Math 675: Analytic Theory of Numbers Problem set \# 5

Due 3/27/2024

In all problems, n, k, and q will always denote a natural number, p will always denote a prime, and χ will always denote a Dirichlet character.

1. For all $n, q \in \mathbf{N}$, we define the Ramanujan sum

$$
c_{q}(n)=\sum_{a \in(\mathbf{Z} / q \mathbf{Z})^{\times}} e_{q}(a n) .
$$

(a) Prove that, for any fixed $n \in \mathbf{N}, c_{q}(n)$ is a multiplicative function of q.
(b) Prove that

$$
\sum_{d \mid q} c_{d}(n)= \begin{cases}q & q \mid n \\ 0 & \text { otherwise }\end{cases}
$$

(c) Prove that

$$
c_{q}(n)=\frac{\mu(q /(q, n))}{\phi(q /(q, n))} \phi(q),
$$

where ϕ denotes Euler's totient function.
2. Let χ be a real non-principal Dirichlet character modulo p^{k}.
(a) Prove that, when p is odd, $\chi(n)=\left(\frac{n}{p}\right)$ and χ has conductor p.
(b) Prove that, when $p^{k}=8$, there are three possibilities for χ : two of conductor 8 and one of conductor 4.
(c) Prove that, when $p=2$ and $k>3, \chi(n)=\psi(n(\bmod 8))$, where ψ is one of the three characters from the previous part.
3. Let $R(n)$ denote the number of ordered pairs of integers a, b such that $a^{2}+b^{2}=n$ with $a \geq 0$ and $b>0$ and let $r(n)$ denote the number of such pairs with a and b relatively prime. Let

$$
\chi_{-4}=\left(\frac{-4}{n}\right)= \begin{cases}1 & n \equiv 1 \bmod 4 \\ -1 & n \equiv 3 \bmod 4 \\ 0 & 2 \mid n\end{cases}
$$

denote the non-principal character modulo 4.
(a) Prove that

$$
R(n)=\sum_{d^{2} \mid n} r\left(n / d^{2}\right)=\sum_{d \mid n} \chi_{-4}(d) .
$$

(b) Show that

$$
\sum_{n=1}^{\infty} \frac{R(n)}{n^{s}}=\zeta(s) L\left(s, \chi_{-4}\right)
$$

when $\sigma>1$.
(c) Show that

$$
\sum_{n=1}^{\infty} \frac{r(n)}{n^{s}}=\frac{\zeta(s) L\left(s, \chi_{-4}\right)}{\zeta(2 s)}
$$

when $\sigma>1$.
4. (a) Let $f_{1}, f_{2}: \mathbf{N} \rightarrow \mathbf{C}$ be totally multiplicative functions satisfying $\left|f_{1}(n)\right|,\left|f_{2}(n)\right| \leq$ 1 for all $n \in \mathbf{N}$. Prove that

$$
\sum_{n=1}^{\infty} \frac{\left(1 \star f_{1}\right)(n)\left(1 \star f_{2}\right)(n)}{n^{s}}
$$

equals

$$
\frac{\zeta(s) \mathcal{D} f_{1}(s) \mathcal{D} f_{2}(s) \mathcal{D}\left(f_{1} f_{2}\right)(s)}{\mathcal{D}\left(f_{1} f_{2}\right)(2 s)}
$$

and

$$
\frac{\prod_{p}\left(1-f_{1}(p) f_{2}(p) p^{-2 s}\right)}{\prod_{p}\left(1-p^{-s}\right)\left(1-f_{1}(p) p^{-s}\right)\left(1-f_{2}(p) p^{-s}\right)\left(1-f_{1}(p) f_{2}(p) p^{-s}\right)}
$$

when $\sigma>1$.
(b) By considering the Dirichlet series

$$
F(s)=\sum_{n=1}^{\infty} \frac{\left|\sum_{d \mid n} \chi(d) d^{-i t}\right|^{2}}{n^{s}}
$$

prove that $L(1+i t, \chi) \neq 0$.
5. Recall the definitions

$$
\psi(x, \chi)=\sum_{n \leq x} \chi(n) \Lambda(n) \quad \text { and } \quad \psi(x ; q, a)=\sum_{\substack{n \leq x \\ n \equiv a \bmod q}} \Lambda(n)
$$

Assuming the Generalized Riemann Hypothesis, prove the following statements.
(a) $\psi(x, \chi)=1_{\chi=\chi_{0}} x+O\left(x^{1 / 2} \log ^{2}(q x)\right)$ for all $x \geq 1$ and Dirichlet characters χ modulo q.
(b) $\psi(x ; q, a)=\frac{x}{\phi(q)}+O\left(x^{1 / 2} \log ^{2}(q x)\right)$ for all $x \geq 1$ and $(a, q)=1$.

