Math 675: Analytic Theory of Numbers Solutions to problem set \# 1

January 28, 2024

1. (a) Suppose first that n is squarefull. Note that 1 is squarefull since the definition $p \mid n \Longrightarrow$ $p^{2} \mid n$ is vacuous in this case, and $1=1^{2} \cdot 1^{3}$. If $n>1$ is squarefull, then n has prime factorization $n=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$ with $e_{i} \geq 2$ for each $i=1, \ldots, k$, and so we can write $n=a^{2} b^{3}$ for $a=p_{1}^{\left\lfloor e_{1} / 2\right\rfloor-\epsilon\left(e_{1}\right)} \cdots p_{k}^{\left\lfloor e_{k} / 2\right\rfloor-\epsilon\left(e_{k}\right)}$ and $b=p_{1}^{\epsilon\left(e_{1}\right)} \cdots p_{k}^{\epsilon\left(e_{k}\right)}$, where we define $\epsilon: \mathbf{N} \rightarrow\{0,1\}$ by $\epsilon(e)=0$ if e is even and $\epsilon(e)=1$ if e is odd. Indeed, if e is even, then $2\left(\left\lfloor\frac{e}{2}\right\rfloor-\epsilon(e)\right)+3 \epsilon(e)=2 \frac{e}{2}=e$ and, if e is odd, then $2\left(\left\lfloor\frac{e}{2}\right\rfloor-\epsilon(e)\right)+3 \epsilon(e)=$ $2\left(\frac{e-1}{2}-1\right)+3=e$.
Now suppose that $n=a^{2} b^{3}$ for some $a, b \in \mathbf{N}$. If p is a prime for which $p \mid n$, then $p \mid a^{2}$ or $p \mid b^{3}$, and thus $p \mid a$ or $p \mid b$. In either case, $p^{2} \mid n$. We conclude that n is squarefull.
(b) First of all, the squares are squarefull, so

$$
\#\{n \leq x: n \text { is squarefull }\} \geq\lfloor\sqrt{x}\rfloor \gg \sqrt{x} .
$$

For the upper bound, we have

$$
\#\{n \leq x: n \text { is squarefull }\} \leq \sum_{a \leq \sqrt{x}} \sum_{b \leq \sqrt[3]{x / a^{2}}} 1 \leq \sum_{a \leq \sqrt{x}} \sqrt[3]{\frac{x}{a^{2}}} \ll x^{1 / 3}(\sqrt{x})^{1 / 3} \ll \sqrt{x}
$$

2. (a) Every integer $n \leq N$ that is not squarefree is divisible by the square of at least one prime, so we indeed have

$$
Q(N) \geq N-\sum_{p} \sum_{n \leq N} 1_{p^{2} \mid n}=N-\sum_{p}\left\lfloor\frac{N}{p^{2}}\right\rfloor .
$$

(b) The first inequality follows from the fact that all primes greater than 2 are odd and that not all odd integers are primes. The second inequality follows from the general inequality $2 k(2 k+2)<(2 k+1)^{2}$ using

$$
\frac{1}{2}\left(\frac{1}{2 k}-\frac{1}{2 k+2}\right)=\frac{1}{2 k(2 k+2)} .
$$

The equality follows by telescoping.
(c) By the previous two parts, we have

$$
Q(N) \geq N-\sum_{p}\left\lfloor\frac{N}{p^{2}}\right\rfloor \geq N-\sum_{p} \frac{N}{p^{2}}>N-\frac{N}{2}=\frac{N}{2} .
$$

(d) Let $n \geq 2$, and consider the set $S=\{n-m: 1 \leq m<n$ and m is squarefree $\} \subset$ $\{1, \ldots, n-1\}$. By the previous part, we have $|S|=Q(n-1)>\frac{n-1}{2}$. On the other hand, the set of squarefree integers in $\{1, \ldots, n-1\}$ also has size greater than $\frac{n-1}{2}$. Thus, S and the squarefrees in $\{1, \ldots, n-1\}$ have nontrivial intersection by the pigeonhole principle. It follows that there exist squarefree $m, m^{\prime} \in\{1, \ldots, n-1\}$ such that $n=m+m^{\prime}$.
3. (a) Observe that $|\psi(x)-\theta(x)|=\psi(x)-\theta(x)$, so we have

$$
|\psi(x)-\theta(x)|=\sum_{\substack{p^{a} \leq x \\ a \geq 2}} \log p \leq \sum_{p \leq \sqrt{x}}\left\lfloor\frac{\log x}{\log p}\right\rfloor \log p \leq \log x \sum_{p \leq \sqrt{x}} 1 \leq \sqrt{x} \log x .
$$

(b) That $\psi(x) \sim x \Longleftrightarrow \theta(x) \sim x$ follows immediately from the first part, so it remains to show that $\pi(x) \sim \frac{x}{\log x} \Longleftrightarrow \theta(x) \sim x$. By writing $\pi(x)=\sum_{p \leq x} \frac{\log p}{\log p}$ and applying partial summation, we have

$$
\pi(x)=\frac{\theta(x)}{\log x}+\int_{2}^{x} \frac{\theta(t)}{t(\log t)^{2}} \mathrm{~d} t=\frac{\theta(x)}{\log x}+O\left(\int_{2}^{x} \frac{\mathrm{~d} t}{(\log t)^{2}}\right)
$$

where we have used Chebyshev's upper bound $\theta(t) \ll \psi(t) \ll t$. Since

$$
\int_{2}^{x} \frac{\mathrm{~d} t}{(\log t)^{2}}=\int_{2}^{\sqrt{x}} \frac{\mathrm{~d} t}{(\log t)^{2}}+\int_{\sqrt{x}}^{x} \frac{\mathrm{~d} t}{(\log t)^{2}} \ll \sqrt{x}+\frac{x}{(\log x)^{2}} \ll \frac{x}{(\log x)^{2}}
$$

it follows that $\left|\pi(x)-\frac{\theta(x)}{\log x}\right| \ll \frac{x}{(\log x)^{2}}$. This immediately yields that $\pi(x) \sim \frac{x}{\log x} \Longleftrightarrow$ $\theta(x) \sim x$.
4. (a) Writing $\omega(n)=\sum_{p} 1_{p \mid n}$, we have

$$
\sum_{n \leq x} \omega(n)=\sum_{n \leq x} \sum_{p} 1_{p \mid n}=\sum_{p \leq x} \sum_{n \leq x} 1_{p \mid n}=\sum_{p \leq x}\left(\frac{x}{p}+O(1)\right)=x \log \log x+O(x),
$$

where we have used Mertens' second theorem.
(b) We have

$$
\sum_{n \leq x} \omega(n)^{2}=\sum_{n \leq x}\left(\sum_{p} 1_{p \mid n}\right)^{2}=\sum_{n \leq x} \sum_{p, q} 1_{p \mid n} 1_{q \mid n}=\sum_{n \leq x} \sum_{p} 1_{p \mid n}+\sum_{n \leq x} \sum_{p \neq q} 1_{p q \mid n} .
$$

The first sum on the right-hand side equals $x \log \log x+O(x)$ by the previous part. For the second sum on the right-hand side, we have

$$
\sum_{n \leq x} \sum_{p \neq q} 1_{p q \mid n}=\sum_{\substack{p q \leq x \\ p \neq q}} \sum_{n \leq x} 1_{p q \mid n}=x \sum_{p q \leq x} \frac{1}{p q}+O(x)
$$

where we have used that $\sum_{p \leq x} \sum_{n \leq x} 1_{p^{2} \mid n} \ll \sum_{p \leq x} \frac{x}{p^{2}} \ll x$ and $\sum_{p q \leq x} 1 \ll x$ (by unique factorization). Using the hyperbola method,

$$
\sum_{p q \leq x} \frac{1}{p q}=2 \sum_{p \leq \sqrt{x}} \frac{1}{p} \sum_{q \leq x / p} \frac{1}{q}-\sum_{p, q \leq \sqrt{x}} \frac{1}{p q}=2 \sum_{p \leq \sqrt{x}} \frac{\log \log \frac{x}{p}+O(1)}{p}-(\log \log \sqrt{x}+O(1))^{2}
$$

which equals $2\left((\log \log x)^{2}+O(\log \log x)\right)-(\log \log x+O(1))^{2}=(\log \log x)^{2}+O(\log \log x)$ since $\log \log y=\log \log x+O(1)$ whenever $\sqrt{x} \leq y \leq x$. Putting everything together, we conclude that $\sum_{n \leq x} \omega(n)^{2}$ equals

$$
x\left((\log \log x)^{2}+O(\log \log x)\right)+O(x \log \log x)=x(\log \log x)^{2}+O(x \log \log x) .
$$

(c) Note that, by the previous two parts,

$$
\sum_{n \leq x}|\omega(n)-\log \log x|^{2}=\sum_{n \leq x} \omega(n)^{2}-2 \log \log x \sum_{n \leq x} \omega(n)+x(\log \log x)^{2} \ll x \log \log x .
$$

Set $E=\left\{n \leq x:|\omega(n)-\log \log x| \geq(\log \log x)^{3 / 4}\right\}$, say. Then

$$
\sum_{n \leq x}|\omega(n)-\log \log x|^{2} \geq|E|(\log \log x)^{3 / 2}
$$

Comparing with the upper bound above, it follows that $|E| \ll \frac{x}{\sqrt{\log \log x}}$. Thus, for all but $\ll \frac{x}{\sqrt{\log \log x}}$ natural numbers $n \leq x,|\omega(n)-\log \log x|<(\log \log x)^{3 / 4}$. Since $|\log \log n-\log \log x|<1$ for all $\sqrt{x} \leq n \leq x$, it follows that $|\omega(n)-\log \log n|<$ $(\log \log x)^{3 / 4}$ for all but $\ll \frac{x}{\log \log x}$ natural numbers $n \leq x$. This implies the weaker qualitative statement that $\omega(n) \sim \log \log n$ for all but $o(x)$ natural numbers $n \leq x$.
5. (a) Let $n \in \mathbf{N}$, and note that there is an obvious bijection f from
$\left\{\left(d_{1}, \ldots, d_{k}\right) \in \mathbf{N}^{k}: d_{1} \cdots d_{k}=n\right\} \rightarrow\left\{\left(d,\left(d_{1}, \ldots, d_{k-1}\right)\right) \in \mathbf{N} \times \mathbf{N}^{k-1}: d \mid n, d_{1} \cdots d_{k-1}=\frac{n}{d}\right\}$ given by $f\left(d_{1}, \ldots, d_{k}\right)=\left(d_{1},\left(d_{2}, \ldots, d_{k-1}\right)\right)$.
(b) Observe, first, that both $\mathcal{D} \tau(s)$ and $\zeta(s)=\mathcal{D} 1(s)$ (and thus $\zeta(s)^{k}$ as well) are absolutely convergent in the half-plane $\sigma>1$. The previous part says that $\tau_{k}=\tau_{k-1} \star 1$ for all $k \geq 2$. Thus, $\tau_{k}=\overbrace{1 \star \cdots \star 1}^{k \text { times }}$, and so $\mathcal{D} \tau(s)=\mathcal{D}(1 \star \cdots \star 1)(s)=\zeta(s)^{k}$.
(c) We will use the hyperbola method. In class, we showed that $\sum_{n \leq x} \tau(n)=x \log x+(2 \gamma-$ 1) $x+O(\sqrt{x})$, and using the first part, we have

$$
\sum_{n \leq x} \tau_{3}(n)=\sum_{n \leq x} \sum_{d \mid n} \tau(d)=\sum_{n m \leq x} \tau(m)=\sum_{n \leq x^{1 / 3}} \sum_{m \leq x / n} \tau(m)+\sum_{m \leq x^{2 / 3}} \sum_{n \leq x / m} \tau(m)-\sum_{\substack{n \leq x^{1 / 3} \\ m \leq x^{2 / 3}}} \tau(m) .
$$

For the first sum, we have

$$
\begin{aligned}
\sum_{n \leq x^{1 / 3}} \sum_{m \leq x / n} \tau(m) & =\sum_{n \leq x^{1 / 3}}\left(\frac{x}{n} \log \frac{x}{n}+(2 \gamma-1) \frac{x}{n}+O\left(\sqrt{\frac{x}{n}}\right)\right) \\
& =x(\log x)\left(\log x^{1 / 3}\right)-x \frac{\left(\log x^{1 / 3}\right)^{2}}{2}+c_{1} x \log x+c_{2} x+O\left(x^{2 / 3} \log x\right),
\end{aligned}
$$

for some constants $c_{1}, c_{2} \in \mathbf{R}$, where we have used that

$$
\begin{aligned}
\sum_{n \leq y} \frac{\log n}{n} & =\frac{(y+f(y)) \log y}{y}-\int_{1}^{y} \frac{(t+f(t))(1-\log t)}{t^{2}} \mathrm{~d} t \\
& =\log y-\int_{1}^{y} \frac{(1-\log t)}{t} \mathrm{~d} t-\int_{1}^{\infty} \frac{f(t)(1-\log t)}{t^{2}} \mathrm{~d} t+O\left(\int_{y}^{\infty} \frac{(1-\log t)}{t^{2}} \mathrm{~d} t+\frac{\log y}{y}\right) \\
& =\frac{(\log y)^{2}}{2}+c+O\left(\frac{\log y}{y}\right)
\end{aligned}
$$

for some function $f(z) \ll 1$ and constant $c \in \mathbf{R}$ by partial summation. For the second sum on the right-hand side,

$$
\begin{aligned}
\sum_{m \leq x^{2 / 3}} \sum_{n \leq x / m} \tau(m) & =\sum_{m \leq x^{2 / 3}} \tau(m)\left(\frac{x}{m}+O(1)\right) \\
& =x \sum_{m \leq x^{2 / 3}} \frac{\tau(m)}{m}+O\left(x^{2 / 3} \log x\right) \\
& =x \frac{\left(\log x^{2 / 3}\right)^{2}}{2}+c_{3} x \log x^{2 / 3}+c_{4}+O\left(x^{2 / 3}\right)
\end{aligned}
$$

for some constants $c_{3}, c_{4} \in \mathbf{R}$, where we have used that

$$
\begin{aligned}
\sum_{m \leq y} \frac{\tau(m)}{m} & =\frac{y \log y+(2 \gamma-1) y+g(y)}{y}+\int_{1}^{y} \frac{t \log t+(2 \gamma-1) t+g(t)}{t^{2}} \mathrm{~d} t \\
& =\frac{(\log y)^{2}}{2}+2 \gamma \log y+c^{\prime}+O\left(\frac{1}{\sqrt{y}}\right)
\end{aligned}
$$

for some function $g(z) \ll \sqrt{z}$ and constant $c^{\prime} \in \mathbf{R}$ by partial summation. Finally, for the third sum, we have

$$
\sum_{\substack{n \leq x^{1 / 3} \\ m \leq x^{2 / 3}}} \tau(m)=\left\lfloor x^{1 / 3}\right\rfloor\left(x^{2 / 3} \log x^{2 / 3}+(2 \gamma-1) x^{2 / 3}+O\left(x^{1 / 3}\right)\right)=c_{5} x \log x+c_{6} x+O\left(x^{2 / 3} \log x\right)
$$

for some constants $c_{5}, c_{6} \in \mathbf{R}$. Putting everything together yields

$$
\sum_{n \leq x} \tau(n)=\left(\frac{1}{3}-\frac{(1 / 3)^{2}}{2}+\frac{(2 / 3)^{2}}{2}\right) x(\log x)^{2}+c_{7} x \log x+c_{8} x+O\left(x^{2 / 3} \log x\right)
$$

for some constants $c_{7}, c_{8} \in \mathbf{R}$. Since $\frac{1}{3}-\frac{(1 / 3)^{2}}{2}+\frac{(2 / 3)^{2}}{2}=\frac{1}{2}$, this is the desired asymptotic.
(d) We proceed via induction, arguing analogously to the previous part. So assume that, for a general $k \geq 2$, there exists a polynomial $P_{k} \in \mathbf{R}[z]$ of degree $k-1$ and with leading coefficient $\frac{1}{(k-1)!}$ such that

$$
\sum_{n \leq y} \tau_{k}(n)=y P_{k}(\log y)+O\left(y^{1-1 / k}(\log y)^{k-2}\right)
$$

for all $y \geq 2$. Using the first part, we have that $\sum_{n \leq x} \tau_{k+1}(n)$ equals

$$
\sum_{n \leq x} \sum_{d \mid n} \tau_{k}(d)=\sum_{n m \leq x} \tau_{k}(m)=\sum_{n \leq x^{1 /(k+1)}} \sum_{m \leq x / n} \tau_{k}(m)+\sum_{m \leq x^{k /(k+1)}} \sum_{n \leq x / m} \tau_{k}(m)-\sum_{\substack{n \leq x^{1 /(k+1)} \\ m \leq x^{k /(k+1)}}} \tau_{k}(m) .
$$

For the first sum on the right-hand side, we have

$$
\begin{aligned}
\sum_{n \leq x^{1 /(k+1)}} \sum_{m \leq x / n} \tau_{k}(m) & =\sum_{n \leq x^{1 /(k+1)}}\left(\frac{x}{n} P_{k}\left(\log \frac{x}{n}\right)+O\left(\left(\frac{x}{n}\right)^{1-1 / k}(\log x)^{k-2}\right)\right) \\
& =x \sum_{n \leq x^{1 /(k+1)}} \frac{1}{n} P_{k}\left(\log \frac{x}{n}\right)+O\left(x^{1-1 /(k+1)}(\log x)^{k-2}\right)
\end{aligned}
$$

Observe that $P_{k}\left(\log \frac{x}{n}\right)$ equals
$P_{k}(\log x-\log n)=\frac{1}{(k-1)!} \sum_{i=0}^{k-1}\binom{k-1}{i}(\log x)^{i}(-\log n)^{k-1-i}+\sum_{i+i^{\prime}<k-1} a_{i, i^{\prime}}^{\prime}(\log x)^{i}(\log n)^{i^{\prime}}$
for some $a_{i, i^{\prime}} \in \mathbf{R}$. Thus, it suffices to obtain asymptotics for $\sum_{n \leq y} \frac{(\log n)^{j}}{n}$ for each $j=0, \ldots, k-1$, and we have already taken care of the cases $j=0,1$ previously. By partial summation, for $j \geq 1$, we have

$$
\begin{aligned}
\sum_{n \leq y} \frac{(\log n)^{j}}{n} & =\frac{(y+f(y))(\log y)^{j}}{y}+\int_{1}^{y} \frac{(t+f(t))(\log t-j)(\log t)^{j-1}}{t^{2}} \mathrm{~d} t \\
& =(\log y)^{j}+\int_{1}^{\infty} \frac{f(t)(\log t-j)(\log t)^{j-1}}{t^{2}} \mathrm{~d} t+\int_{1}^{y} \frac{(\log t-j)(\log t)^{j-1}}{t} \mathrm{~d} t+O\left(\frac{(\log y)^{j}}{y}\right) \\
& =\frac{(\log y)^{j+1}}{j+1}+Q_{j}(\log y)+O\left(\frac{(\log y)^{j}}{y}\right)
\end{aligned}
$$

for some function $f(z) \ll 1$ and polynomial $Q_{j} \in \mathbf{R}[z]$ of degree at most j, since $\int_{1}^{y} \frac{(\log t)^{i}}{t} \mathrm{~d} t=\frac{(\log y)^{i+1}}{i+1}$ for all integers $i \in \mathbf{N}$. It follows that

$$
\begin{aligned}
\sum_{n \leq y} \frac{1}{n} P_{k}\left(\log \frac{x}{n}\right) & =\frac{-1}{(k-1)!} \sum_{i=0}^{k-1}\binom{k-1}{i} \frac{(\log x)^{i}}{k-i}(-\log y)^{k-i}+R_{k}(\log y)+O\left(\frac{(\log y)^{k-1}}{y}\right) \\
& =\frac{(\log x)^{k}-\left(\log \frac{x}{y}\right)^{k}}{k!}+R_{k}(\log y)+O\left(\frac{(\log y)^{k-1}}{y}\right)
\end{aligned}
$$

for some polynomial $R_{k} \in \mathbf{R}[z]$ of degree at most $k-1$, since
$\frac{1}{(k-1)!} \sum_{i=0}^{k-1}\binom{k-1}{i} \frac{z^{i}(-w)^{k-i}}{k-i}=\sum_{i=0}^{k-1} \frac{z^{i}(-w)^{k-i}}{i!(k-i)!}=\frac{1}{k!}\left(z^{k}-\sum_{i=0}^{k}\binom{k}{i} z^{i}(-w)^{k-i}\right)=\frac{z^{k}-(z-w)^{k}}{k!}$. for all $z, w \in \mathbf{R}$. Thus,

$$
\sum_{n \leq x^{1 /(k+1)}} \sum_{m \leq x / n} \tau_{k}(m)=x \frac{(\log x)^{k}-\left(\log x^{k /(k+1)}\right)^{k}}{k!}+x R_{k}\left(\log x^{1 /(k+1)}\right)+O\left(x^{1-1 /(k+1)}(\log x)^{k-1}\right)
$$

For the second sum on the right-hand side, we have that $\sum_{m \leq x^{k /(k+1)}} \sum_{n \leq x / m} \tau_{k}(m)$ equals

$$
\sum_{m \leq x^{k /(k+1)}} \tau_{k}(m)\left(\frac{x}{m}+O(1)\right)=x \sum_{m \leq x^{k /(k+1)}} \frac{\tau_{k}(m)}{m}+O\left(x^{1-1 /(k+1)}(\log x)^{k-1}\right)
$$

By partial summation,

$$
\begin{aligned}
\sum_{m \leq y} \frac{\tau_{k}(m)}{m} & =\frac{y P_{k}(\log y)+g(y)}{y}+\int_{1}^{y} \frac{t P_{k}(\log t)+g(t)}{t^{2}} \mathrm{~d} t \\
& =\frac{y P_{k}(\log y)+g(y)}{y}+\int_{1}^{\infty} \frac{g(t)}{t^{2}} \mathrm{~d} t+\int_{1}^{y} \frac{P_{k}(\log t)}{t} \mathrm{~d} t+O\left(\int_{y}^{\infty} \frac{(\log t)^{k-2}}{t^{1+1 / k}} \mathrm{~d} t\right) \\
& =\frac{(\log y)^{k}}{k!}+S_{k}(\log y)+O\left(\frac{(\log y)^{k-2}}{y^{1 / k}}\right)
\end{aligned}
$$

for some $g(z) \ll z^{1-1 / k}(\log z)^{k-2}$ and polynomial $S_{k} \in \mathbf{R}[z]$ of degree at most $k-1$. Thus,

$$
\sum_{m \leq x^{k /(k+1)}} \sum_{n \leq x / m} \tau_{k}(m)=x \frac{\left(\log x^{k /(k+1)}\right)^{k}}{k!}+x S_{k}\left(\log x^{k /(k+1)}\right)+O\left(x^{1-1 /(k+1)}(\log x)^{k-1}\right) .
$$

Finally, we have

$$
\begin{aligned}
\sum_{\substack{n \leq x^{1 /(k+1)} \\
m \leq x^{k /(k+1)}}} \tau_{k}(m) & =\left\lfloor x^{1 /(k+1)}\right\rfloor\left(x^{k /(k+1)} P_{k}\left(\log x^{k /(k+1)}\right)+O\left(\left(x^{k /(k+1)}\right)^{1-1 / k}(\log x)^{k-2}\right)\right) \\
& =x T_{k}(\log x)+O\left(x^{1-1 /(k+1)}(\log x)^{k-1}\right)
\end{aligned}
$$

for some polynomial $T_{k} \in \mathbf{R}[z]$ of degree at most $k-1$. Putting everything together, we have that $\sum_{n \leq x} \tau_{k+1}(n)$ equals

$$
\begin{aligned}
& x\left(\frac{(\log x)^{k}-\left(\log x^{k /(k+1)}\right)^{k}}{k!}+\frac{\left(\log x^{k /(k+1)}\right)^{k}}{k!}\right)+x U_{k}(\log x)+O\left(x^{1-1 /(k+1)}(\log x)^{k-1}\right) \\
& =\frac{x(\log x)^{k}}{k!}+x U_{k}(\log x)+O\left(x^{1-1 /(k+1)}(\log x)^{k-1}\right)
\end{aligned}
$$

for some polynomial $U_{k} \in \mathbf{R}[z]$ of degree at most $k-1$, giving the desired asymptotic.
6. (a) Since 1 is multiplicative, this follows from the fact that $\tau_{k}=\overbrace{1 \star \cdots \star 1}^{k \text { times }}$ (which we showed in the previous problem) and that the Dirichlet convolution of two multiplicative functions is multiplicative.
(b) The lower bound $\tau_{k}\left(p^{a}\right) \geq k$ follows from noting that $\prod_{i=1}^{k} d_{i}=p^{a}$ for all $\left(d_{1}, \ldots, d_{k}\right) \in$ $\left\{\left(p^{a}, 1, \ldots, 1\right), \ldots,\left(1, \ldots, 1, p^{a}\right)\right\}$. For the upper bound $\tau_{k}\left(p^{a}\right) \leq \min \left\{k^{a},(a+1)^{k-1}\right\}$, observe that if $\prod_{i=1}^{k} d_{i}=p^{a}$, then $d_{i}=p^{a_{i}}$ for some nonnegative integers a_{i} that satisfy $\sum_{i=1}^{k} a_{i}=a$. Since the a_{i} are nonnegative, we must have $0 \leq a_{i} \leq a$ for each $i=$ $1, \ldots, k$. This gives at most $(a+1)^{k-1}$ choices of a_{1}, \ldots, a_{k-1}, and since any choice of a_{1}, \ldots, a_{k-1} uniquely determines a_{k}, it follows that $\tau_{k}\left(p^{a}\right) \leq(a+1)^{k-1}$. Note also that any k-tuple of nonnegative integers $\left(a_{1}, \ldots, a_{k}\right)$ for which $\sum_{i=1}^{k} a_{i}=a$ corresponds to a unique a-tuple of integers $\left(b_{1}, \ldots, b_{a}\right)$ with each $b_{j} \in\{1, \ldots, k\}$ by taking b_{j} to be the smallest index ℓ for which $\sum_{i=1}^{\ell} a_{i} \geq j$. It follows that $\tau_{k}\left(p^{a}\right) \leq k^{a}$ as well. To obtain $k^{\omega(n)} \leq \tau_{k}(n) \leq \min \left\{k^{\Omega(n)}, \tau(n)^{k-1}\right\}$ for $n \in \mathbf{N}$ with prime factorization $n=p_{1}^{a_{1}} \cdots p_{\ell}^{a_{\ell}}$, we simply take the product of the inequalities just obtained over all $i=1, \ldots, \ell$, and use that $\omega(n)=\ell, \Omega(\ell)=\sum_{i=1}^{\ell} a_{i}$, and $\tau(n)=\prod_{i=1}^{\ell}\left(a_{i}+1\right)$.
(c) Since, as observed in the previous part, $\tau_{k}\left(p^{a}\right)$ equals the number of k-tuples of nonnegative integers $\left(a_{1}, \ldots, a_{k}\right)$ that satisfy $\sum_{i=1}^{k} a_{i}=a$, we immediately have $\tau_{k}\left(p^{a}\right)=\binom{a+k-1}{k-1}$ by stars and bars.
(d) By the definition of $\Omega(n ; y)$, we have $y^{\Omega(n ; y)} \leq n$. Taking log of both sides and rearranging yields $\Omega(n ; y) \leq \frac{\log n}{\log y}$.
(e) We factor n as the product of $\prod_{\substack{p^{a} \| n \\ p \leq y}} p^{a}$ and $\prod_{\substack{p^{a} \| n \\ p>y}} p^{a}$ and use the multiplicativity of τ and the bounds from the second part to obtain

$$
\tau_{k}(n) \leq \prod_{\substack{p^{a} \| n \\ p \leq y}}(a+1)^{k-1} \prod_{\substack{p^{a} \| n \\ p>y}} k^{a} .
$$

For the second inequality, we use that if $p^{a} \| n$, then $a=\left\lfloor\frac{\log n}{\log p}\right\rfloor \leq \frac{\log n}{\log 2} \leq 2 \log n$ and the trivial bound $\pi(y) \leq y$ and the bound on $\Omega(n ; y)$ from the previous part to obtain

$$
\prod_{\substack{p^{a} \| n \\ p \leq y}}(a+1)^{k-1} \prod_{\substack{p^{a} \| n \\ p>y}} k^{a} \leq(2 \log n+1)^{(k-1) y} k^{\log n / \log y} .
$$

(f) We pick $y=\frac{\log n}{(\log \log n)^{3}}$. With this choice of y, we have

$$
k^{\log n / \log y}=n^{\log k /(\log \log n-3 \log \log \log n)}=n^{(1+o(1)) \log k / \log \log n}
$$

and

$$
(2 \log n+1)^{(k-1) y}=(2 \log n+1)^{(k-1) \log n /(\log \log n)^{3}} \ll n^{O\left((k-1) /(\log \log n)^{2}\right)} .
$$

It now follows from the previous part that $\tau_{k}(n) \leq n^{(1+o(1))} \log k / \log \log n$.
(g) By the previous part, there exists some function $f:[1, \infty) \rightarrow \mathbb{R}$ such that $f(x) \rightarrow 0$ as $x \rightarrow \infty$ for which $\tau(n) \leq n^{(1+f(n)) \log 2 / \log \log n}$ for all $n \geq e^{e}$, say. Let $\varepsilon>0$, and let x be large enough so that $\frac{(1+f(x)) \log 2}{\log \log x} \leq \varepsilon$, which must exist since $\log \log x \rightarrow \infty$ and $f(x) \rightarrow 0$ as $x \rightarrow \infty$. Then, for all $n \geq x$, we have $\tau(n) \leq n^{\varepsilon}$. By taking $C_{\varepsilon}=\max _{n<x} \frac{\tau(n)}{n^{\varepsilon}}$, we obtain that $\tau(n) \leq\left(C_{\varepsilon}+1\right) n^{\varepsilon}$ for all $n \in \mathbf{N}$. This certainly implies that $\tau(n)<_{\varepsilon} n^{\varepsilon}$.

