Math 675: Analytic Theory of Numbers Problem set # 4

Due 3/13/2024

1. (a) Prove that if $N \in \mathbf{N}$ is not a prime power, then

$$\psi(N) = N - \sum_{|\gamma| \le N^2} \frac{N^{\rho}}{\rho} - \log 2\pi + o(1).$$

- (b) Prove that $\zeta(s)$ must have infinitely many nontrivial zeros.
- (c) Prove that, for each $\varepsilon > 0$, there is at least one nontrivial zero $\rho = \beta + i\gamma$ with $\beta \ge \frac{1}{2} \varepsilon$. Conclude that we cannot have $\psi(x) = x + O(x^{1/2-\varepsilon})$.
- 2. In class, we proved that there exists a constant $c_0 > 0$ such that $\zeta(s)$ does not vanish in the region $\sigma \ge 1 \frac{c_0}{\log(|t|+2)}$. Define, for each $t \in \mathbf{R}$, $\delta_t := \frac{c_0}{\log(|t|+2)}$.
 - (a) Show that, when $\sigma \ge 1 \frac{\delta_t}{2}$ and $|t| \ge 3$, $\frac{\zeta'}{\zeta}(s) \ll \log^2 |t|$.
 - (b) In the same range of s, improve the above bound to $\frac{\zeta'}{\zeta}(s) \ll \log |t|$. (Hint: Prove that $\operatorname{Re}\left\{-\frac{\zeta'}{\zeta}(s)\right\} \ll \log |t|$ for $\sigma > 1 \delta_t$ and that $\frac{\zeta'}{\zeta}(1 + \delta_t + it) \ll \log |t|$.)
 - (c) Show that, when $\sigma \ge 1 \frac{\delta_t}{2}$ and $|t| \ge 3$, $|\log \zeta(s)| \le \log \log |t| + O(1)$. (Hint: Show that $\log \zeta(s) = \log \zeta(1 + \delta_t + it) + O(1)$ when $\sigma \le 1 + \delta_t$.)
 - (d) Prove that there exists a constant c > 0 such that

$$\sum_{n \leq x} \mu(n) \ll \frac{x}{e^{c \sqrt{\log x}}}.$$

- 3. Fix $\varepsilon \in (0, 1/2)$ and assume the Riemann Hypothesis.
 - (a) Prove that $\frac{\zeta'}{\zeta}(s) \ll_{\varepsilon} \log |t|$ and $\log \zeta(s) \ll_{\varepsilon} \log |t|$ whenever $\sigma \geq \frac{1}{2} + \varepsilon$ and $|t| \geq 2$.
 - (b) Prove that $\frac{\zeta'}{\zeta}(s) \ll_{\varepsilon} (\log |t|)^{2 \max\{1-\sigma,0\}+\varepsilon}$ and $\log \zeta(s) \ll_{\varepsilon} (\log |t|)^{2 \max\{1-\sigma,0\}+\varepsilon}$ whenever $\sigma \geq \frac{1}{2} + \varepsilon$ and $|t| \geq 2$. Infer the Lindelöf Hypothesis.
- 4. Prove that the Riemann Hypothesis is equivalent to both of the following statements:
 - (a) For each $\varepsilon > 0$, we have $\psi(x) = x + O_{\varepsilon}(x^{1/2+\varepsilon})$.
 - (b) For each $\varepsilon > 0$, we have $\sum_{n \le x} \mu(n) \ll_{\varepsilon} x^{1/2 + \varepsilon}$.