Math 675: Analytic Theory of Numbers Problem set \# 1

Due 1/24/2024

In all problems, n will always denote a natural number and p will always denote a prime.

1. We say that $n \in \mathbf{N}$ is squarefull if $p^{2} \mid n$ for all primes $p \mid n$.
(a) Show that n is squarefull if and only if there exist $a, b \in \mathbf{N}$ such that $n=a^{2} b^{3}$.
(b) Show that

$$
\#\{n \leq x: n \text { is squarefull }\} \asymp \sqrt{x} .
$$

2. We say that $n \in \mathbf{N}$ is squarefree if it is not divisible by any square other than 1 . Let

$$
Q(x):=\#\{n \leq x: n \text { is squarefree }\}
$$

denote the number of squarefree integers not exceeding x.
(a) Show that

$$
Q(N) \geq N-\sum_{p \text { prime }}\left\lfloor\frac{N}{p^{2}}\right\rfloor
$$

for every $N \in \mathbf{N}$.
(b) Justify each of the relations in the following string of in/equalities:

$$
\sum_{p \text { prime }} \frac{1}{p^{2}}<\frac{1}{4}+\sum_{k=1}^{\infty} \frac{1}{(2 k+1)^{2}}<\frac{1}{4}+\frac{1}{2} \sum_{k=1}^{\infty}\left(\frac{1}{2 k}-\frac{1}{2 k+2}\right)=\frac{1}{2}
$$

(c) Deduce that $Q(N)>\frac{N}{2}$ for every $N \in \mathbf{N}$.
(d) Show that every integer $n \geq 2$ can be written as the sum of two squarefree numbers.
3. Recall the definitions

$$
\pi(x)=\#\{p \leq x: p \text { prime }\}, \quad \psi(x)=\sum_{n \leq x} \Lambda(n), \quad \text { and } \quad \theta(x)=\sum_{\substack{p \leq x \\ p \text { prime }}} \log p
$$

(a) Show that $|\psi(x)-\theta(x)| \leq \sqrt{x} \log x$ for all $x \geq 1$.
(b) Show that the asymptotic relations $\pi(x) \sim \frac{x}{\log x}, \psi(x) \sim x$, and $\theta(x) \sim x$ are equivalent as $x \rightarrow \infty$.
4. Recall that $\omega(n)$ denotes the number of distinct prime factors of n, so that if $n=$ $p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$ is the prime factorization of n, then $\omega(n)=k$.
(a) Show that

$$
\sum_{n \leq x} \omega(n)=x \log \log x+O(x)
$$

(b) Show that

$$
\sum_{n \leq x} \omega(n)^{2}=x(\log \log x)^{2}+O(x \log \log x)
$$

(c) Deduce that all but at most $o(x)$ integers $n \leq x$ have $\sim \log \log n$ distinct prime factors.
5. Recall that $\tau(n)=\#\{d \in \mathbf{N}: d \mid n\}$ denotes the divisor function of n. More generally, we can define the k-fold divisor function by

$$
\tau_{k}(n)=\#\left\{\left(d_{1}, d_{2}, \ldots, d_{k}\right) \in \mathbf{N}^{k}: d_{1} d_{2} \cdots d_{k}=n\right\}
$$

for all $k \in \mathbf{N}$. Note that $\tau_{2}=\tau$ and $\tau_{1} \equiv 1$.
(a) Show that

$$
\tau_{k}(n)=\sum_{d \mid n} \tau_{k-1}(d)
$$

for all integers $k \geq 2$.
(b) Show that

$$
\sum_{n=1}^{\infty} \frac{\tau_{k}(n)}{n^{s}}=\zeta(s)^{k}
$$

for all $k \in \mathbf{N}$ and $s \in \mathbf{C}$ with $\operatorname{Re} s>1$.
(c) Show that

$$
\sum_{n \leq x} \tau_{3}(n)=\frac{1}{2} x(\log x)^{2}+c x \log x+c^{\prime} x+O\left(x^{2 / 3} \log x\right)
$$

for some constants $c, c^{\prime} \in \mathbf{R}$.
(d) Show, more generally, that for every fixed $k \in \mathbf{N}$,

$$
\sum_{n \leq x} \tau_{k}(n)=x P_{k}(\log x)+O\left(x^{1-1 / k}(\log x)^{k-2}\right)
$$

for all $x \geq 2$, where $P_{k} \in \mathbf{R}[y]$ is some polynomial of degree $k-1$ with leading coefficient $\frac{1}{(k-1)!}$.
6. We will continue using the notation from the previous problem. Assume that $k \geq 2$.
(a) Show that each τ_{k} is multiplicative.
(b) For each prime power p^{a}, show that

$$
k \leq \tau_{k}\left(p^{a}\right) \leq \min \left\{k^{a},(a+1)^{k-1}\right\}
$$

Deduce that

$$
k^{\omega(n)} \leq \tau_{k}(n) \leq \min \left\{k^{\Omega(n)}, \tau(n)^{k-1}\right\}
$$

for all $n \in \mathbf{N}$. (Recall that $\Omega(n)$ denotes the number of prime factors of n counted with multiplicity, so that if $n=p_{1}^{a_{1}} \cdots p_{\ell}^{a_{\ell}}$ is the prime factorization of n, then $\left.\Omega(n)=\sum_{i=1}^{\ell} a_{i}.\right)$
(c) Show, for each prime power p^{a}, the exact formula

$$
\tau_{k}\left(p^{a}\right)=\binom{a+k-1}{k-1}
$$

(d) Define, for each real number $y \geq 1$,

$$
\Omega(n ; y)=\sum_{\substack{p^{a} \| n \\ p>y}} a .
$$

Show that $\Omega(n ; y) \leq \frac{\log n}{\log y}$. (Recall that $p^{a} \| n$ means that p^{a} is the highest power of p dividing n, so that $p^{a} \mid n$ but $p^{a+1} \nmid n$.)
(e) Show that

$$
\tau_{k}(n) \leq \prod_{\substack{p^{a} \| n \\ p \leq y}}(a+1)^{k-1} \prod_{\substack{p^{a} \| n \\ p>y}} k^{a} \leq(2 \log n+1)^{(k-1) y} k^{\log n / \log y} .
$$

(f) Choose y appropriately in the above inequality to conclude that, for each fixed integer $k \geq 2$,

$$
\tau_{k}(n) \leq n^{(\log k+o(1)) / \log \log n}
$$

as $n \rightarrow \infty$.
(g) Deduce from the above that, in particular, $\tau(n) \ll_{\varepsilon} n^{\varepsilon}$ for every fixed $\varepsilon>0$.

