Math 675: Analytic Theory of Numbers Problem set # 1

Due 1/24/2024

In all problems, n will always denote a natural number and p will always denote a prime.

- 1. We say that $n \in \mathbf{N}$ is squarefull if $p^2 \mid n$ for all primes $p \mid n$.
 - (a) Show that n is squarefull if and only if there exist $a, b \in \mathbb{N}$ such that $n = a^2 b^3$.
 - (b) Show that

$$\#\{n \le x : n \text{ is squarefull}\} \asymp \sqrt{x}$$

2. We say that $n \in \mathbf{N}$ is squarefree if it is not divisible by any square other than 1. Let

 $Q(x) := \#\{n \le x : n \text{ is squarefree}\}\$

denote the number of squarefree integers not exceeding x.

(a) Show that

$$Q(N) \ge N - \sum_{p \text{ prime}} \left\lfloor \frac{N}{p^2} \right\rfloor$$

for every $N \in \mathbf{N}$.

(b) Justify each of the relations in the following string of in/equalities:

$$\sum_{p \text{ prime}} \frac{1}{p^2} < \frac{1}{4} + \sum_{k=1}^{\infty} \frac{1}{(2k+1)^2} < \frac{1}{4} + \frac{1}{2} \sum_{k=1}^{\infty} \left(\frac{1}{2k} - \frac{1}{2k+2} \right) = \frac{1}{2}.$$

- (c) Deduce that $Q(N) > \frac{N}{2}$ for every $N \in \mathbf{N}$.
- (d) Show that every integer $n \ge 2$ can be written as the sum of two squarefree numbers.
- 3. Recall the definitions

$$\pi(x) = \#\{p \le x : p \text{ prime}\}, \qquad \psi(x) = \sum_{n \le x} \Lambda(n), \qquad \text{and} \qquad \theta(x) = \sum_{\substack{p \le x \\ p \text{ prime}}} \log p.$$

(a) Show that $|\psi(x) - \theta(x)| \le \sqrt{x} \log x$ for all $x \ge 1$.

- (b) Show that the asymptotic relations $\pi(x) \sim \frac{x}{\log x}$, $\psi(x) \sim x$, and $\theta(x) \sim x$ are equivalent as $x \to \infty$.
- 4. Recall that $\omega(n)$ denotes the number of distinct prime factors of n, so that if $n = p_1^{a_1} \cdots p_k^{a_k}$ is the prime factorization of n, then $\omega(n) = k$.
 - (a) Show that

$$\sum_{n \le x} \omega(n) = x \log \log x + O(x).$$

(b) Show that

$$\sum_{n \le x} \omega(n)^2 = x(\log \log x)^2 + O(x \log \log x).$$

- (c) Deduce that all but at most o(x) integers $n \leq x$ have $\sim \log \log n$ distinct prime factors.
- 5. Recall that $\tau(n) = \#\{d \in \mathbf{N} : d \mid n\}$ denotes the divisor function of n. More generally, we can define the *k*-fold divisor function by

$$\tau_k(n) = \# \{ (d_1, d_2, \dots, d_k) \in \mathbf{N}^k : d_1 d_2 \cdots d_k = n \}$$

for all $k \in \mathbf{N}$. Note that $\tau_2 = \tau$ and $\tau_1 \equiv 1$.

(a) Show that

$$\tau_k(n) = \sum_{d|n} \tau_{k-1}(d)$$

for all integers $k \geq 2$.

(b) Show that

$$\sum_{n=1}^{\infty} \frac{\tau_k(n)}{n^s} = \zeta(s)^k$$

for all $k \in \mathbf{N}$ and $s \in \mathbf{C}$ with $\operatorname{Re} s > 1$.

(c) Show that

$$\sum_{n \le x} \tau_3(n) = \frac{1}{2} x (\log x)^2 + cx \log x + c'x + O\left(x^{2/3} \log x\right)$$

for some constants $c, c' \in \mathbf{R}$.

(d) Show, more generally, that for every fixed $k \in \mathbf{N}$,

$$\sum_{n \le x} \tau_k(n) = x P_k(\log x) + O\left(x^{1-1/k} (\log x)^{k-2}\right)$$

for all $x \ge 2$, where $P_k \in \mathbf{R}[y]$ is some polynomial of degree k-1 with leading coefficient $\frac{1}{(k-1)!}$.

- 6. We will continue using the notation from the previous problem. Assume that $k \ge 2$.
 - (a) Show that each τ_k is multiplicative.
 - (b) For each prime power p^a , show that

$$k \le \tau_k(p^a) \le \min\left\{k^a, (a+1)^{k-1}\right\}.$$

Deduce that

$$k^{\omega(n)} \le \tau_k(n) \le \min\left\{k^{\Omega(n)}, \tau(n)^{k-1}\right\}$$

for all $n \in \mathbf{N}$. (Recall that $\Omega(n)$ denotes the number of prime factors of n counted with multiplicity, so that if $n = p_1^{a_1} \cdots p_{\ell}^{a_{\ell}}$ is the prime factorization of n, then $\Omega(n) = \sum_{i=1}^{\ell} a_i$.)

(c) Show, for each prime power p^a , the exact formula

$$\tau_k(p^a) = \binom{a+k-1}{k-1}.$$

(d) Define, for each real number $y \ge 1$,

$$\Omega(n;y) = \sum_{\substack{p^a \parallel n \\ p > y}} a.$$

Show that $\Omega(n; y) \leq \frac{\log n}{\log y}$. (Recall that $p^a \parallel n$ means that p^a is the highest power of p dividing n, so that $p^a \mid n$ but $p^{a+1} \nmid n$.)

(e) Show that

$$\tau_k(n) \le \prod_{\substack{p^a \parallel n \\ p \le y}} (a+1)^{k-1} \prod_{\substack{p^a \parallel n \\ p > y}} k^a \le (2\log n+1)^{(k-1)y} k^{\log n/\log y}$$

(f) Choose y appropriately in the above inequality to conclude that, for each fixed integer $k \ge 2$,

$$\tau_k(n) \le n^{(\log k + o(1))/\log \log n}$$

as $n \to \infty$.

(g) Deduce from the above that, in particular, $\tau(n) \ll_{\varepsilon} n^{\varepsilon}$ for every fixed $\varepsilon > 0$.