
Math 675: Analytic Theory of Numbers

Solutions to problem set # 1

January 28, 2024

1. (a) Suppose first that n is squarefull. Note that 1 is squarefull since the definition p | n =⇒
p2 | n is vacuous in this case, and 1 = 12 · 13. If n > 1 is squarefull, then n has prime
factorization n = pe11 · · · p

ek
k with ei ≥ 2 for each i = 1, . . . , k, and so we can write

n = a2b3 for a = p
be1/2c−ε(e1)
1 · · · pbek/2c−ε(ek)

k and b = p
ε(e1)
1 · · · pε(ek)

k , where we define
ε : N → {0, 1} by ε(e) = 0 if e is even and ε(e) = 1 if e is odd. Indeed, if e is even,
then 2

(
b e2c − ε(e)

)
+ 3ε(e) = 2 e2 = e and, if e is odd, then 2

(
b e2c − ε(e)

)
+ 3ε(e) =

2
(
e−1

2 − 1
)

+ 3 = e.

Now suppose that n = a2b3 for some a, b ∈ N. If p is a prime for which p | n, then p | a2

or p | b3, and thus p | a or p | b. In either case, p2 | n. We conclude that n is squarefull.

(b) First of all, the squares are squarefull, so

#{n ≤ x : n is squarefull} ≥ b
√
xc �

√
x.

For the upper bound, we have

#{n ≤ x : n is squarefull} ≤
∑
a≤
√
x

∑
b≤ 3
√
x/a2

1 ≤
∑
a≤
√
x

3

√
x

a2
� x1/3(

√
x)1/3 �

√
x.

2. (a) Every integer n ≤ N that is not squarefree is divisible by the square of at least one
prime, so we indeed have

Q(N) ≥ N −
∑
p

∑
n≤N

1p2|n = N −
∑
p

⌊
N

p2

⌋
.

(b) The first inequality follows from the fact that all primes greater than 2 are odd and
that not all odd integers are primes. The second inequality follows from the general
inequality 2k(2k + 2) < (2k + 1)2 using

1

2

(
1

2k
− 1

2k + 2

)
=

1

2k(2k + 2)
.

The equality follows by telescoping.

(c) By the previous two parts, we have

Q(N) ≥ N −
∑
p

⌊
N

p2

⌋
≥ N −

∑
p

N

p2
> N − N

2
=
N

2
.
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(d) Let n ≥ 2, and consider the set S = {n − m : 1 ≤ m < n and m is squarefree} ⊂
{1, . . . , n−1}. By the previous part, we have |S| = Q(n−1) > n−1

2 . On the other hand,
the set of squarefree integers in {1, . . . , n−1} also has size greater than n−1

2 . Thus, S and
the squarefrees in {1, . . . , n−1} have nontrivial intersection by the pigeonhole principle.
It follows that there exist squarefree m,m′ ∈ {1, . . . , n− 1} such that n = m+m′.

3. (a) Observe that |ψ(x)− θ(x)| = ψ(x)− θ(x), so we have

|ψ(x)− θ(x)| =
∑
pa≤x
a≥2

log p ≤
∑
p≤
√
x

⌊
log x

log p

⌋
log p ≤ log x

∑
p≤
√
x

1 ≤
√
x log x.

(b) That ψ(x) ∼ x ⇐⇒ θ(x) ∼ x follows immediately from the first part, so it remains
to show that π(x) ∼ x

log x ⇐⇒ θ(x) ∼ x. By writing π(x) =
∑

p≤x
log p
log p and applying

partial summation, we have

π(x) =
θ(x)

log x
+

∫ x

2

θ(t)

t(log t)2
dt =

θ(x)

log x
+O

(∫ x

2

dt

(log t)2

)
where we have used Chebyshev’s upper bound θ(t)� ψ(t)� t. Since∫ x

2

dt

(log t)2
=

∫ √x
2

dt

(log t)2
+

∫ x

√
x

dt

(log t)2
�
√
x+

x

(log x)2
� x

(log x)2
,

it follows that
∣∣∣π(x)− θ(x)

log x

∣∣∣ � x
(log x)2

. This immediately yields that π(x) ∼ x
log x ⇐⇒

θ(x) ∼ x.

4. (a) Writing ω(n) =
∑

p 1p|n, we have

∑
n≤x

ω(n) =
∑
n≤x

∑
p

1p|n =
∑
p≤x

∑
n≤x

1p|n =
∑
p≤x

(
x

p
+O(1)

)
= x log log x+O(x),

where we have used Mertens’ second theorem.

(b) We have

∑
n≤x

ω(n)2 =
∑
n≤x

(∑
p

1p|n

)2

=
∑
n≤x

∑
p,q

1p|n1q|n =
∑
n≤x

∑
p

1p|n +
∑
n≤x

∑
p6=q

1pq|n.

The first sum on the right-hand side equals x log log x+O(x) by the previous part. For
the second sum on the right-hand side, we have∑

n≤x

∑
p 6=q

1pq|n =
∑
pq≤x
p 6=q

∑
n≤x

1pq|n = x
∑
pq≤x

1

pq
+O(x),

where we have used that
∑

p≤x
∑

n≤x 1p2|n �
∑

p≤x
x
p2
� x and

∑
pq≤x 1� x (by unique

factorization). Using the hyperbola method,

∑
pq≤x

1

pq
= 2

∑
p≤
√
x

1

p

∑
q≤x/p

1

q
−

∑
p,q≤

√
x

1

pq
= 2

∑
p≤
√
x

log log x
p +O(1)

p
− (log log

√
x+O(1))2,
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which equals 2
(
(log log x)2 +O(log log x)

)
−(log log x+O(1))2 = (log log x)2+O(log log x)

since log log y = log log x+O(1) whenever
√
x ≤ y ≤ x. Putting everything together, we

conclude that
∑

n≤x ω(n)2 equals

x
(
(log log x)2 +O(log log x)

)
+O (x log log x) = x(log log x)2 +O(x log log x).

(c) Note that, by the previous two parts,∑
n≤x
|ω(n)− log log x|2 =

∑
n≤x

ω(n)2 − 2 log log x
∑
n≤x

ω(n) + x(log log x)2 � x log log x.

Set E =
{
n ≤ x : |ω(n)− log log x| ≥ (log log x)3/4

}
, say. Then∑

n≤x
|ω(n)− log log x|2 ≥ |E|(log log x)3/2

Comparing with the upper bound above, it follows that |E| � x√
log log x

. Thus, for

all but � x√
log log x

natural numbers n ≤ x, |ω(n) − log log x| < (log log x)3/4. Since

| log logn − log log x| < 1 for all
√
x ≤ n ≤ x, it follows that |ω(n) − log log n| <

(log log x)3/4 for all but � x
log log x natural numbers n ≤ x. This implies the weaker

qualitative statement that ω(n) ∼ log log n for all but o(x) natural numbers n ≤ x.

5. (a) Let n ∈ N, and note that there is an obvious bijection f from{
(d1, . . . , dk) ∈ Nk : d1 · · · dk = n

}
→
{

(d, (d1, . . . , dk−1)) ∈ N×Nk−1 : d | n, d1 · · · dk−1 =
n

d

}
given by f(d1, . . . , dk) = (d1, (d2, . . . , dk−1)).

(b) Observe, first, that both Dτ(s) and ζ(s) = D1(s) (and thus ζ(s)k as well) are absolutely
convergent in the half-plane σ > 1. The previous part says that τk = τk−1 ? 1 for all

k ≥ 2. Thus, τk =

k times︷ ︸︸ ︷
1 ? · · · ? 1, and so Dτ(s) = D(1 ? · · · ? 1)(s) = ζ(s)k.

(c) We will use the hyperbola method. In class, we showed that
∑

n≤x τ(n) = x log x+(2γ−
1)x+O(

√
x), and using the first part, we have∑

n≤x
τ3(n) =

∑
n≤x

∑
d|n

τ(d) =
∑
nm≤x

τ(m) =
∑

n≤x1/3

∑
m≤x/n

τ(m)+
∑

m≤x2/3

∑
n≤x/m

τ(m)−
∑

n≤x1/3
m≤x2/3

τ(m).

For the first sum, we have∑
n≤x1/3

∑
m≤x/n

τ(m) =
∑

n≤x1/3

(
x

n
log

x

n
+ (2γ − 1)

x

n
+O

(√
x

n

))

= x(log x)(log x1/3)− x(log x1/3)2

2
+ c1x log x+ c2x+O(x2/3 log x),

for some constants c1, c2 ∈ R, where we have used that∑
n≤y

log n

n
=

(y + f(y)) log y

y
−
∫ y

1

(t+ f(t))(1− log t)

t2
dt

= log y −
∫ y

1

(1− log t)

t
dt−

∫ ∞
1

f(t)(1− log t)

t2
dt+O

(∫ ∞
y

(1− log t)

t2
dt+

log y

y

)
=

(log y)2

2
+ c+O

(
log y

y

)
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for some function f(z) � 1 and constant c ∈ R by partial summation. For the second
sum on the right-hand side,∑

m≤x2/3

∑
n≤x/m

τ(m) =
∑

m≤x2/3
τ(m)

( x
m

+O(1)
)

= x
∑

m≤x2/3

τ(m)

m
+O

(
x2/3 log x

)
= x

(log x2/3)2

2
+ c3x log x2/3 + c4 +O

(
x2/3

)
for some constants c3, c4 ∈ R, where we have used that∑

m≤y

τ(m)

m
=
y log y + (2γ − 1)y + g(y)

y
+

∫ y

1

t log t+ (2γ − 1)t+ g(t)

t2
dt

=
(log y)2

2
+ 2γ log y + c′ +O

(
1
√
y

)
for some function g(z) �

√
z and constant c′ ∈ R by partial summation. Finally, for

the third sum, we have∑
n≤x1/3
m≤x2/3

τ(m) = bx1/3c
(
x2/3 log x2/3 + (2γ − 1)x2/3 +O

(
x1/3

))
= c5x log x+c6x+O

(
x2/3 log x

)

for some constants c5, c6 ∈ R. Putting everything together yields∑
n≤x

τ(n) =

(
1

3
− (1/3)2

2
+

(2/3)2

2

)
x(log x)2 + c7x log x+ c8x+O

(
x2/3 log x

)
for some constants c7, c8 ∈ R. Since 1

3−
(1/3)2

2 + (2/3)2

2 = 1
2 , this is the desired asymptotic.

(d) We proceed via induction, arguing analogously to the previous part. So assume that,
for a general k ≥ 2, there exists a polynomial Pk ∈ R[z] of degree k−1 and with leading
coefficient 1

(k−1)! such that∑
n≤y

τk(n) = yPk(log y) +O
(
y1−1/k(log y)k−2

)
for all y ≥ 2. Using the first part, we have that

∑
n≤x τk+1(n) equals∑

n≤x

∑
d|n

τk(d) =
∑
nm≤x

τk(m) =
∑

n≤x1/(k+1)

∑
m≤x/n

τk(m)+
∑

m≤xk/(k+1)

∑
n≤x/m

τk(m)−
∑

n≤x1/(k+1)

m≤xk/(k+1)

τk(m).

For the first sum on the right-hand side, we have∑
n≤x1/(k+1)

∑
m≤x/n

τk(m) =
∑

n≤x1/(k+1)

(
x

n
Pk

(
log

x

n

)
+O

((x
n

)1−1/k
(log x)k−2

))
= x

∑
n≤x1/(k+1)

1

n
Pk

(
log

x

n

)
+O

(
x1−1/(k+1)(log x)k−2

)
.
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Observe that Pk
(
log x

n

)
equals

Pk (log x− log n) =
1

(k − 1)!

k−1∑
i=0

(
k − 1

i

)
(log x)i(− log n)k−1−i+

∑
i+i′<k−1

a′i,i′(log x)i(log n)i
′

for some ai,i′ ∈ R. Thus, it suffices to obtain asymptotics for
∑

n≤y
(logn)j

n for each
j = 0, . . . , k − 1, and we have already taken care of the cases j = 0, 1 previously. By
partial summation, for j ≥ 1, we have∑
n≤y

(log n)j

n
=

(y + f(y))(log y)j

y
+

∫ y

1

(t+ f(t))(log t− j)(log t)j−1

t2
dt

= (log y)j +

∫ ∞
1

f(t)(log t− j)(log t)j−1

t2
dt+

∫ y

1

(log t− j)(log t)j−1

t
dt+O

(
(log y)j

y

)
=

(log y)j+1

j + 1
+Qj(log y) +O

(
(log y)j

y

)
for some function f(z) � 1 and polynomial Qj ∈ R[z] of degree at most j, since∫ y

1
(log t)i

t dt = (log y)i+1

i+1 for all integers i ∈ N. It follows that

∑
n≤y

1

n
Pk

(
log

x

n

)
=

−1

(k − 1)!

k−1∑
i=0

(
k − 1

i

)
(log x)i

k − i
(− log y)k−i +Rk(log y) +O

(
(log y)k−1

y

)

=
(log x)k −

(
log x

y

)k
k!

+Rk(log y) +O

(
(log y)k−1

y

)
for some polynomial Rk ∈ R[z] of degree at most k − 1, since

1

(k − 1)!

k−1∑
i=0

(
k − 1

i

)
zi(−w)k−i

k − i
=

k−1∑
i=0

zi(−w)k−i

i!(k − i)!
=

1

k!

(
zk −

k∑
i=0

(
k

i

)
zi(−w)k−i

)
=
zk − (z − w)k

k!
.

for all z, w ∈ R. Thus,∑
n≤x1/(k+1)

∑
m≤x/n

τk(m) = x
(log x)k −

(
log xk/(k+1)

)k
k!

+xRk

(
log x1/(k+1)

)
+O

(
x1−1/(k+1)(log x)k−1

)
.

For the second sum on the right-hand side, we have that
∑

m≤xk/(k+1)

∑
n≤x/m τk(m)

equals ∑
m≤xk/(k+1)

τk(m)
( x
m

+O(1)
)

= x
∑

m≤xk/(k+1)

τk(m)

m
+O

(
x1−1/(k+1)(log x)k−1

)
.

By partial summation,∑
m≤y

τk(m)

m
=
yPk(log y) + g(y)

y
+

∫ y

1

tPk(log t) + g(t)

t2
dt

=
yPk(log y) + g(y)

y
+

∫ ∞
1

g(t)

t2
dt+

∫ y

1

Pk(log t)

t
dt+O

(∫ ∞
y

(log t)k−2

t1+1/k
dt

)
=

(log y)k

k!
+ Sk(log y) +O

(
(log y)k−2

y1/k

)
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for some g(z) � z1−1/k(log z)k−2 and polynomial Sk ∈ R[z] of degree at most k − 1.
Thus,

∑
m≤xk/(k+1)

∑
n≤x/m

τk(m) = x

(
log xk/(k+1)

)k
k!

+xSk

(
log xk/(k+1)

)
+O

(
x1−1/(k+1)(log x)k−1

)
.

Finally, we have∑
n≤x1/(k+1)

m≤xk/(k+1)

τk(m) =
⌊
x1/(k+1)

⌋(
xk/(k+1)Pk

(
log xk/(k+1)

)
+O

((
xk/(k+1)

)1−1/k
(log x)k−2

))

= xTk(log x) +O
(
x1−1/(k+1)(log x)k−1

)
for some polynomial Tk ∈ R[z] of degree at most k− 1. Putting everything together, we
have that

∑
n≤x τk+1(n) equals

x

(
(log x)k −

(
log xk/(k+1)

)k
k!

+

(
log xk/(k+1)

)k
k!

)
+ xUk(log x) +O

(
x1−1/(k+1)(log x)k−1

)
=
x(log x)k

k!
+ xUk(log x) +O

(
x1−1/(k+1)(log x)k−1

)
for some polynomial Uk ∈ R[z] of degree at most k − 1, giving the desired asymptotic.

6. (a) Since 1 is multiplicative, this follows from the fact that τk =

k times︷ ︸︸ ︷
1 ? · · · ? 1 (which we showed

in the previous problem) and that the Dirichlet convolution of two multiplicative func-
tions is multiplicative.

(b) The lower bound τk(p
a) ≥ k follows from noting that

∏k
i=1 di = pa for all (d1, . . . , dk) ∈

{(pa, 1, . . . , 1), . . . , (1, . . . , 1, pa)}. For the upper bound τk(p
a) ≤ min

{
ka, (a+ 1)k−1

}
,

observe that if
∏k
i=1 di = pa, then di = pai for some nonnegative integers ai that satisfy∑k

i=1 ai = a. Since the ai are nonnegative, we must have 0 ≤ ai ≤ a for each i =
1, . . . , k. This gives at most (a + 1)k−1 choices of a1, . . . , ak−1, and since any choice of
a1, . . . , ak−1 uniquely determines ak, it follows that τk(p

a) ≤ (a+ 1)k−1. Note also that
any k-tuple of nonnegative integers (a1, . . . , ak) for which

∑k
i=1 ai = a corresponds to a

unique a-tuple of integers (b1, . . . , ba) with each bj ∈ {1, . . . , k} by taking bj to be the

smallest index ` for which
∑`

i=1 ai ≥ j. It follows that τk(p
a) ≤ ka as well. To obtain

kω(n) ≤ τk(n) ≤ min
{
kΩ(n), τ(n)k−1

}
for n ∈ N with prime factorization n = pa11 · · · p

a`
` ,

we simply take the product of the inequalities just obtained over all i = 1, . . . , `, and use
that ω(n) = `, Ω(`) =

∑`
i=1 ai, and τ(n) =

∏`
i=1(ai + 1).

(c) Since, as observed in the previous part, τk(p
a) equals the number of k-tuples of nonnega-

tive integers (a1, . . . , ak) that satisfy
∑k

i=1 ai = a, we immediately have τk(p
a) =

(
a+k−1
k−1

)
by stars and bars.

(d) By the definition of Ω(n; y), we have yΩ(n;y) ≤ n. Taking log of both sides and rearranging
yields Ω(n; y) ≤ logn

log y .

6



(e) We factor n as the product of
∏
pa‖n
p≤y

pa and
∏
pa‖n
p>y

pa and use the multiplicativity of τ

and the bounds from the second part to obtain

τk(n) ≤
∏
pa‖n
p≤y

(a+ 1)k−1
∏
pa‖n
p>y

ka.

For the second inequality, we use that if pa ‖ n, then a =
⌊

logn
log p

⌋
≤ logn

log 2 ≤ 2 log n and

the trivial bound π(y) ≤ y and the bound on Ω(n; y) from the previous part to obtain∏
pa‖n
p≤y

(a+ 1)k−1
∏
pa‖n
p>y

ka ≤ (2 log n+ 1)(k−1)y klogn/ log y.

(f) We pick y = logn
(log logn)3

. With this choice of y, we have

klogn/ log y = nlog k/(log logn−3 log log logn) = n(1+o(1)) log k/ log logn

and

(2 log n+ 1)(k−1)y = (2 log n+ 1)(k−1) logn/(log logn)3 � nO((k−1)/(log logn)2).

It now follows from the previous part that τk(n) ≤ n(1+o(1)) log k/ log logn.

(g) By the previous part, there exists some function f : [1,∞) → R such that f(x) → 0 as
x→∞ for which τ(n) ≤ n(1+f(n)) log 2/ log logn for all n ≥ ee, say. Let ε > 0, and let x be

large enough so that (1+f(x)) log 2
log log x ≤ ε, which must exist since log log x→∞ and f(x)→ 0

as x → ∞. Then, for all n ≥ x, we have τ(n) ≤ nε. By taking Cε = maxn<x
τ(n)
nε , we

obtain that τ(n) ≤ (Cε + 1)nε for all n ∈ N. This certainly implies that τ(n)�ε n
ε.
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