics for >, (logn") for each

7 =0,...,k—1, and we have already taken care of the cases j = 0,1 previously. By
partial summation, for j > 1, we have

Z(bin)j (y+ fly ))(logy)j+/y (t+ f(1)(logt — j)(logt)"

t2

n<y

_ (logy) / f(#) 10gt—J)(1ogt)j‘1dt+/y (logt—ji(logt)j‘ldHO <(1ogyy)j)

1
_ (logy)’™* (log y)?
S+l y )
for some function f(z) < 1 and polynomial @; € R[z] of degree at most j, since
I (10% D' qp = Qo)™ o0 an) integers 1+ € N. It follows that

i+1
lek<10g ) < ; )bgw)( 10gy)k_i+Rk(logy)+O<(logz)k_l>

n<y 1=

logw ( ) + Ry (logy) + O <(10gz)k1>

for some polynomial Ry € R[z] of degree at most k£ — 1, since

P () ey ;(Zk_i(f)zi(_w)k_i)zw.

=0

+ Q;(logy) + O <

k—

for all z,w € R. Thus,

k_ k/(k+1))F
S nm) = ,(log2) (Zo'gx ) V2R, <logm1/(k+1)>+0 <$1—1/(k+1)(10g$)k—1> _

n<gl/(k+1) m<z/n

For the second sum on the right-hand side, we have that - k/k+1) D <y /m Te(m)
equals

Z Tk (m) (% + O(l)) =z Z kanm) +0 (ml_l/(k+1)(log x)k_1> )

m<zk/(+1) m<gh/(E+1)
By partial summation,

(M Pi(lo Y tP.(logt t
5 k(m) _ yP( gz)+g(y)+/1 i gt2)+g()dt

m<y

_ yPillogy) +9(y) /1°° at) g, o[ Bloet)y, 1 g < I <10gt>’“‘2dt>

y +2 1 t1+1/k

log y)* log y)" 2



for some g(z) < z'~*(log z)*~2 and polynomial S, € RJ[z] of degree at most k — 1.
Thus,

k/(k+1))F
Z Z Tk(m) = l‘(logxk')‘l—l“Sk (logxk/(k+1)>+0 (mlfl/(kJrl)(logx)kfl) )

m<zk/(+1) n<z/m
Finally, we have

> mlm) = |2/ (w’“/ #40py (loga*/#HD) + 0 <(xk/(k+1>>”/ " (log x)k_2>)

n<al/ (k1)
m<ak/(k+1)

= 2Ty (logz) + O <x1_1/(k+1)(log a:)k_1>

for some polynomial T}, € R[z] of degree at most k — 1. Putting everything together, we
have that ), 7kt1(n) equals

<<10g9:)’“ — (log a*/(k+1)" . (log o/ (D)
€T

Kt k! ) + 22U (logz) + O ($1_1/(k+1)(]0g x)k—l)

~ z(log {L‘)k

] + zUg(log x) + O (ml_l/(kH) (log :c)k_1>

for some polynomial Uy, € R|[z] of degree at most k — 1, giving the desired asymptotic.

k times

——

Since 1 is multiplicative, this follows from the fact that 7, = 1 % - - - x 1 (which we showed
in the previous problem) and that the Dirichlet convolution of two multiplicative func-
tions is multiplicative.

The lower bound 7 (p®) > k follows from noting that Hle d; = p® for all (dy,...,dy) €
{(p*,1,...,1),...,(1,...,1,p*)}. For the upper bound 7;(p®) < min {ka, (a+ 1)k_1},
observe that if Hle d; = p®, then d; = p* for some nonnegative integers a; that satisfy
Zle a; = a. Since the a; are nonnegative, we must have 0 < a; < a for each ¢ =

1,...,k. This gives at most (a + 1)]“_1 choices of ay,...,ar_1, and since any choice of
ai,...,a_, uniquely determines ay, it follows that 73, (p®) < (a + 1)*~1. Note also that
any k-tuple of nonnegative integers (a1, ..., ax) for which Zle a; = a corresponds to a

unique a-tuple of integers (b1, ...,b,) with each b; € {1,...,k} by taking b; to be the
smallest index ¢ for which Zle a; > j. It follows that 7(p*) < k® as well. To obtain
k<) < 73.(n) < min {kQ("), T(n)k_l} for n € N with prime factorization n = p{* - - - pj*,
we simply take the product of the inequalities just obtained over all i = 1,...,¢, and use
that w(n) = £, Q(f) = X0, ai, and 7(n) = T'_; (a; + 1).

Since, as observed in the previous part, 7 (p®) equals the number of k-tuples of nonnega-
tive integers (a1, ..., ax) that satisfy Zle a; = a, we immediately have 75 (p®) = (a;gf;l)
by stars and bars.

By the definition of Q(n;y), we have ("% < n. Taking log of both sides and rearranging

yields Q(n;y) < igiz




(e)

We factor n as the product of ]_[p ||np and [[pa, p* and use the multiplicativity of 7

P>y
and the bounds from the second part to obtain

n) < [[e+D)"" ] &~

p?n p|In
Py P>y

< 2logn and

For the second inequality, we use that if p® || n, then a = bg"J < logn

log p log 2
the trivial bound 7(y) < y and the bound on Q(n;y) from the previous part to obtain

H (CL + l)kfl H k< (2 logn 4 1)(k*1)y klogn/logy'

p?(n p*n
P<y P>y
We pick y = (logki%. With this choice of y, we have

klogn/ logy _ nlog k/(loglogn—3logloglogn) _ n(1+o(1)) log k/loglogn

and

(2logn + 1)(’“*1)1’ = (2logn + 1)(k*1)10gn/(10g log n)? < nO((k=1)/(loglogn)?)

It now follows from the previous part that 74,(n) < n{1+e(1)logk/loglogn

By the previous part, there exists some function f : [1,00) — R such that f(z) — 0 as

& — oo for which 7(n) < n(i+/(n)leg2/loglogn fo1 4]l n > e, say. Let € > 0, and let z be

¢ (/@) log?

large enough so tha Tog log &

< &, which must exist since loglogz — oo and f(z) — 0

as © — 00. Then, for all n > z, we have 7(n) < n®. By taking C. = max,<, ng), we

obtain that 7(n) < (C: + 1)n® for all n € N. This certamly implies that 7(n) <. n



