Math 675: Analytic Theory of Numbers Problem set # 3

Due 2/21/2024

1. Show that

$$\zeta(s) = \frac{1}{s-1} + \gamma + O(|s-1|)$$

in a neighborhood of s = 1, where $\gamma := 1 - \int_1^\infty \frac{\{t\}}{t^2} dt$ denotes Euler's constant.

- 2. Define the sequence of *Bernoulli polynomials* $(b_n(x))_{n=1}^{\infty}$ on [0,1] by setting $b_0(x) = 1$ and, for $n \geq 1$, setting $b_n(x)$ to be the unique polynomial satisfying $b'_n(x) = nb_{n-1}(x)$ and $\int_0^1 b_n(x) dx = 0$. We then define the *Bernoulli functions* $B_n(x)$ by $B_n(x) := b_n(\{x\})$ and the *Bernoulli numbers* B_n by $B_n = B_n(0)$.
 - (a) For $n \neq 1$, show that $b_n(1) = b_n(0) = B_n$. Conclude that the 1-periodic function $B_n(x)$ is continuous. In addition, show that $\int_0^x B_n(t) dt = \frac{B_{n+1}(x) B_{n+1}}{n+1}$ for all $n \geq 1$ and $x \in \mathbf{R}$.
 - (b) Given integers a < b and $k \ge 1$ and $f \in C^{\infty}([a, b])$, prove that

$$\sum_{a < n \le b} f(n) = \int_{a}^{b} f(t) dt + \sum_{r=1}^{k} \frac{(-1)^{r} B_{r}}{r!} (f^{(r-1)}(b) - f^{(r-1)}(a)) + (-1)^{k+1} \int_{a}^{b} \frac{B_{k}(t) f^{(k)}(t)}{k!} dt.$$

This is the Euler-Maclurin summation formula.

(c) Let $m \in \mathbf{Z}$ and $k \in \mathbf{N}$. Show that

$$\int_0^1 B_k(x) e^{-2\pi i m x} \mathrm{d}x = -1_{m \neq 0} \frac{k!}{(2\pi i m)^k}$$

Conclude that

$$B_k(x) = -\frac{k!}{(2\pi i)^k} \sum_{m \neq 0} \frac{e^{2\pi i m x}}{m^k}$$

for $k \geq 2$.

(d) For $k \ge 1$, show that $B_{2k+1} = 0$ and that

$$B_{2k} = \frac{(-1)^{k-1}(2k)!}{2^{2k-1}\pi^{2k}} \sum_{m\geq 1} \frac{1}{m^{2k}}$$

Deduce a formula for $\zeta(2k)$.

(e) Prove the recursion formula $B_n = -(n+1)^{-1} \sum_{k=2}^{n+1} {n+1 \choose k} B_{n+1-k}$ for $n \ge 1$, and derive from it the exact values of $\zeta(2), \zeta(4), \zeta(6)$, and $\zeta(8)$.

3. (a) By applying the Euler–Maclaurin summation formula to $f(t) := t^{-s}$, show that, in the notation of the previous problem,

$$\zeta(s) = \frac{s}{s-1} + \sum_{0 \le r \le k} \frac{B_{r+1}}{r+1} \binom{s+r-1}{r} - \binom{s+k}{k+1} \int_1^\infty B_{k+1}(t) t^{-s-k-1} dt \qquad (1)$$

whenever s > 1.

- (b) Use (1) to provide an alternative proof that $\zeta(s)$ can be meromorphically continued to all of **C** with its only singularity being a simple pole at s = 1 with residue 1.
- 4. Let $\tau^*(n)$ denote the number of odd divisors of an integer n and set $T^*(x) := \sum_{n \leq x} \tau^*(n)$.
 - (a) Determine the Dirichlet series associated to $\tau^*(n)$ and use Perron's formula to deduce the asymptotic estimate

$$T^*(x) = \frac{x}{2} \left(\log 2x + 2\gamma - 1 \right) + O_{\varepsilon}(x^{1/2 + \varepsilon}).$$

$$\tag{2}$$

- (b) Set $T(x) := \sum_{n \le x} \tau(n)$. Show that $T^*(x) = T(x) T(x/2)$ and deduce an improved error term in (2).
- 5. (a) An integer is called *cube-free* if there is no prime p such that $p^3 | n$. Obtain an asymptotic for the number of cube-free integers in [1, x].
 - (b) An integer is called *cube-full* if $p^3 \mid n$ whenever $p \mid n$. Obtain an asymptotic for the number of cube-full integers in [1, x].