
Syllabus for Math 593
Fall Term 2018

Classes MWF 2-3, 3866 East Hall
Instructor: Stephen DeBacker
Office: 4076 East Hall
Phone: 724-763-3274
e-mail: smdbackr@umich.edu Office hours: M 9-10pm; W 4-5pm; Th 9:30-10:30pm

Texts/Resources:
A: Aluffi, P. Algebra: Chapter 0, Graduate Studies in Mathematics, AMS, Providence, 2009, ISBN: 978-0821847817
C1: Conrad, K. Tensor Products. 1

C2: Conrad, K. Tensor Products II. 2

DF: Dummit, D. and R. Foote. Abstract Algebra, Third Edition. Wiley, 2004. ISBN: 978-0471433347.
HK: Hoffman, Kenneth and R. Kunze, Linear algebra, Second edition. Prentice-Hall, 1971. ISBN: 978-0135367971
L: Lang, S. Algebra, Revised 3rd edition. Graduate Texts in Mathematics. Springer, 2002. ISBN: 978-0-387-95385-4.3

Philosophy: “He was not fast. Speed means nothing. Math doesn’t depend on speed. It is about deep.” (Yuriu Burago
commenting on Fields Medal winner Grigory Perelman in Sylvia Nasar and David Gruber, Manifold Destiny, The New
Yorker, August 28, 2006, pp. 44–57.)

An Overview: It is assumed that you have acquired a solid foundation in the theoretical aspects of linear algebra. In
particular, you should know the material of [DF04, §§11.1–11.4] thoroughly. It is also assumed that you have been through
a serious undergraduate abstract algebra course.

Pedagogy: This course will be taught in an Inquiry Based Learning style, a teaching method that “emphasizes discovery,
analysis and investigation to deepen students’ understanding of the material and its applications.”4 There will be very little
lecture; instead, you will work through worksheets5 that guide you as you learn and internalize the material.
Nota bene: Even if I were to lecture, there is absolutely no way that I could cover everything that we expect you to learn
in this class. So, do your reading and learn the material there.

Grade: 60% of your grade will be determined by the effort you put into your homework, worksheets, and group work.
Honest effort will result in full marks. Group work will have two components: groups will be responsible for TEXing up
solutions to the worksheets and they will be responsible for creating official TEXed solutions to the homeworks. I have
never done this before, so there may be modifications. However, any modifications will be consistent with the following:
(a) I do not want to reward cheaters, and (b) I do not want to favor those arriving with stronger mathematical backgrounds.

There will also be a midterm exam counting 15% and a final counting 25%. The midterm will probably occur on October
19. It appears that the registrar has scheduled the final for Wednesday, December 19, from 10:30 to 12:30. Please verify
this on your own. All exams are modified take home exams.

Homework: Homework will usually be assigned every Friday. The main part will be due at the beginning of class on the
following Friday. The linear algebra review part (Monday Homework) will usually be due on the Monday that falls ten
days after it is assigned. Problems with one star do not need to be handed in, but you had better know how to do them.
Bonus problems are just that; they do not need to be handed in.

To facilitate the grading of homework: do the problems in order, write on only one side of the paper, and use standard
sized paper. No credit will be given if you misstate a problem, so pay attention. You are encouraged to discuss the
problems with other students, but you must write up your solutions independently. Warning: It is unbelievable easy to

1Available at: http://www.math.uconn.edu/˜kconrad/blurbs/linmultialg/tensorprod.pdf
2Available at: http://www.math.uconn.edu/˜kconrad/blurbs/linmultialg/tensorprod2.pdf
3A free electronic edition is available at:

https://link-springer-com.proxy.lib.umich.edu/content/pdf/10.1007%2F978-1-4613-0041-0.pdf
4https://lsa.umich.edu/math/centers-outreach/ibl-center-for-inquiry-based-learning.html
5These worksheets are very rough. Every time I look at them I identify new, egregious errors for which my PhD should be revoked. I expect that

you will as well.
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detect plagiarism in mathematics; if you are caught, you will fail. Your solutions should be understandable to your peers;
that is, your solutions should be correct, complete, and justified. Late homework will not be accepted (it receives a zero).

Waiting to begin your homework until the evening before it is due is an extremely bad idea.

Exams: There are no alternate or makeup exams (except in cases of extreme human tragedy). The exams will be based
entirely on homework, class work (notes/worksheets), and True/False questions. In other words: do your homework and
understand it and review your notes/worksheets and understand them.

Accommodations for a disability: If you think you need an accommodation for a disability, please let me know as soon
as possible. In particular, a Verified Individualized Services and Accommodations (VISA) form must be provided to me at
least two weeks prior to the need for a test/quiz accommodation. The Services for Students with Disabilities (SSD) Office
(G664 Haven Hall; http://ssd.umich.edu/) issues VISA forms.

Student Responsibilities: Experience shows that students who attempt a substantial portion of their written homework the
day it is assigned do quite well in their math courses.

Climate: Each of you deserves to learn in an environment where you feel safe and where you are respected.
The climate in the mathematical community at Michigan is heavily influenced by the students in it; this now includes

you. Our choices directly affect, for good and/or bad, the health of the communities in which we live and work, please
choose to build and maintain a welcoming, thriving mathematical community.

Please politely call out your peers and professors on inappropriate behavior. Examples of inappropriate behavior include
parading one’s knowledge of advanced mathematics, dismissing others’ questions as trivial, and any disparaging comments
about other students’ abilities, grades, appearance, course selection, likelihood to date, likelihood to get tenure, mathemat-
ical tastes, etc. If you don’t feel comfortable doing this, then talk to me or some university official that you trust (e.g., your
advisor, the university ombudsperson, . . . ).

Finally, mathematics requires the courage to take risks – intellectually, socially, emotionally, . . . In particular, many of
us find it unnerving to share our mathematical ideas, especially those we are not sure are correct, with others. In order to
develop our capacity for taking these risks, we must respect and support each other.

QR Exams: Math 593 and 594 provide excellent preparation for the QR exams. However, neither is a QR prep class; for
test prep I recommend looking at Mel Hochster’s excellent review notes1 and the Department’s archive of past QR exams.2

Thanks: The worksheets/homework of this course are the product of time spent with a host of algebra books, Internet sites,
and colleagues. I thank Pete Clark, Brian Conrad, Keith Conrad, Matt Emerton, and David Speyer for writing enlightening
and clear blurbs, posts, and documents. I thank Karen Smith for sharing her Fall 2014 Math 593 materials.3 I thank
Aniruddh Agarwal, Ryan Britton, Amanda Burcroff, Zhou Fang, Vignesh Jagathese, David Jin, Jaeyoon Kim, Zachary
Luallen, Steffen Maass, Malavika Mukundan, Yuping Ruan, Matthew Sawoski, Zheng Yang, and Juntai Zhou for the many
improvements to these worksheets and homeworks that they recommended.
Outside of the many mistakes and obfuscations I have introduced, nothing here is original.
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Math 593: Tentative day-by-day syllabus
Week Monday Wednesday Friday

Sep 3 – Sep 7
A: I: 3.1–4.2
DF: 7.1–7.6
L: 2.1–2.4

No class Introduction: rings, modules,
algebras

Rings: products and Chinese
Remainder Theorem

Sep 10 – Sep 14
DF: 8.1–8.3

L: 2.5

Rings: quotients and
localizations

Rings: UFDs and Noetherian
rings

Rings: PIDs and Euclidean
domains

Sep 17 – Sep 21
DF: 9.1–9.5, 10.1

L: 4.1 – 4.3

Rings: Gauss’ Lemma and
reducing polynomials mod I

Polynomials: irreducibility Modules: the fundamentals

Sep 24 – Sep 28
DF: 10.1–10.3

DF: pp. 378–385
L: 3.4

Modules: direct products and
direct sums

Modules: free modules Modules: more on free
modules; finitely generated and

presented

Oct 1 – Oct 5
DF: 12.1, 12.2

L: 3.7, 15.1

Modules: presentations Modules: torsion Modules: rational canonical
form

Oct 8 – Oct 12
DF: 12.3

L: 15.2, 15.3

Modules: Cayley-Hamilton Modules: Jordan form Modules: Structure Theorem
for Finitely Generated Modules

over a PID
Oct 15 – Oct 19 No Class – Fall Break Modules: Structure Theorem

for Finitely Generated Modules
over a PID

EXAM

Oct 22 – Oct 26
C1 & C2
DF: 10.4

L: 16.1–16.2

Tensor products Tensor products: practice Tensor products: maps,
extension of scalars

Oct 29 – Nov 2
C1 & C2
DF: 11.5

L: 16.4–16.8

Tensor product: basic
properties

Tensor product: more practice Tensors in the wild

Nov 5 – Nov 9
L: 15.1–15.3

HK: 10.1 – 10.2

Higher tensors, symmetric and
alternating maps

Bilinear forms Symmetric bilinear forms

Nov 12 – Nov 16
L: 15.4 – 15.7

HK: 10.2

Inner products Review day The Snake Lemma

Nov 19 – Nov 23
DF: 10.5, 17.1

L: 16.3,
20.1–20.2

Homological algebra:
introduction

Homological algebra: the long
exact sequence

No Class – Thanksgiving
Break

Nov 26 – Nov 30
DF: 17.1

Homological algebra: derived
functors

Homological algebra: Ext and
Tor

Homological algebra: flatness
and extensions

Dec 3 – Dec 7
DF: 17

Homological algebra: Koszul
complexes

Group cohomology:
introduction

Group cohomology:the bar or
standard resolution

Dec 10 – Dec 14 Semester recap No class No class
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Worksheet for 5 Sep 2018
Introduction: rings, modules, and algebras (c)2018 UM Math Dept

licensed under a Creative Commons
By-NC-SA 4.0 International License.

Vocabulary: ring, commutative ring, zero ring, ring homomorphism, module, module homomorphism, unital, algebra,
algebra homomorphism, endomorphism ring, units
The goal of this worksheet is to introduce the basic mathematical objects of Math 593. It is assumed that you have taken a
good undergraduate abstract algebra course, so most of the underlying ideas should be (at least dimly) familiar to you.

Definition. A ring is a set R with two operations:
• +: R×R→ R (called addition) and
• ∗ : R×R→ R (called multiplication)

satisfying the following axioms:
R1: (R,+) is an abelian group,
R2: ∗ is associative: r ∗ (s ∗ t) = (r ∗ s) ∗ t for all r, s, t ∈ R,
R3: multiplication is both left and right distributive with respect to addition: for all r, s, t ∈ R we have r ∗ (s+ t) =

r ∗ s+ r ∗ t (called left-distributivity) and (s+ t) ∗ r = s ∗ r + t ∗ r (called right-distributivity), and
R4: there exists 1R ∈ R for which 1R ∗ r = r ∗ 1R = r for all r ∈ R.

Warning: Not everyone assumes that their rings have a multiplicative identity element.1

We will almost always drop the symbol ∗ and write ab for a ∗ b; similarly, we will write 1 for 1R. A ring is said to be
commutative provided that its multiplicative operation is commutative. A zero ring is a ring with one element.

(1) Show that N is not a ring. Show that Z is a ring.
(2) Suppose R is a ring. Show Matn×n(R) is a ring with respect to matrix multiplication. When is it commutative?
(3) Suppose R is a ring. Show that R is a field if and only if (i) R is not a zero ring, (ii) R is commutative, and (iii)

R× = R \ {0}. Here, R× := {r ∈ R : there exists s ∈ R for which rs = sr = 1} is the group of units in R.

Definition. Suppose (R,+R, ∗R, 1R) and (S,+S , ∗S , 1S) are two rings. A function f : R → S is called a ring homo-
morphism provided that

• f(a+R b) = f(a) +S f(b) for all a, b ∈ R,
• f(a ∗R b) = f(a) ∗S f(b) for all a, b ∈ R, and
• f(1R) = 1S

The set of ring homomorphisms from R to S is denoted Hom(R,S) or Homring(R,S).

Caution. If H and G are groups, then the set of group homomorphisms from H to G is denoted Hom(H,G) or
Homgrp(H,G). What an undecorated Hom(X,Y ) means depends on context (see, for example, Prompt 11).

(4) Suppose R is a ring. Can you describe Hom(Z, R)?

Defintion. Suppose R is a ring. A left R-module is a set M with two operations:
• +: M ×M →M (called addition) and
• ∗ : R×M →M (called scalar multiplication)

satisfying the following axioms:
M1: (M,+) is an abelian group,
M2: (r + s) ∗m = r ∗m+ s ∗m for all r, s ∈ R and m ∈M
M3: (rs) ∗m = r ∗ (s ∗m) for all r, s ∈ R and m ∈M
M4: r ∗ (m+ n) = r ∗m+ r ∗ n for all r ∈ R and m,n ∈M

The map ∗ : R×M →M is called an action of R on M and the elements of R are often called scalars.
(5) Show that Z2 is a left-Mat2×2(Z)-module by having X ∈ Mat2×2(Z) act on Z2 by taking v ∈ Z2 to Xv.
(6) Formulate the definition of a right R-module (the scalar multiplication map will look like M × R → M ). Show

that Z2 is a right-Mat2×2(Z)-module by having X ∈ Mat2×2(Z) act on Z2 by taking v ∈ Z2 to XT v.

Defintion. Suppose R is a ring. An R-module M is said to be unital provided that 1 ∗m = m for all m ∈M .

1A ring with out an identity is sometimes referred to as a rng.



Please report any errors you find to smdbackr@umich.edu

Most modules you will encounter in the wild are unital; thus, following common convention, the phrase “M is an R-
module” will always mean “M is a unital left R-module.”

(7) Show that every Z-module is an abelian group and every abelian group is a Z-module.
(8) Suppose k is a field. Show that every k-module is a k-vector space and every k-vector space is a k-module.
(9) Suppose R is a commutative ring. Show that the polynomial ring R[x1, x2, . . . , xn] is an R-module. Do we need

to assume that R is commutative?

Definition. Suppose R is a ring and M and N are R-modules. A function g : M → N is called an R-module homomor-
phism provided that

• g is a group homomorphism and
• g(rm) = rg(m) for all r ∈ R and m ∈M .

The set of R-module homomorphisms from M to N is denoted HomR(M,N) or HomR−mod(M,N).

(10) Suppose R is a commutative ring and M is an R-module. Show EndR(M) := HomR(M,M) is an R-module.
What if R is not commutative?

(11) Suppose R is a ring and M,N are R-modules. Must it be the case that Hom(M,N) = HomR(M,N)? [Hint:
Consider complex conjugation.]

Defintion. Suppose R is a commutative ring. A set A is called an R-algebra provided that
• A is an R-module and
• there is an R-bilinear multiplication map A×A→ A.

The notion of bilinearity arises quite often in Math 593, so understand it well. In the above definition it means r ∗ (a · b) =
(r ∗ a) · b = a · (r ∗ b), a · (b + c) = a · b + a · c, and (a + b) · c = a · c + b · c for any a, b, c ∈ A and r ∈ R. Here
∗ : R×A→ A denotes the action of R on the R-module A and · : A×A→ A is the multiplication map on the ring A. We
will almost always drop the symbols ∗ and · and write r(ab) = (ra)b = a(rb), a(b+ c) = ab+ac, and (a+ b)c = ac+ bc.

(12) Suppose R is a ring and M is an R-module. Is EndR(M) an R-algebra? What if R is commutative?
(13) The set of symmetric real matrices with multiplication (xy + yx)/2 form an algebra. Show that multiplication is

commutative, but not associative.
(14) As a real vector space Hamilton’s quaternions, H, have as a basis (1, i, j, k); thus a quaternion is an expression of

the form a+ bi+ cj + dk where a, b, c, d ∈ R. We define multiplication on H by requiring (i) rx = xr for every
x ∈ (1, i, j, k) and every r ∈ R and (ii) setting i2 = j2 = k2 = ijk = −1.
(a) Show that ij = −ji = k, jk = −kj = i, and ik = −ki = −j.
(b) Show that multiplication is associative but not commutative.
(c) Show that the center of H is R ' R1.

(15) Show that the cross product on R3 defines an R-algebra that is neither associative nor commutative.

Definition. Suppose R is a commutative ring and A1, A2 are two R-algebras. A function f : A1 → A2 is an R-algebra
homomorphism provided that

• f is an R-module homomorphism and
• f(ab) = f(a)f(b) for all a, b ∈ A1.

The set of R-algebra homomorphisms from A1 to A2 is denoted HomR−alg(A1, A2).

(16) SupposeR is a commutative ring andA is anR-algebra. What sort of object is EndR−alg(A) := HomR−alg(A,A)?

Something to Think About
Above we have defined both objects and morphisms for the categories1 of rings, R-modules, and R-algebras. Based on
these examples, what are some reasonable axioms that the objects and morphisms of a category should satisfy?

1The language of category theory will be freely used when it makes sense. There is no assumption that you have seen it before. See [A09,
Chapter I §§3.1, 3.2, 4.1, 4.2] for a gentle introduction and the basic definitions.
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Worksheet for 7 Sep 2018
Rings: products and Chinese Remainder Theorem (c)2018 UM Math Dept

licensed under a Creative Commons
By-NC-SA 4.0 International License.

Vocabulary: Chinese Remainder Theorem, products, ideals, product ideal, comaximal, universal properties, isomorphism
Recall that if A and B are sets, then the product of A and B is the set A × B = {(a, b) | a ∈ A, b ∈ B}. This can be

extended to a product of any number of sets. If R and S are rings, then we want the product R × S to be more than just a
set – we want it to be a ring. To make this happen we define addition and multiplication as follows

• (r, s) + (r′, s′) = (r + r′, s+ s′) for all (r, s), (r′, s′) ∈ R× S and
• (r, s)(r′, s′) = (rr′, ss′) for all (r, s), (r′, s′) ∈ R× S.

(17) Verify that axioms R1 through R4 hold for these operations.
(18) Show that Z/2Z× Z/3Z is isomorphic to Z/6Z as rings.

The product operation is ubiquitous in mathematics, and we have just verified that products1 can be defined both in the
category of sets and the category of rings. How to characterize products, should they exist, in the category of groups or the
category of modules or the category of algebras or . . . ? Universal properties are a handy tool for approaching this question.
Universal Property of Products in Rings. Suppose R and S are rings. The product of R and S is a ring, denoted R×S,
together with two ring homomorphisms πR : R× S → R and πS : R× S → S such that for every ring T and every pair
of ring homomorphisms fR : T → R and fS : T → S there is a unique ring homomorphism f : T → R × S for which
the following diagram commutes.

R

T R× S

S

fR

fS

∃!f

πS

πR

The maps πR and πS are usually called projections and f is often denoted as fR × fS .
(19) Show that the product ring R×S (see Prompt 17), together with its natural projection maps, satisfies the universal

property of products.
For a general category, the universal property of products looks like:

Universal Property of products. Suppose C is a category. For objects X and Y in C, a product of X and Y is an object
in C, denoted X × Y , together with a pair of morphisms πX : X × Y → X and πY : X × Y → Y that satisfy the
following universal property: for every object Z in C and pair of morphisms fX : Z → X , fY : Z → Y there exists a
unique morphism f : Z → X × Y such that the following diagram commutes:

X

Z X × Y

Y

fX

fY

∃!f

πY

πX

Warning: products need not exist (consider the category of fields)! However, when they do exist, they are unique up to
unique isomorphism2:

(20) Suppose Q is an object in C that, along with morphisms π̃X : Q → X and π̃Y : Q → Y , satisfies the universal
property of products. Show that there exists a unique isomorphism from Q to X × Y . [Hint: Think about IdX×Y
and use uniqueness.]

1Some people draw a distinction between an internal product and an external product. If A,B ⊂ X and A × B ' X , then one says that X is
an internal product (ofA and B); if A and B are not subobjects, then one says that the product is an external product. I have found that this language
muddies the waters, especially for students; so I avoid it.

2For A, B in C we say T ∈ HomC(A,B) is an isomorphism provided there exists S ∈ HomC(B,A) for which S ◦ T = IdA and T ◦ S = IdB .
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As an application of products, we now look at the Chinese Remainder Theorem. We need to introduce a few ideas.

Definition. Suppose R is a ring. A subset I ⊂ R is called a left ideal provided that
I1: (I,+) is a subgroup of (R,+); and
I2: for all r ∈ R we have rI ⊂ I , that is rx ∈ I for all x ∈ I .

It is called a right ideal provided that
I1: (I,+) is a subgroup of (R,+); and
I2: for all r ∈ R we have Ir ⊂ I , that is yr ∈ I for all y ∈ I .

A subset of R that is both a left and right ideal is called an ideal or two-sided ideal.

If R is commutative, then every left ideal is a right ideal is a two-sided ideal is an ideal.
(21) Suppose R is a ring. Show that R and {0} are always ideals of R.
(22) Show that if A and B are ideals, then A+B is also an ideal.
(23) Show that mZ is an ideal in Z and (x− 5)Q[x] is an ideal in Q[x].
(24) Fix n > 2 and 1 ≤ k ≤ n. Let I be the subset of R = Matn×n(Q) consisting of matrices with nonzero entries

only in the kth row. Is I a left ideal? Is it a right ideal? Can it be written as xR or Rx for a single x ∈ I?
(25) Suppose R and S are rings and ϕ ∈ Hom(R,S). Show that ker(ϕ) is an ideal of R. Is im(ϕ) an ideal of S?

Prompt 25 brings back memories of the first isomorphism theorem. Recall (or see Homework (26)) that for any ideal I of
R we have that R/I , with the natural operations, is also a ring. It is called a quotient ring. Moreover, R/ ker(ϕ) ' im(ϕ).

While the notion of greatest common divisor doesn’t make sense for a general commutative ring (why?), the notion of
relatively prime does generalize:

Definition. SupposeR is a commutative nonzero ring. IdealsA,B ofR are said to be comaximal provided thatA+B =
R. This means that there exist a ∈ A and b ∈ B so that a+ b = 1.

(26) Suppose n,m ∈ Z \ {0}. Show that nZ and mZ are comaximal if and only if (n,m) = 1.

Definition. Suppose R is a commutative nonzero ring. The product of ideals A and B in R is the ideal, denoted AB,
consisting of all finite sums

∑
aibi with (ai, bi) ∈ A×B. The product of any finite number of ideals is defined similarly.

(27) Show that the ideal nZmZ is nZ ∩mZ when (m,n) = 1. Generalize this result to a pair of ideals A and B in a
nonzero commutative ring R. [Hint: use the word comaximal.] Is the converse of your general statement true?

(28) Suppose that R is a nonzero commutative ring. Suppose I1, I2, I3, . . . , Ik are ideals in R that are pairwise comax-
imal. Show that the ideals I1 and I2I3 · · · Ik are comaximal. [Hint: consider

∏k
j=2(x1j + xj) . . . .]

(29) Suppose that R is a nonzero commutative ring. Suppose I1, I2, I3, . . . , Ik are ideals in R that are pairwise comax-
imal. Show that I1I2 · · · Ik = I1 ∩ I2 ∩ · · · ∩ Ik. [Hint: induction.]

(30) (Chinese Remainder Theorem1) Suppose R is a nonzero commutative ring. Let I1, I2, . . . , Ik be ideals and let

ϕ : R→ R/I1 ×R/I2 × · · · ×R/Ik
denote the natural ring homomorphism. Show that the kernel of ϕ is I1∩I2∩· · ·∩Ik. Show also that if I1, I2, . . . , Ik
are pairwise comaximal, then the map is surjective and so

R/(I1I2 · · · Ik) ' R/I1 ×R/I2 × · · · ×R/Ik.
Something to Think About

The Lagrange Interpolation Theorem says that if a1, a2, . . . , ak are distinct elements of a field F and b1, b2, . . . , bk are
elements of F , then there is a unique polynomial p ∈ F [x] of degree less than k for which p(ai) = bi for 1 ≤ i ≤ k.
The usual approach to proving this theorem is to use the Vandermonde2 determinant. Since the statement “p(ai) = bi” is
equivalent to the statement “p(x)− bi is zero in F [x]/(x−ai)F [x]” can you use the Chinese Remainder Theorem to prove
the Lagrange Interpolation Theorem? [Hint: Consider pi(x) = bi(

∏
j 6=i(x− aj))/(

∏
j 6=i(ai − aj)) . . . ]

1“There are certain things whose number is unknown. If we count them by threes, we have two left over; by fives, we have three left over; and
by sevens, two are left over. How many things are there?” – Sunzi Suanjing (3rd century)

2“[. . . ] the name of Vandermonde would be ignored by the vast majority of mathematicians if it had not been attributed to the determinant that
you know well, and which is not his!” –Henri Lebesgue
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Worksheet for 10 Sep 2018
Rings: quotients and localization (c)2018 UM Math Dept

licensed under a Creative Commons
By-NC-SA 4.0 International License.

Vocabulary: multiplicative subset, localization, localization map, ring of fractions
Last time we saw how to create new rings from old ones by taking their product. Today we consider two additional ways
to create new rings: localization and quotients. The construction of ring quotients is done in Homework (26).

(31) What is R/R? What is R/{0}?
(32) If R is a commutative ring and I ⊂ R is an ideal, then R/I is commutative. Is the converse true?
(33) Describe R[x]/(x2 + 1).

Ring quotients are characterized by the following universal property:
Universal Property of ring quotients. Suppose R is a ring and I ⊂ R is an ideal. A quotient of R by I is a ring, denoted
R/I , together with a ring homomorphism π : R → R/I such that for every ring S and every ring homomorphism
g : R → S for which g(I) = 0 there exists a unique ring homomorphism ḡ : R/I → S for which the following diagram
commutes.

R R/I

S

π

g ∃! ḡ

(34) Suppose R is a ring and I ⊂ R is an ideal. Show that the quotient of R by I is unique up to unique isomorphism.
We now resume our study of localization that we began in Homework (2).

Definition. Suppose R is a commutative ring and D ⊂ R. We say D is a multiplicative subset of R if 1 ∈ D and D is
closed under multiplication, i.e., if s, t ∈ D then st ∈ D.

(35) Suppose p is a prime. Is Z \ pZ a multiplicative subset of Z?
You should associate the letter D with the word “denominator.” Given a commutative ring R and a multiplicative subset D
ofR, we define a relation onR×D by declaring (r, d) ∼ (s, e) provided that there exists f ∈ D such that (re−sd)f = 0.

(36) Verify that this defines an equivalence relation on R×D.
Let r/d denote the equivalence class of (r, d) ∈ R × D and let D−1R denote the set of all equivalence classes. Define
addition and multiplication in D−1R as follows:

r/d+ s/e = (re+ sd)/de, r/d · s/e = rs/de

(37) Verify that these operations define a ring structure on D−1R.

Definition. Suppose R is a commutative ring and D ⊂ R is multiplicative. The ring D−1R is called the localization of
R with respect to D or ring of fractions of R with respect to D

(38) Examples.
(a) Let D = Z \ {0} ⊂ Z. What is D−1Z?
(b) Suppose k is a field and D ⊂ k is multiplicative. What is D−1k?
(c) Suppose a, b ∈ Z>1 and (a, b) = 1. Let R = Z/aZ× Z/bZ and take D = {(1, 1), (0, 1)}What is D−1R?
(d) Suppose R is a commutative ring and f ∈ R. Let D = {fn |n ∈ Z≥0} and set Rf = D−1R. Show that Rf

is the zero ring if and only if f is nilpotent (i.e., fm = 0 for some m ∈ N).
(e) Fix a prime p and let D = Z \ pZ. The ring Z(p) := D−1Z, called the localization of the integers at p, is very

important in number theory. Find an infinite number of distinct ideals in D−1Z. Is your list exhaustive?
(f) Describe C[x]x.

(39) Show that D−1R is the zero ring if and only if 0 ∈ D.
(40) Define a map ` : R→ D−1R by `(r) = r/1. The map ` is often called the localization map.

(a) Show that ` is a ring homomorphism.
(b) Let R = Q[x, y]/(xy) and suppose D is the set of powers of x. Is the localization map R → Rx = D−1R

injective?
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(c) Verify that if D contains no zero divisors1, then the localization map ` is injective.
(41) Suppose R and S are commutative rings and D ⊂ R is multiplicative. Suppose f ∈ Hom(R,S) with f(D) ⊂ S×.

(a) Show that there is a R-map f̃ : D−1R→ S for which f̃ ◦ ` = f . Here ` is the localization map.
(b) Show that f̃ is the unique such map.

This suggests that localization can be characterized in terms of a universal property, and indeed:
Universal Property of localization. Suppose R is a commutative ring and D ⊂ R is multiplicative. A localization
of R with respect to D is a ring, denoted D−1R, together with a ring homomorphism ` : R → D−1R such that for
every commutative ring S and every f ∈ Hom(R,S) with f(D) ⊂ S× there exists a unique ring homomorphism
f̃ ∈ Hom(D−1R,S) for which the following diagram commutes.

R D−1R

S

`

f
∃! f̃

(42) Show that a localization of R with respect to D is unique up to unique isomorphism.

Something to Think About
The map | |p : Z(p) → R defined by

|x|p =

{
p−n if x ∈ pnZ(p) \ pn+1Z(p)

0 otherwise

is multiplicative and satisfies |x+ y|p ≤ max(|x|p , |y|p) ≤ |x|p + |y|p. Thus, dist(a, b) = |a− b|p defines a metric
on Z(p). The metric space completion of Z(p) is denoted Zp and called the p-adic integers. The principal ideal pZp is
the maximal ideal in Zp, and Zp/pZp is a finite field with p elelments. The localization of Zp with respect to Zp \ {0}
is Qp, the field of p-adic numbers. The norm | |p extends (uniquely) to a norm on Qp, and Zp may be identified with
{x ∈ Qp | |x|p ≤ 1}. With respect to this norm the field Qp is a locally compact field of characteristic zero. R and C are
also locally compact fields of characteristic zero, might there be others?

1For a general ring R and a ∈ R we say that a is a zero divisor provided that either of the maps r 7→ ar or r 7→ ra from R to R is not injective.
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Worksheet for 12 Sep 2018
Rings: UFDs and Noetherian rings (c)2018 UM Math Dept

licensed under a Creative Commons
By-NC-SA 4.0 International License.

Vocabulary: domain, integrable domain, irreducible element, principal ideal, prime ideal, maximal ideal, prime element,
Unique Factorization Domain, UFD,

The purpose of this worksheet is to introduce Unique Factorization Domains; this requires the introduction of a considerable
amount of vocabulary.

Definition. Suppose R is a ring and I ⊂ R is an ideal. I is called principal provided that I = (r) for some r ∈ R.

(43) Show that every ideal in Z is principal.
(44) Suppose R is a commutative ring. Show that for all a, b ∈ R we have (ab) = (a)(b).

Definition. Suppose R is a ring and I ( R is an ideal. I is said to be a prime ideal provided that if the product ideal AB
is contained in I , then A ⊂ I or B ⊂ I .

(45) Suppose R is commutative. Show that a proper ideal I in R is prime if and only if whenever ab ∈ I with a, b ∈ R
then at least one of a or b is an element of I . When R is commutative it is also true that I is prime iff R/I has no
zero divisors (see Homework (47)).

(46) What are the prime ideals in Z?
(47) Show that the ideal (5, x) in Z[x] is prime but not principal.

Definition. Suppose R is a ring and I ( R is an ideal. I is said to be a maximal ideal provided that whenever J ⊂ R is
an ideal and I ( J we have J = R.

Thanks to the Kuratowski-Zorn1 lemma, maximal ideals exist (see [DF04, Proposition 11, p. 254]).

(48) Does Z have any prime ideals which are not maximal?
(49) Show that the ideal (x) in Z[x] is prime but not maximal.

It is difficult to say interesting things about a general ring, even an arbitrary commutative ring. We now begin the process
of narrowing the class of rings we will consider – the proliferation of names (Euclidean, UFD, PID, . . . ) can be a bit
overwhelming, so I recommend creating a scorecard.2

Definition. A ring R is called a domain provided that R is nonzero and for all a, b ∈ R we have ab = 0 implies a = 0
or b = 0. A commutative domain is called an integral domain.

Hamilton’s quaternions H (see Prompt 14) provide an example of a domain which is not an integral domain.

(50) When is Z/nZ an integral domain?
(51) Suppose k is a field. Is k an integral domain? Is k[x, y] an integral domain? Is Matm×m(k) a domain?

Definition. Suppose R is a commutative ring and r is a nonzero element of R \R×. The element r is called irreducible
provided that whenever r = ab with a, b ∈ R, then at least one of a or b is a unit in R. The element r is called prime
provided that (r) is a prime ideal (that is, whenever r | ab for a, b ∈ R we have r | a or r | b). The element r is called
composite provided that it can be written as the product of two non-units.

In general, the notions of irreducible and prime are not strongly correlated. However, as we will see, (a) every prime
element in an integral domain is irreducible and (b) the two notions are equivalent in UFDs.

(52) Suppose R = Z/10Z. Show that 5 is prime but not irreducible.
(53) Consider the ring Z[

√
−13].

(a) Show that if 7 = (a+ b
√
−13)(c+d

√
−13), then one of (a+ b

√
−13) or (c+d

√
−13) is a unit in Z[

√
−13].

[Hint: Use the norm map.] Conclude that 7 is irreducible.
(b) Note that (6 +

√
−13)(6−

√
−13) = 72. Conclude that 7 is not prime in Z[

√
−13].

1The sculptures between Randall and West are by Jens Zorn, son of Max Zorn for whom the Kuratowski-Zorn lemma is half-named.
2“The only way anyone can keep track of all the different types of rings is to have specific examples for each adjective.” –Charlotte Chan
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Z[
√
−13] is an example of a quadratic integer ring. Quadratic fields1 and their rings of integers are a good source of

illustrative examples in the study of algebra and algebraic number theory.2

(54) What are the irreducible elements of Z?
(55) Suppose R is an integral domain. Show that if r ∈ R is prime, then it is irreducible.

Definition. A Unique Factorization Domain or UFD is an integral domain R is which every nonzero r ∈ R \ R× has
the following properties:

• (factorization) r can be written as a finite product of (not necessarily distinct) irreducibles pi of R: r =
p1p2 · · · pn.
• (uniqueness of factorization) if r = q1q2 · · · qm is another factorization of r into irreducibles then m = n and

there exists σ ∈ Sn so that pj ∈ qσ(j)R
× for 1 ≤ j ≤ n.

In plain language, in a UFD every non-zero non-unit can be written uniquely (up to reordering and unit multiple) as a
product of irreducible elements. Thanks to the Fundamental Theorem of Arithmetic (which relies on Euclid’s Lemma: if
p | ab, then p | a or p | b) we know Z is a UFD.

(56) Show that Z[
√
−13] is not a UFD. [Hint: look at the number fourteen and Homework (71).]

Since the word “uniqueness” appears in its name, it is natural to ask how generally one can expect non-zero non-units to
factorize into irreducibles (regardless of uniqueness). The answer is: quite generally.

Definition. A ring R is called Noetheriana provided that it satisfies the ascending chain condition for left ideals. That is,
R has no infinite increasing chains of left ideals.

aNamed for the great 20th century mathematician Emmy Noether

We should call such a ring left-Noetherian, but we won’t. By the way, the Data Base of Ring Theory3 can be a useful tool.
For example, a search for a ring that is left-Noetherian but not right-Noetherian returns a number of examples.

(57) Suppose R is a Noetherian integral domain. Let r ∈ R \R× be nonzero. We wish to establish that r can be written
as a product of a finite number of irreducible elements of R.
(a) If r is irreducible, then we are done.
(b) Suppose r is not irreducible, then r = r1r2 for some r1, r2 ∈ R \ R× (why?). If r1 and r2 are irreducible,

then we are done. If not, at least one, let’s say r1 is reducible. Show that (r) ( (r1) ( R.
(c) Since r1 is not irreducible, then r1 = r11r12 for some r11, r12 ∈ R\R× (why?). If r11 and r12 are irreducible,

then we are done with r1. If not, at least one, let’s say r11 is reducible. Show that (r) ( (r1) ( (r11) ( R.
(d) Show that r factors into a finite number of irreducible elements of R.

Something to Think About
Noetherian rings play a central role in both commutative and non-commutative algebra; what properties do they have?
For example: If R is Noetherian and I ⊂ R is an ideal, is R/I Noetherian? is I Noetherian? is R[x] Noetherian? is
R[x1, x2, . . . , xn] Noetherian? Is a subring4 of R also Noetherian? Is the localization of R also Noetherian?

Warning: Not every UFD is a Noetherian ring. UFDs satisfy a weaker condition: the ascending chain condition for
principal ideals. Note that the proof in Prompt 57 uses this weaker condition. As one might expect, there are rings that
satisfy the ascending chain condition for principal ideals, yet are not UFDs.

1A field k is called a quadratic field provided that Q ⊂ k and k is a two dimensional Q-vector space. For example, Q[i], Q[
√
2], or Q[

√
−13].

The description of the corresponding quadratic integer ring, usually denoted Ok, can appear mysterious and non-uniform (see, for example, [DF04,
§7.1, p. 229]). The mystery disappears when one learns that Ok is, by definition, the ring of elements of k that satisfy a monic polynomial in Z[x].

2See, for example, Milne’s notes on algebraic number theory at http://www.jmilne.org/math/CourseNotes/.
3ringtheory.herokuapp.com/
4A subring of R is a subset of R that is a ring with respect to the inherited addition and multiplication operations. Some people assume that the

identity of the subring is the identity of R; we do not.
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Worksheet for 14 Sep 2018
Rings: PIDs and Euclidean domains (c)2018 UM Math Dept

licensed under a Creative Commons
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Vocabulary: Principal Ideal Domain, PID, norm, positive norm, Euclidean Domain,

Definition. A Principal Ideal Domain or PID is an integral domain in which every ideal is principal.

The integers are a PID, and we shall soon learn that for a field k the ring k[x] is also a PID. IfD ∈ Z<0 is square free, then1

the quadratic ring of integers OQ[
√
D] is a PID if and only if D ∈ {−1,−2,−3,−7,−11,−19,−43,−67,−163}. The set

of positive square free D for which OQ[
√
D] is a PID is not known – in fact, we don’t know if it is a finite set or not.

(58) Suppose R is a PID. Show that every nonzero prime ideal in R is a maximal ideal. [Hint: Let (m) be an ideal
between (p) and R.]

(59) SupposeR is a PID and r ∈ R is irreducible. Show that (r) is a maximal ideal inR. [Hint: Argue by contradiction.]
Conclude that an element of a PID is irreducible if and only if it is prime. [Hint: Homework 47.]

We have the tools to show that every PID is a UFD.
(60) Show that every PID is Noetherian. [Hint: If I1 ⊂ I2 ⊂ . . . are ideals in a ring R, then so too is ∪Ij .] Conclude

that every non-zero non-unit in a PID has a factorization into prime elements. (why prime?)
(61) Show that the factorization created in Prompt 60 is unique (up to units). Suppose r = p1p2 · · · pn = q1q2 · · · qm

where the pj (resp. qk) are not necessarily distinct primes. We need to show that n = m and there is some σ ∈ Sn
for which pi ∈ qσ(i)R

× for 1 ≤ i ≤ n.
We first handle the case n = 0. In this case, r is a unit. If m 6= 0, then r has some other factorization as qs with q
irreducible and s ∈ R. But then q | r and so by Homework 19 we conclude that q ∈ R×, contradiction. Suppose
now that n ≥ 1, and proceed by induction:
(a) Show that, WOLOG, p1 | q1. Conclude that q1 = p1u with u a unit in R. Cancel p1 from both sides to obtain

1 = (uq2)q3 · · · qm. Apply Homework 19 to conclude that m = 1.
(b) Suppose n ≥ 1. As above, WOLOG p1 | q1 and q1 = p1u with u a unit in R. Cancel to obtain p2p3 · · · pn =

(uq2)q3 · · · qm. Apply induction.
(62) Conclude that every PID is a UFD.

Another important class of integral domains are those that possess a division algorithm. These rings are often called
Euclidean domains.
Definition. Suppose R is an integral domain. A norm on R is any function N : R \ {0} → Z≥0. The function N is said
to be a positive norm provided that N(r) > 0 for all nonzero r.

The normal absolute value on Z yields a positive norm. If k is a field, then p 7→ deg(p) on k[x] yields a norm.2 The norm
map N(a+ bi) = a2 + b2 on the Gaussian Integers Z[i] is a positive norm.

Definition. An integral domain R is called an Euclidean Domain provided that there is a positive norm N on R such that
for any two elements a, b ∈ R with b 6= 0 there exist q, r ∈ R with

a = bq + r with r = 0 or N(r) < N(b)

The element q is called the quotient and the element r is called the remainder of the division.

Important examples of Euclidean Domains include Z, the localization of Z at a prime, and k[x] for k a field. If D ∈ Z<0 is
square free, then the quadratic ring of integers OQ[

√
D] is a Euclidean Domain if and only if D ∈ {−1,−2,−3,−7,−11};

thus, not every PID is a Euclidean Domain (see [DF04, Exercise 8, p. 278]).
(63) Show that q and r need not be unique by considering a = 3 + 5i and b = 2 in Z[i].

Since we have claimed that k[x] is a PID when k is a field, it would be excellent if every Euclidean Domain was a PID.
This is the content of the next prompt.

(64) Suppose R is a Euclidean Domain with an associated (positive) norm map N : R \ {0} → Z≥0. Let I ⊂ R be an
ideal. We wish to show that I is a principal ideal. If I = {0}, then we are done. So, suppose I is nonzero.
(a) Show there exists 0 6= d ∈ I for which N(d) ≤ N(s) for all nonzero s ∈ I .

1This is a nontrivial result.
2For many of us, the degree of the 0 polynomial is −∞. This is why, unlike [DF04], we have defined norm functions on the nonzero elements

only.
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(b) Show that I ⊂ (d). [Hint: Use the definition of Euclidean Domain!]
(c) Conclude R is a PID.

(65) (Bonus.) Suppose R is an integral domain. Is it possible for R to be a Euclidean Domain with respect to two
different norm maps?

Something to Think About
In the literature, a norm map is often also required to be submultiplicative: N(ab) ≤ N(a)N(b) for all nonzero a, b.
It is difficult to think of a Euclidean Domain for which the associated norm map doesn’t have this property, but they
do exist. However, if R is a Euclidean Domain with associated norm map d, then the function N : R \ {0} → Z≥0

defined by N(c) = minx∈R\{0} d(xc) is also a norm map with respect to which R is a Euclidean Domain, and it satisfies
N(ab) ≤ N(a)N(b). (Do you see why?) An advantage of this approach is that the submultiplicativy of N is related to
the factorization of non-zero non-units of R into irreducibles. Can you use this idea to show directly that every Euclidean
Domain is a UFD?
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Worksheet for 17 Sep 2018
Polynomials: Gauss’ lemma and reducing polynomials mod I (c)2018 UM Math Dept

licensed under a Creative Commons
By-NC-SA 4.0 International License.

Vocabulary: Gauss’ Lemma, field of fractions, greatest common divisor, gcd
Suppose that R is a commutative ring. Determining whether or not a given polynomial in R[x] is irreducible is an

important and challenging problem that arises in nearly every branch of mathematics. Sometimes it is easy to address this
problem – e.g., thanks to the Fundamental Theorem of Algebra1 we know that the only irreducible nonconstant polynomials
in C[x] are the linear ones. For a general ring (or even field) the problem is much more demanding; many approaches to
the problem involve either “shrinking” the ring of coefficients by reducing the coefficients modulo some ideal in R or
“enlarging” the ring of coefficients via localization.

Suppose I ⊂ R is an ideal. We denote by (I) or I[x] the ideal in R[x] generated by I . There is a natural map from R[x]
to (R/I)[x] that takes a polynomial a0 + a1x + · · · + anx

n in R[x] to the polynomial ā0 + ā1x + · · · + ānx
n where r̄

denotes the image of r ∈ R in R/I . As is readily verified, the kernel of this map is I[x] and so we have

(R/I)[x] ' R[x]/I[x].

(66) Show that if I is a prime ideal in R, then I[x] is a prime ideal in R[x]. [Hint: Homework 47 may be helpful.]
(67) Suppose q ∈ Z[x] has degree greater than one. Show that there is a prime p so that the image of q in (Z/(p))[x]

factors into two nonconstant polynomials of degree less than deg(q). [Hint: Don’t think too hard and look at a
nonunit in q(Z).]

The polynomial q(x) = x2 − 2 is irreducible in Z[x] (why?). Thanks to Prompt 67 there are many primes for which the
image of q in (Z/(p))[x] factors. On the other hand, there are also many primes (e.g., 3, 5, 11, . . . ) for which the image of
q in (Z/(p))[x] doesn’t factor. As it turns out (see Prompt 77), the latter observation can be turned into a useful criterion
for irreducibility: Suppose q is monic and nonconstant in R[x]; if we can find an ideal I ⊂ R for which the image of q in
(R/I)[x] is irreducible, then q is irreducible in R[x].

(Un)fortunately, looking at quotients does not provide a full solution: there exist irreducible monic polynomials q of
degree greater than one in Z[x] for which the image of q in (Z/(p))[x] factors into two nonconstant polynomials of degree
less than deg(q) for every prime p. Examples include the so-called Leibniz2 polynomial x4 + 1 (see [DF04, Corollary 16,
p. 586]) and the qual3 favorite x4 − 10x2 + 1 (see Homework 76).

Localization is another useful tool for studying questions of irreduciblity.

Definition. Suppose R is an integral domain. The field of fractions of R is the localization of R with respect to R \ {0}.
In Homework (52) you show that the field of fractions, F , of an integral domain R is, in fact, a field.

(68) What is the field of fractions of Z?
(69) If q ∈ R[x] is irreducible in F [x] is it irreducible in R[x]?

We know thatR[x] is an integral domain. We also know that F [x] is a Euclidean Domain, hence a PID (Prompt 64c), hence
a UFD (Prompt 62). Thus, if p ∈ R[x], then p factors uniquely in F [x]. Unfortunately, it does not follow that p factors4 in
R[x].

(70) Let R = Z[2
√

2] and look at the polynomial q(x) = x2 − 2. Show that q factors over the field of fractions of R,
but is irreducible in R[x].

To use localization to make statements about irreduciblity, we will need to place some restrictions on R. It turns out that
R[x] is a UFD if and only if R is a UFD (see Prompt 76), so we are going to concentrate on the case when R is a UFD.

(71) Suppose R is a UFD with field of fractions F . Let p ∈ R[x]. Suppose p factors as AB with A,B ∈ F [x].
(a) Show that we may clear denominators. That is, we may choose r ∈ R and s ∈ R so that a′ = rA and b′ = sB

belong to R[x]. Let t = rs. We have tp = a′b′ in R[x].
(b) Show: If t ∈ R×, then p factors in R[x].
(c) If t 6∈ R×, then we can (uniquely) write t = p1p2 · · · pm with pi irreducible. Look at tp in (R/(p1))[x] and

show that p1 divides one of a′ or b′. Conclude that we may cancel p1 from tp and one of a′ or b′ and still have
an equality in R[x].

1If you have never seen a proof of this result, please let me know and we’ll remedy that.
2So named because Leibniz mistakenly believed that it and its cousins x4 + a2 could not be factored over R.
3It is a favorite because its roots are all four possibilties of ±

√
2±
√
3; remember this when you take up Galois theory.

4Much less factors uniquely.
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(d) (Gauss’ Lemma) Conclude that we may factor p as ab with a, b ∈ R[x].
Warning! a and b will not, in general, be A and B. For example, x2 − 1 = (6x/10− 6/10)(5x/3 + 5/3) in Q[x]. In this
case we can take t = 30 = (2)(5)(3) and x2 − 1 = (x− 1)(x+ 1) in Z[x].

Suppose R is a UFD. Since every non-zero element of R is a unit in F , the field of fractions of R, it is too much to hope
that an element ofR[x] is irreducible if and only if it is irreducible in F [x] (go back and check your answer to Prompt (69)).
However, after making some straightforward modifications, we can arrive at a characterization of the interesting irreducible
elements in R[x] in terms of those in F [x].

Definition. Suppose A is a commutative ring and a1, a2, . . . am ∈ A not all zero. A greatest common divisor or gcd of
a1, a2, . . . am is a nonzero a ∈ A for which

• a | aj for 1 ≤ j ≤ m and
• if a′ ∈ A and a′ | aj for 1 ≤ j ≤ m then a′ | a.

(72) Suppose that A is a commutative ring and a is a gcd of a1, a2, . . . am ∈ A (not all zero). Show that (a) is the
smallest principal ideal containing a1, a2, . . . am.

(73) Suppose thatA is an integral domain. Show that if a, a′ ∈ A with (a) = (a′), then there is a unit u ∈ A× for which
a = ua′. Conclude that the gcd of a1, a2, . . . , am ∈ A (not all zero) is unique up to units.

(74) Suppose R is a UFD and p ∈ R[x] has the property that the gcd of its nonnzero coefficients is one.1 Show that p is
irreducible in R[x] if and only if p is irreducible in F [x].

(75) Suppose R is a UFD and p ∈ R[x] is a monic polynomial. Show that p is irreducible in R[x] if and only if it is
irreducible in F [x].

We now have the tools to prove:
(76) R is a UFD if and only if R[x] is a UFD. The direction from right to left is straightforward (look at the constant

polynomials and don’t think too hard), so we work on going from left to right. Suppose R is a UFD and let F
denote its field of fractions. Suppose q ∈ R[x].
(a) By considering the gcd of the coefficients of q, show that WOLOG we may assume that (a) the gcd of the

coefficients of q is one and (b) deg(q) ≥ 1.
(b) Use Gauss’ Lemma and Homework (64) to show that q factors as a product q1q2 · · · qm where (a) each qi ∈

R[x] is irreducible in F [x] and (b) the gcd of the coefficients of qj is one for 1 ≤ j ≤ m.
(c) (Existence) Use Prompt (74) to conclude that q can be written as a finite product of irreducibles in R[x].
(d) (Uniqueness). Suppose that we have two factorizations p = q1q2 · · · qm = q′1q

′
2 · · · q′n.

(i) Use Homework (64) and Prompt (74) to conclude that p = q′1q
′
2 · · · q′n is a factorization of p into

irreducibles in F [x]. Conclude that n = m and, WOLOG, bjqj = ajq
′
j for some aj , bj ∈ R×.

(ii) Show that for each j there exists uj ∈ R× for which aj = ujbj and conclude that qj = ujq
′
j , completing

the proof of uniqueness.
Something to Think About

In Math 594 you will spend some time looking at the cyclotomic polynoimals Φn. One definition2 of Φn is that it is the
unique irreducible monic polynomial in Z[x] that divides xn − 1 but not xm − 1 for m < n. For a prime p, the cyclotomic
polynomial Φp has the form

Φp(x) =
xp − 1

x− 1
= xp−1 + xp−2 + · · ·+ x+ 1.

How to show this is irreducible in Z[x]? Has anything we’ve done so far been useful for approaching this question?

1Such a polynomial is often called primitive. However, this term describes so many things in mathematics that it is best to not use it here.
2And, I think, the only one we can state with the words we know. It is nontrivial to show that there exists a polynomial that satisfies this definition.
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In practice, it can be challenging to figure out when a given polynomial is irreducible. But there are some common and
useful techniques; we discuss two of them here.

(77) Suppose R is a ring and I is a proper ideal in R. If q ∈ R[x] is a nonconstant monic polynomial whose image
in (R/I)[x] cannot be factored into polynomials of smaller degree, then q is irreducible in R[x].[Hint: Suppose q
factors in R[x].]

Since R[x, y] ' (R[x])[y] and so on, this result also applies to polynomial rings in more than one variable.
(78) Are the following irreducible in Z[x]?

(a) x2 + x+ 1

(b) x3 + 2x+ 1

(79) Are the following irreducible in Z[y, x]?
(a) x2 + xy + y2 + 1

(b) xy + x+ y + 1

(80) Is xyz2 + z + zx3y + x2 + 5x2yz + xy + y2 + 1 + xyz irreducible in Z[x, y, z]?
The behavior of irreduciblity under composition is a subtle issue, but there is one case that is easy to handle.

(81) Suppose R is an integral domain and f ∈ R[x]. Define ` ∈ R[x] by `(x) = mx + b where m ∈ R× and b ∈ R.
Show that f factors in R[x] if and only if f ◦ ` factors in R[x].

The map T ∈ Hom(R[x], R[x]) given by T (f) = f ◦ ` is an example of a ring automorphism.
(82) (Schönemann–Eisenstein Criterion) Suppose R is an integral domain and p ∈ R is prime. Suppose q ∈ R[x] is a

monic nonconstant polynomial of degree m with q(x) = xm + am−1x
m−1 + · · ·+ a1x+ a0. Show that if

• p2 - a0 and
• p | aj for 0 ≤ j < m

then q is irreducible. [Hint: Use Prompt 77.]
(83) Suppose p is a prime. Show that the pth cyclotomic polynomial Φp(x) = xp−1

x−1 = xp−1 + xp−2 + · · · + x + 1 is
irreducible. [Hint: Use Prompts (81) and (82).]

(84) Show that the following polynomials are irreducible in Z[x, y, z].
(a) x3 − y2x2z2 + 3xyz2 + y5z

(b) x3 + 4xy + 27x+ 8y + 12

(c) x5 − y3z + y3 + 16x2 + x2yz27 + 47x+ xyz − 13z78x4 + 739

Something to Think About
Is the composition of irreducible polynomials irreducible? This is true over C (why?), but clearly not true over R (why
not?). Note that in both cases, the degree of the irreducible components of the composition is divisible by the degree of the
“outer polynomial.” Could this be a general fact? Perhaps it is better to ask existence type questions. For example, given a
nonconstant irreducible polynomial p ∈ Q[x], does there always exist a polynomial q ∈ Q[x] of degree at least 2 such that
the composition p ◦ q is irreducible in Q[x]?
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We are now done with the “ring portion” of the course, and we are ready to start the “module portion.” Recall that the
phrase “M is an R-module” always means “M is a unital left R-module.” That is:

Defintion. Suppose R is a ring. An R-module is a set M with two operations:
• +: M ×M →M (called addition) and
• ∗ : R×M →M (called scalar multiplication)

satisfying the following axioms:
M1: (M,+) is an abelian group,
M2: (r + s) ∗m = r ∗m+ s ∗m for all r, s ∈ R and m ∈M
M3: (rs) ∗m = r ∗ (s ∗m) for all r, s ∈ R and m ∈M
M4: r ∗ (m+ n) = r ∗m+ r ∗ n for all r ∈ R and m,n ∈M
M5: 1 ∗m = m for all m ∈M .

Modules are everywhere. For example, Lp([0, 1]) (but not Cp([0, 1])) is a module over the ring C0([0, 1]) and the smooth
differentiable p-forms (or vector fields or tensor fields) on a smooth manifold M are a module over the ring C∞(M).

(85) Show that if R is the zero ring and M is an R-module, then M = {0}.
(86) Show that every Z-module is an abelian group and every abelian group is a Z-module. [Hint: If A is an abelian

group, how should we define n · a for n ∈ Z and a ∈ A?]
(87) Suppose k is a field. Show that every k-module is k-vector space and every k-vector space is a k-module.

[Warning: Thinking of modules as vector spaces is dangerous, wrong, and will lead you astray eventually; fields
are just too special. It is, of course, OK to think of vector spaces as modules over a field.]

(88) Suppose V is a k-vector space. Show that V is an Endk(V ) := Homk(V, V ) module in a natural way.
(89) Suppose R is a ring. Show that Rn is a module. If I ⊂ R is an ideal, is R/I an R-module?

We know that abelian groups have subgroups and vector spaces have subspaces. In general, modules have submodules.

Definition. Let R be a ring and let M be an R-module. An R-submodule of M is a subgroup N of M which is closed
under scalar multiplication, that is, rn ∈ N for all r ∈ R and n ∈ N .

(90) Show that every Z-submodule of a Z-module A is a subgroup of A.
(91) Suppose k is a field. Show that every k-submodule of a k-module V is a subspace of V .
(92) Suppose R is a ring and M is an R-module. Show that N ⊂M is a submodule of M if and only

• N 6= ∅ and
• x+ ry ∈ N for all r ∈ R and x, y ∈ N .

(93) Suppose R is a ring. What are the R-submodules of R?
The following exercises go through an important example that will allow us to reformulate many linear algebra results as
results about modules. Suppose k is a field and V is a k-vector space. We already know that V is a k-module.

(94) Fix T ∈ Homk(V, V ). For f(x) ∈ k[x], show that f(T ) ∈ Homk(V, V ). In this way, V becomes a k[x]-module
where f · v = f(T )v.
(a) If T = 0, show that f · v = a0v where a0 is the constant coefficient of f .
(b) Describe the action of k[x] on V when T = IdV .

(95) Suppose now that M is a k[x]-module.
(a) Show that M is a k-vector space.
(b) Show that the map from M to M given by m 7→ x ·m belongs to Homk(M,M).
(c) Suppose that f(x) = xm + am−1x

m−1 + · · ·+ a1x+ a0 ∈ k[x]. Let M denote the k[x]-module k[x]/(f) and
denote by S ∈ Homk(M,M) the linear map that corresponds to m 7→ x ·m.

(i) What is the dimension of M?
(ii) With respect to the basis v = (1, x, x2, . . . , xdim(M)−1) of M , what is v[S]v?1

1Suppose S(xj) =
∑dim(M)−1
j=0 aijx

i. The matrix v[S]v is a dim(M)× dim(M) matrix whose ijth entry is aij .
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(96) Conclude that there is a bijection between the set of k[x]-modules and the set of pairs (V, T ) where V is a k-vector
space and T ∈ Homk(V, V ). [Don’t be misled: This has nothing to do with Prompt 95c. ]

(97) Suppose that M is a k[x]-module. Suppose the action of x on M corresponds to S ∈ Homk(M,M). Show that
the k[x]-submodules of M are precisely the S-stable subspaces1 of M .

The matrix v[S]v is called the companion matrix of f(x). It is often denoted Cf(x).
As the example of k[x]-modules makes abundantly clear, a given abelian group can carry many, many different R-module
structures. Don’t forget this.
Recall that an R-module homomorphism between R-modules M and N is a function from M to N that respects both (a)
the group structure of M and N and (b) scalar multiplication. That is:

Definition. Suppose R is a ring and M and N are R-modules. A function g : M → N is called a R-module homomor-
phism provided that

• g is a group homomorphism and
• g(rm) = rg(m) for all r ∈ R and m ∈M .

The set of R-module homomorphisms from M to N is denoted HomR(M,N) or HomR−mod(M,N).

(98) Are the Z-modules 5Z and 7Z isomorphic as Z-modules?
(99) Suppose I is an ideal in a ring R. Show that the quotient map R→ R/I is an R-module homomorphism.

(100) Suppose R is a commutative ring and M and N are R-modules. Show that HomR(M,N) is an R-module. What
if R is not commutative?

(101) Suppose R is a ring, M and N are R-modules, and f ∈ HomR(M,N). Show that ker(f), the kernel of f , is a
submodule of M . Show that im(f), the image of f , is a submodule of N .

(102) Suppose R is a commutative ring and M is an R-module. Show that M is naturally a module for the ring
EndR(M) = HomR(M,M). What if R is not commutative?

Some Things to Think About
[A] Suppose k is a field and V and W are finite dimensional k-vector spaces with bases v and w, respectively. The
choice of bases gives us a bijective map between Homk(V,W ) and Matdim(W )×dim(V )(k). Thus, a linear maps between
an n-dimensional k-vector space and an m-dimensional k-vector space can be encoded in a natural way by nm numbers.
Suppose U is a third k-vector space with basis u. Can you think of a way to encode all k-bilinear maps from V ×W to U?

[B] Recall the definition of an associative algebra:

Defintion. Suppose R is a commutative ring. A set A is called an associative R-algebra provided that
• A is an R-module and
• the multiplication map A×A→ A is R-bilinear and associative.

Every abelian group is a Z-module, and vice-versa. What sorts of objects are associative Z-algebras?

1A subspace X of M is called S-stable provided that S(X) ⊂ X .
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Suppose R is a ring. Let J be an indexing set1 and let (Mj | j ∈ J) be a list of R-modules. We begin by looking at the
direct product and direct sum of (Mj | j ∈ J). (We’ve been through this before, the only new thing this time is that the
indexing set J is not assumed to be finite.)

Definition. Suppose R is a ring, I is an indexing set, and (Mi | i ∈ I) is a list of R-modules indexed by I . The direct
product of the (Mi), denoted

∏
i∈IMi or

∏
iMi, is an R-module with elements and operations defined as followed. An

element of
∏
iMi is a sequence (mi) where mi ∈ Mi. The operations on

∏
iMi are defined as follows: for r ∈ R and

m = (mi),m
′ = (m′i) ∈

∏
iMi we define

• rm to be that element of
∏
iMi whose jth component is rmj for j ∈ I; that is (rm)j = rmj , and

• m+m′ to be that element of
∏
iMi whose jth component is mj +m′j for j ∈ I; that is (m+m′)j = mj +m′j .

(103) Verify that
∏
iMi verifies the module axioms.

(104) Show that the set of sequences with entries in C is a Q[
√

2]-module. Show that it is isomorphic, as a Q[
√

2]-module,
to
∏
n∈NC.

(105) Let Z be an R-module and let f` ∈ HomR(Z,M`) for ` ∈ I . Show that there is a unique f ∈ HomR(Z,
∏
iMi)

for which f(z)j , the jth component of f(z), is fj(z) for all j ∈ I .
Prompt 105 sounds like a universal property, and, indeed, in a general category, the universal property of products over an
indexing set I looks like:
Universal Property of Direct Products. Suppose C is a category. Suppose (Xi) is a list of objects in C indexed by I .
A product of the Xi is an object in C, denoted

∏
iXi, together with a list of morphisms (πj :

∏
iXi → Xj | j ∈ I)

satisfying the following universal property: for every object Z in C and list of morphisms (fj : Z → Xj | j ∈ I) there
exists a unique morphism f : Z →

∏
iXi such that for all ` ∈ I the following diagram commutes:

Z
∏
iXi

X`

∃! f

f`
π`

Products need not exist (consider, again, the category of fields). However, when they do exist, they are, as before, unique
up to unique isomorphism.

(106) Suppose Q is an object in C that, along with a list of morphisms (π̃j : Q → Xj | j ∈ I), satisfies the universal
property of products. Show that there exists a unique isomorphism from Q to

∏
iXi.

We now take up our study of direct sums.

Definition. SupposeR is a ring, I is an indexing set, and (Mi | i ∈ I) is a list ofR-modules indexed by I . The direct sum
of the (Mi), denoted ⊕i∈IMi or

⊕
iMi, is an R-module with elements and operations defined as followed. An element

of
⊕

iMi is a sequence (mi) where mi ∈ Mi and mi = 0 for all but finitely many i ∈ I . The operations on ⊕iMi are
defined as follows: for r ∈ R and m = (mi),m

′ = (m′i) ∈ ⊕iMi we define
• rm to be that element of

∏
iMi whose jth component is rmj for j ∈ I; that is (rm)j = rmj , and

• m+m′ to be that element of
∏
iMi whose jth component is mj +m′j for j ∈ I; that is (m+m′)j = mj +m′j .

In a direct sum
⊕

iMi one often writes an element (mi) ∈
⊕

iMi as
∑
mi or

∑′mi. Here the prime on the summation
sign is added to emphasize that all but finitely many of the mi are zero. For j ∈ I we denote by ιj the natural injection2 of
Mj into

⊕
iMi.

(107) Verify that
⊕

iMi satisfies the module axioms.
(108) Verify that ιj ∈ HomR(Mj ,

⊕
iMi) for j ∈ I .

(109) Show that if I is finite, then the direct product of (Mi | i ∈ I) and the direct sum of (Mi | i ∈ I) coincide.

1Warning! J need not be finite. While J could be, for example, ∅ or {1, 2, 43}, it could also be, for example, Z, R, or C0([0, 1]).
2What is it?
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(110) Show that the set of sequences with entries in R is a R-module. Show that it is not isomorphic, as an R-module,
to
⊕

n∈NR. [Hint: What’s their dimension? Also, when such questions are asked, it is usually assumed that an
isomorphism will respect the natural projections with which both objects are equipped.]

(111) Let N be an R-module and let f` ∈ HomR(M`, N) for ` ∈ I . Show that there is a unique f ∈ HomR(⊕iMi, N)
for which f(ιj(m)) = fj(m) for all j ∈ I and m ∈Mj .

Prompt 111 sounds like a universal property. In a general category, this becomes the universal property of coproducts1; we
will stick to the category of modules where the coproduct coincides with the direct sum.
Universal Property of Direct Sums for Modules. Suppose R is a ring, I is an indexing set, and (Mi | i ∈ I) is
a list of R-modules indexed by I . A direct sum of the Mi is an R-module, denoted

⊕
iMi, together with a list of

morphisms (ιj : Mj →
⊕

iMi) satsifying the following universal property: for everyR-moduleN and list of morphisms
(fk : Mk → N | k ∈ I) there exists a unique morphism f :

⊕
iMi → N such that for all ` ∈ I the following diagram

commutes: ⊕
iMi N

M`

∃! f

ι`
f`

(112) Suppose Q is an R-module that, along with a list of morphisms (ι̃j : Mj → Q | j ∈ I), satisfies the universal
property of direct sums for R-modules. Show that there exists a unique isomorphism from Q to ⊕iMi.

(113) Suppose R is a commutative ring. Show that HomR(⊕i∈IMi, N) '
∏
i∈I HomR(Mi, N) as R-modules. What if

R is not commutative? Bonus. Why not look at HomR(
∏
i∈IMi, N)?

(114) Bonus. Suppose R is a commutative ring. Show that HomR(N,
∏
i∈IMi) '

∏
i∈I HomR(N,Mi) as R-modules.

(115) Suppose S is a set and R is a ring. Let Fun′(S,R) be the R-module that consists of functions f : S → R for which
f(s) = 0 for all but finitely many s ∈ S. Show that Fun′(S,R) ' R⊕S as R-modules.

Something to Think About
Suppose R is a ring. Already for R = Z we see that not every R-module is isomorphic to R⊕I :=

⊕
i∈I R for some

indexing set I (see also Prompt (122)). In what ways can an R-module fail to look like R⊕I? For which rings might all
R-modules look like R⊕I? When is a product

∏
i∈IMi of R-modules isomorphic to R⊕J for some indexing set J? Is∏

n∈N Z isomorphic to a direct sum of copies of Z?

1In general, when the arrows are reversed words like “dual” and prefixes like “co” pop up. Can you see why they pop up here?
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Definition. Suppose R is a ring, M is an R-module, and A ⊂M . The submodule of M generated by A, denoted RA, is
the R-module whose elements are

∑
a∈A raa with ra ∈ R and ra = 0 for all but finitely many a ∈ A.

By convention, R∅ = {0}. Note that

RA = {r1a1 + r2a2 + · · ·+ rmam | r1, r2, . . . , rm ∈ R, a1, a2, . . . , am ∈ A, m ∈ N}.

(116) Suppose A ⊂M . Verify that RA is a submodule of M .
(117) Is it true that RM = M?

Definition. Suppose R is a ring and M is an R-module. If N is a submodule of M and N = RB for some B ⊂ M ,
then we call B a generating set for N , and we say that N is generated by B. If we can find a finite subset C ⊂ M for
which N = RC, the we say that N is finitely generated. If N is generated by a singleton set B = {b} ⊂ M , then N is
said to be cyclic and we write N = Rb.

(118) Describe ZA where A = {18, 48} is a subset of the Z-module C.
(119) Suppose R is a ring. Is R a finitely generated R-module? Is R/I a finitely generated R-module for I ⊂ R and

ideal? Bonus. Is every ideal in R finitely generated?
(120) Suppose R is a commutative nonzero ring. Show that R[x] is not finitely generated as an R-module.
(121) Suppose R is a commutative ring and f ∈ R[x] is monic of positive degree. Show that R[x]/(f) is finitely

generated as an R-module. Do we need to assume f is monic?
(122) Suppose R is a ring and M is a finitely generated R-module. Show that there is a unique largest d ∈ Z≥0 so that if

A ⊂ R and M = RA, then |A| ≥ d. Does it follow that M = R⊕d :=
⊕d

i=1R?

Definition. SupposeR is a ring andM is anR-module. We say thatM is free provided that there existsB ⊂M with the
property that for every nonzero m ∈ M there exists unique nonzero r1, r2, . . . , rm ∈ R and unique b1, b2, . . . , bm ∈ B
for which m = r1b1 + r2b2 + · · ·+ rmbm. We say that B is a basis, free basis, or set of free generators for M .a

aWarning! In the context of modules, some authors refer to any spanning set as a basis.

Equivalently, M is free provided that there exists B ⊂ R with the property that for every m ∈ M there exists unique
(rb) ∈ R⊕B =

⊕
b∈B R for which m =

∑
b∈B rbb.

(123) Suppose R is a ring and M is an R-module. Show that M is free if and only if there exists an indexing set I so
that M ' R⊕I as R-modules.

(124) Is Z/5Z⊕ Z/7Z a free Z-module?
(125) Is the ideal (2, x) in Z[x] a free Z[x]-module? [Hint: Can two elements of an ideal in a commutative ring be linearly

independent?]
(126) Give two examples of Z-modules which are not free. Give two examples of Z-modules which are free.
(127) Suppose M is a Z-module which is not free; can there be an injective Z-module homomorphism from Z to M?
(128) Suppose k is a field. Is every k-module free? Prove it. Bonus. Suppose R is a commutative ring and every

R-module is free; must R be a field?
(129) Suppose R is a domain and I ⊂ R is an ideal.

(a) If I is not a principal ideal, then can I be a free R-module?
(b) If I is a principal ideal in R, then must I be a free R-module?
(c) Suppose A is a PID. Is every submodule of A a free A-module?

Early on in your homework you reviewed the notion of free abelian groups and discussed their universal property. Since
modules are ‘abelian groups with additional structure’ it is not surprising that free R-modules share a similar universal
property, namely:



Please report any errors you find to smdbackr@umich.edu

Universal Property of Free Modules. Suppose S is a set. A free R-module with basis S is an R-module, denoted
FR(S), together with an injection ι : S → F (S) such that for every R-module M and every (set) function f : S → M

there exists a unique f̃ ∈ HomR(F (S),M) for which the following diagram commutes.

S FR(S)

M

ι

f
∃! f̃

(130) (Existence of Free Modules) Suppose S is a set and R is a ring. Recall from Prompt (115) that Fun′(S,R) denotes
the R-module consisting of functions f : S → R for which f(s) = 0 for all but finitely many s ∈ S.
(a) Is Fun′(S,R) a free R-module?
(b) Define ι′ : S → Fun′(S,R) by letting ι′(s) = [s], the characteristic function of the set {s}. Show that

Fun′(S,R), together with ι′, satisfies the universal property of free modules.
(131) (Uniqueness) Suppose that R is a ring and S is a set. Show that a free R-module with basis S is unique up to

unique isomorphism.
Something to Think About

Because modules are ‘abelian groups with additional structure’, the construction of free objects on a set S is very similar in
both the category of abelian groups and the category of R-modules. Suppose that we wanted to look instead at the category
of groups and construct a free object on a set S there. The universal property would not be all that different – given S,
we’d want a group F (S) together with an injection ι : S → F (S) such that for every group G and every (set) function
f : S → G there exists a unique f̃ ∈ Hom(F (S), G) for which the following diagram commutes.

S F (S)

G

ι

f
∃! f̃

If S has one element, this seems to be pretty straightforward – F (S) would be isomorphic to Z. (Why?) However, if S
has two elements, say a and b, then F (S) would need to account for all possible products of a, b, a−1, and b−1. (Why?)
How to visualize F ({a, b})? How would you construct a candidate for F ({a, b})? How would you construct a candidate
for F (S) for larger sets S?
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We recast the notion of a free R-module in terms that are closer to those used in linear algebra. Remember: for an arbitrary
ring, most modules are not free.

Definition. Suppose R is a ring, M is an R-module, and S = (si | i ∈ I) ⊂ M . A linear combination of elements of S
(with coefficients in R) is a sum

∑
i∈I risi where (ri | i ∈ I) is a list of elements in R all but finitely many of which are

zero. The elements ri are called the coefficients of the linear combination.

We will sometimes be lazy and write “abfmz” for “all but finitely many of which are zero.”
(132) Suppose J is a set. Show that every element of the R-module Fun′(J,R) is a linear combination of elements of

{[j] | j ∈ J}. (Recall that [j] denotes the characteristic function of the singleton {j}.)

Definition. Suppose R is a ring and M is an R-module. A list S = (si | i ∈ I) ⊂ M is said to be linearly independent
(overR) provided that whenever we have a linear combination

∑
i∈I risi which is equal to zero, then ri = 0 for all i ∈ I .

(133) Suppose R = Z/6Z and M = R⊕2. Which of the following lists of elements in M are linearly independent?
((0, 0)), ((1, 1)), ((2, 4)), ((2, 4), (3, 3)), ((1, 2), (3, 1)), ((1, 2), (4, 2)), ((1, 1), (1, 1)).

(134) Suppose J is a set. Is {[j] | j ∈ J} ⊂ Fun′(J,R) linearly independent?
(135) Suppose R is a ring, M is an R-module, and S = (si | i ∈ I) ⊂ M is linearly independent. Show that two linear

combinations,
∑

i∈I risi and
∑

i∈I r
′
isi, of elements of S are equal if and only if ri = r′i for all i ∈ I .

We recall the definition of a free module and basis.
Definition. SupposeR is a ring andM is anR-module. We say thatM is free provided that there existsB ⊂M with the
property that for every nonzero m ∈ M there exists unique nonzero r1, r2, . . . , rm ∈ R and unique b1, b2, . . . , bm ∈ B
for which m = r1b1 + r2b2 + · · ·+ rmbm. We say that B is a basis or set of free generators for M .

(136) Suppose R is a ring, M is an R-module, and S = (si | i ∈ I) ⊂M . Show that the following are equivalent.
(a) M is a free module with basis S.
(b) S generates M (that is, M = RS) and S is linearly independent.
(c) M ' R⊕S .
(d) M ' Fun′(S,R).

(137) Suppose R is a nonzero ring. Show that M = {0} if and only if the basis for M is ∅. What goes wrong with this
statement if R is the zero ring?

(138) Is (2, x) a linearly independent list in the ideal I = (2, x) in Z[x]?
(139) Let R be a ring and M a free module over R. Let I be a set, and let (mi | i ∈ I) be a basis of M . Let N be an

R-module, and let (ni | i ∈ I) be a family of elements of N . Show that there is a unique f ∈ HomR(M,N) such
that f(mi) = ni for all i ∈ I . If (ni | i ∈ I) generates N , is f surjective?

Before continuing, we introduce convenient notation.
Suppose R is a ring. The standard basis of Rn = R⊕n is denoted e = (e1, e2, . . . , en) where e1 = [1, 0, 0, . . . , 0, 0]T ,
e2 = [0, 1, 0, . . . , 0, 0]T , . . . , en = [0, 0, 0, . . . , 0, 1]T .

(140) Suppose R is a ring and M is a finitely generated R-module, with generators (m1,m2,m3, . . . ,mk). Define
f ∈ HomR(Rk,M) by setting f(ei) = mi. Show that f is surjective and the kernel, K, of f is a submodule of
R⊕k.

Definition. Suppose R is a ring and M is a finitely generated R-module, with generators (m1,m2,m3, . . . ,m`). Let
f ∈ HomR(R`,M) be the surjective map defined by requiring f(ei) = mi. The kernel, K, of f is called the module of
relations on (m1,m2,m3, . . . ,m`).

(141) Why is the kernel of f called the module of relations on (m1,m2, . . . ,m`)?

Definition. Suppose R is a ring and M is a finitely generated R-module. We say that M is finitely presented provided
that we can find generators (m1,m2, . . . ,m`) for M such that the associated module of relations is finitely generated.
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(142) Let R = Z[x1, x2, x3, . . .]. Let I = (x1, x2, x3, . . .). Show that R/I is a finitely generated but not finitely
presented R-module.

The following ideas are very important and take some getting used to, so start getting used to them. If M is a finitely
presented R-module, then we can find generators (k1, k2, . . . , kt) for K = ker(f). Let e′ = (e′1, e

′
2, . . . , e

′
t) (resp.,

e = (e1, e2, . . . , e`) ) denote the standard basis for Rt (resp. R` ). In the notation of the definition above, we can create a
surjective map g : Rt � K by requiring g(e′j) = kj for 1 ≤ j ≤ t. The composition ϕ : Rt

g−→ K ↪−→ R` is a map between
free R-modules and has M as cokernel.1 Every such map between free modules is given by a `× t matrix (whose columns
are the images of the standard unit columns under ϕ) in exactly the same way as in the vector space case – that is, by left
multiplication of the t× 1 column matrix to get the `× 1 column matrix. We say that this matrix e[ϕ]e′ presents M or that
the map ϕ is a presentation of M . A goal is to classify modules by understanding these presentations.

(143) Let R = Z[x]. Let M = R/I where I = (9, 3x, x2).
(a) Show that M is finitely generated. [Hint: See Prompt 119.]
(b) Show that M is finitely presented.
(c) Provide a presentation of M . Choose bases and write down the associated matrix.

Some Things to Think About
[A] Suppose R is a nonzero commutative ring. Suppose m,n ∈ N and ϕ ∈ HomR(Rm, Rn) is injective. Must we have
m ≤ n? What if we remove the assumption that R is commutative?
[B] Suppose M is a finitely presented R-module. By definition there exist finitely generated free R-modules E and F such
that

E → F →M → 0

is exact. Suppose we have another exact sequence

0→ K → L→M → 0

with L a finitely generated free R-module. It would be nice if we could conclude that K must be finitely generated; can
we? [See Prompt 319.]

1In this context, the cokernel is, up to isomorphism, R`/ im(ϕ).



Please report any errors you find to smdbackr@umich.edu

Worksheet for 1 Oct 2018
Modules: presentations (c)2018 UM Math Dept

licensed under a Creative Commons
By-NC-SA 4.0 International License.

Vocabulary: relations, relation vector, complete set of relations, presented, presentation matrix, Noetherian module, Struc-
ture Theorem for Finitely Generated Modules over a PID, invariant factors, free rank

Definition. Suppose R is a ring, M is an R-module, and (m1,m2, . . . ,mn) are elements M . Equations of the form
a1m1 + a2m2 + · · ·+ anmn = 0 are called relations among m1,m2, . . . ,mn. The R-vector [a1, a2, . . . , an]T ∈ Rn is
called a relation vector.

(144) Consider the Z-module A = Z/15Z.
(a) Write down some relation vectors in Z for the list (1) of elements of A.
(b) Write down some relation vectors in Z3 for the list (10, 6, 1) of elements of A.
(c) Write down some interesting relation vectors in Z2 for the list (6, 3) of elements of A.

Definition. Suppose R is a ring, M is an R-module, and (m1,m2, . . . ,m`) is a list of generators for M . A complete
set of relations is a set of relation vectors such that every relation vector (with respect to (m1,m2, . . . ,m`)) occurs as an
R-linear combination of elements of the set.

The idea of a ‘complete set of relations’ can be confusing. I think this is because we are used to thinking of linear algebra
from the perspective of images and kernels, and not from the perspective of cokernels.

(145) Suppose R is a ring, M is an R-module, and (m1,m2, . . . ,m`) is a list of generators for M . Let ~v1, ~v2, . . . , ~vt be
a set of relation vectors (with respect to (m1,m2, . . . ,m`)). Suppose ~vj = [a1j , a2j , . . . , a`j ]

T . Let A be the `× t
matrix whose jth column is ~vj .
(a) Define ϕ : Rt → R` by ϕ(~x) = A~x. Show that ϕ ∈ HomR(Rt, R`).
(b) Show that if ~v1, ~v2, . . . , ~vt is a complete set of relations (with respect to (m1,m2, . . . ,m`) ), then M '

R`/ϕ(Rt) = R`/ARt. [Hint: Define f ∈ HomR(R`,M) by f(ei) = mi. Show ~v1, ~v2, . . . , ~vt is a complete
set of relations if and only if (~v1, ~v2, . . . , ~vt) generates ker(f).] Bonus. Is the converse true? [See Prompt 320.]

(146) Do your answers in Prompt (144) ever form a complete set of relations? If not, can you fill out your answer to
obtain a complete set of relations?

Suppose M is finitely generated. Note that M has a finite complete set of relations if and only if M is finitely presented.

Definition. In the notation of Prompt (145): If ~v1, ~v2, . . . , ~vt is a complete set of relations with respect to the list of
generators (m1,m2, . . . ,m`) for M , then we say that M is presented by A and that A is a presentation matrix for M .

(147) Find a presentation matrix for the ideal (2, 1 +
√
−5) of Z[

√
−5]. (For uniform notation in discussions, set R =

Z[
√
−5] and M = (2, 1 +

√
−5).) [Hint: See Homework (80).]

We continue with the notation of Prompt (145). Note that if R were commutative (why?) and we could diagonalize A via
invertible matrices Q ∈ Mat`×`(R) and P ∈ Matt×t(R), then

M ' R`/(QAP (Rt)) '
⊕̀
i=1

R/(ai)

where ai is the ith diagonal entry of QAP . We are going to spend the next two weeks investigating both when/how we can
do this and the consequences of such a diagonalization in some important cases. However, before we take up that study,
we establish some fairly general conditions under which a finitely generated module will be finitely presented.

Definition. Suppose R is a ring. An R-module M is called Noetherian provided that it satisfies the ascending chain
condition. That is, M has no infinite increasing chains of submodules.

Just as for rings (see Homework (59)), there are many equivalent ways to think about Noetherian modules (see Home-
work (114)). In particular, M is a Noetherian R-module if and only if every submodule of M is finitely-generated.

(148) Suppose R is a ring. Show that a Noetherian R-module need not be finitely presented. [Hint: See Prompt 142.]

When might a finitely generated module be finitely presented? The next several Prompts establish a very useful criterion.
(149) Suppose M is a Noetherian R-module and L ⊂M is a submodule. Show that both L and M/L are Noetherian.
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(150) Suppose R is a ring, and
0→M ′ →M →M ′′ → 0

is an exact sequence of R-modules. Show that M is Noetherian if and only if both M ′ and M ′′ are Noetherian.
[Hint: one direction is Prompt 149. For the other direction, note that if L is a submodule ofM , then L/(M ′∩L) '
(L+M ′)/M ′ (why?), and the latter is isomorphic to the image of L in M ′′.]

(151) Suppose M and N are Noetherian R-modules. Show that M ⊕ N is Noetherian. [Hint: Apply Prompt 150 to
0→M →M ⊕N → N → 0. ]

(152) Suppose R is Noetherian. Show that R` is Noetherian.
(153) Suppose R is Noetherian and M is a finitely generated R-module. Show that M is Noetherian.
(154) Conclude that every finitely generated module over a Noetherian ring is finitely presented.

Since every PID is Noetherian (why?), we know that every finitely generated module over a PID is finitely presented. In a
week or so, we will prove that, in fact, every such module is isomorphic to a direct sum of finitely many cyclic modules:

Structure Theorem for Finitely Generated Modules over a PID. Suppose R is a PID and M is a finitely generated R
module. Then

M ' Rr ⊕R/(a1)⊕R/(a2)⊕R/(a3)⊕ · · · ⊕R/(am)

for a unique integer r ≥ 0 and unique proper, nonzero ideals (a1), (a2), . . . , (am) of R with a1 | a2 | · · · | am. We call
a1, a2, . . . , am (which are unique up to units) the invariant factors of M and r is called the free rank of M .

The uniqueness of both the free rank and the invariant factors (up to units) immediately implies that if M ′ is another
R-module with the same rank and the same (up to units) invariant factors, then M 'M ′.

(155) What does this result say for linear operators on finite dimensional vector spaces over a field k?
(156) What does this result say about finite abelian groups?
(157) Up to isomorphism, how many abelian groups of order 120 are there?

Something to Think About
In Prompt (157) you described the abelian groups of order 120, up to isomorphism. Suppose that instead of writing down
the groups you found in terms of invariant factors, you wanted to do it in terms of elementary divisors (that is, the direction
Homework 105 seems to be heading). For example, an abelian group with 45 elements is isomorphic to either Z/3Z⊕Z15Z
or Z/45Z in invariant factor form. However, we may want to write the first as Z/3Z ⊕ Z/3Z ⊕ Z/5Z and the second as
Z/32Z ⊕ Z/5Z in elementary divisor form. What might the general result look like for finitely generated modules over a
PID? How would we prove it?
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We continue our investigation of the Structure Theorem for Finitely Generated Modules over a PID.

Structure Theorem for Finitely Generated Modules over a PID (invariant factor form). Suppose R is a PID and M
is a finitely generated R module. Then

M ' Rr ⊕R/(a1)⊕R/(a2)⊕R/(a3)⊕ · · · ⊕R/(am)

for a unique integer r ≥ 0 and unique proper, nonzero ideals (a1), (a2), . . . , (am) of R with a1 | a2 | · · · | am. We call
a1, a2, . . . , am (which are unique up to units) the invariant factors of M and r is called the free rank of M .

As we hinted at the end of the last worksheet, there is an elementary divisor form of the structure theorem. It follows
almost immediately by applying the Chinese Remainder Theorem to the invariant form of the structure theorem (see
Homework 116):

Structure Theorem for Finitely Generated Modules over a PID (elementary divisor form). Suppose R is a PID and
M is a finitely generated R module. Then

M ' Rr ⊕R/(pα1
1 )⊕R/(pα2

2 )⊕R/(pα3
3 )⊕ · · · ⊕R/(pαss )

for a unique integer r ≥ 0 and the pα1
1 , pα2

2 , . . . , pαss are positive powers of not necessarily distinct primes in R. We call
pα1

1 , pα2
2 , . . . , pαss the elementary divisors of M ; they are unique up to reordering.

I always find the above formulation of the elementary divisor form of the structure theorem to be a bit confusing. I prefer:

M ' Rr ⊕

 ⊕
(p)∈Spec(R)\{(0)}

⊕
n∈I(p)

R/(pn)


where Spec(R) denotes the set of prime ideals in R and I(p) = (n1, n2, · · · , nkp) is a list of integers with 0 ≤ n1 ≤ n2 ≤
. . . ≤ nkp . Note that I(p) is the list (0) for all but finitely many (p) ∈ Spec(R).

(158) How many abelian groups of order 720 are there? Write them all down in both their invariant factor and elementary
divisor form.

(159) How many abelian groups have both of the following properties:
(a) any minimal generating set has 2 elements
(b) the exponent1 is 18.

In homework we have discussed torsion elements in the context of abelian groups. Here is a natural generalization.

Definition. Suppose R is a ring and M is an R-module. An element m ∈ M is called a torsion element of M provided
that there exists a non-zero divisor (aka regular) r ∈ R for which rm = 0. The set of torsion elements in M is denoted
TorR(M); if there is no possibility for confusion, TorR(M) may be denoted Tor(M) or Mtor.

For example, if R is an integral domain, a ∈ R \ {0}, and x̄ ∈ R/(a), then ax̄ = 0 and so x̄ is a torsion element of R/(a).
Warning: This is not equivalent to the definition given in [DF04, Exercise 4, p. 356]).
Caution: People sometimes refer to the finite order elements of a group, abelian or not, as torsion elements.

(160) Why is the above definition of torsion elements a generalization of that given for abelian groups in the homework?
(161) If R = M = Z/6Z, then what are the torsion elements of M?
(162) If M is a free R-module, then Tor(M) = {0}.
(163) Show: If R is an integral domain, then Tor(M) is a submodule of M .
(164) (Bonus.) Let A be the free C-module on two (non-commuting) generators , and /; note that A is a domain.

Define the A-module M = A/,A ⊕ A//A. Consider the elements m = (1 + ,A, 0) and m′ = (0, 1 + /A).
Show that m and m′ are torsion elements, but m+m′ is not. Conclude that Tor(M) is not an A-submodule of M .

1The exponent of a group is defined to be the least common multiple of the orders of all elements of the group.
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Definition. Suppose R is an integral domain and M is an R-module. If TorR(M) = {0}, then M is said to be torsion
free. If TorR(M) = M , then M is said to be a torsion module.

(165) Show that the Z-module Q/Z is a torsion module. Similarly, show that the k[x]-module, k(x)/k[x] is a torsion
module.

(166) If R is an integral domain, then M/Mtor is torsion free.
(167) Bonus. More generally: Suppose R is an integral domain with field of fractions K. Show that the R-module K/R

is a torsion module.
(168) Consider Q as a Z-module. Is it torsion free? Is it a free Z-module?
(169) Can you reconcile your answer to Prompt 168 with the Structure Theorem for Finitely Generated Modules over a

PID?
(170) Is the ideal (2, x) in Z[x] a torsion free Z[x]-module? Is it a free Z[x]-module?
(171) Can you reconcile your answer to Prompt 170 with the Structure Theorem for Finitely Generated Modules over a

PID?

Definition. Suppose R is a ring and M is an R-module. The annihilator of the R-module M is

AnnR(M) := {r ∈ R | rm = 0 for all m ∈M}.
If no confusion is possible, we will write Ann(M) rather than AnnR(M).

For example, in the elementary divisor form of the structure theorem, we can say thatM is the direct sum of a finite number
of cyclic modules whose annihilators are either (0) or generated by powers of nonzero primes in R.

(172) Suppose R is a commutative ring and M is an R-module. Show that Ann(M) is an ideal in R.
(173) What is AnnZ(Q/Z)?
(174) If A is a finite abelian group, what is AnnZ(A)?
(175) Can you reconcile your answers to Prompts 173 and 174 with the Structure Theorem for Finitely Generated Mod-

ules over a PID?
(176) Suppose R is a ring and

M ' Rr ⊕R/(a1)⊕R/(a2)⊕R/(a3)⊕ · · · ⊕R/(am)

with a1, a2, . . . , am ∈ R.
(a) What is Ann(M)?
(b) Suppose R is an integral domain and r = 0. What is Ann(M)?
(c) Suppose R is a PID, r = 0, and a1 | a2 | · · · | am, what is Ann(M)?

Something to Think About
Suppose k is a field, V is a k-module, and T ∈ Homk(V, V ). We know that k[x] is a PID and V is a k[x]-module where
xv = T (v) for all v ∈ V . What does the structure theorem say in this setting? In the context of Prompt 176c, what might
am be?
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Suppose k is a field. Recall that the category of k[x]-modules is equivalent to the category of “k-vector spaces with
fixed endomorphism” (see Homework 126). Suppose V is a finite dimensional k-vector space and T ∈ Homk(V, V ).
Let VT denote the corresponding k[x]-module; note that since V is finite dimensional, VT is a finitely generated torsion
k[x]-module. The Structure Theorem for Finitely Generated Modules over a PID (invariant factor form) says that

VT ' k[x]/(f1)⊕ k[x]/(f2)⊕ k[x]/(f3)⊕ · · · ⊕ k[x]/(fm)

for unique proper, nonzero ideals (f1), (f2), . . . , (fm) of k[x] with f1 | f2 | · · · | fm. The unique monic polynomials f1,
f2, . . . , fm are called the the invariant factors for T .

(177) Can we write V = V1 ⊕ V2 ⊕ · · · ⊕ Vm with Vi ' k[x]/(fi) and each Vi being T -stable?
(178) What is deg(f1) + deg(f2) + · · · deg(fm)? (See also Prompt 195c.)
(179) Suppose fi(x) = xni+ai,ni−1x

ni−1+· · ·+ai,0 ∈ k[x]. Show that with respect to the basis x = (1, x, x2, . . . , xni−1)
of k[x]/(fi) ' Vi we have x[resVi T ]x ∈ Matni×ni(k) is given by the companion matrix

Cfi(x) =



0 0 0 · · · · · · 0 −ai,0
1 0 0 · · · · · · 0 −ai,1
0 1 0 · · · · · · 0 −ai,2
0 0 1 · · · · · · 0 −ai,3
0 0 0

. . .
...

...
...

...
...

. . .
...

...
0 0 0 · · · · · · 1 −ai,ni−1


(180) Show that there is a basis v of V for which v[T ]v is given by the block-diagonal matrix

Cf1
Cf2

Cf3
. . .

Cfm


The matrix in Prompt 180 is the rational canonical form of T or the Frobenius Normal Form of T . Be sure you understand
why it is called canonical. Note that rational canonical form has nothing to do with the rational numbers; the word rational
in this context means that it all works without leaving the base field k. Before working out some examples, we point out a
useful consequence of rational canonical form.

Definition. Suppose k is a field, V is a finite dimensional k-vector space, and T ∈ Homk(V, V ). The minimal polynomial
for T is the unique monic polynomial, f , for which Annk[x](V ) = (f(x)).

(181) In the notation of the definition, why does such an f exist? Why is it unique?
(182) In terms of the structure theorem, what is the minimal polynomial?
(183) Write down the invariant factors for each of the matrices below. What is the rational canonical form for each of the

matrices1?
e 0 0 0 0 0
0 e 0 0 0 0
0 0 e 0 0 0
0 0 0 e 0 0
0 0 0 0 e 0
0 0 0 0 0 e




e 0 0 0 0 0
0 π 0 0 0 0
0 0 e 0 0 0
0 0 0 e 0 0
0 0 0 0 e 0
0 0 0 0 0 e




e 0 0 0 0 0
0 e 0 0 0 0
0 0 π 0 0 0
0 0 0 e 0 0
0 0 0 0 π 0
0 0 0 0 0 e




π 0 0 0 0 0
0 e 0 0 0 0
0 0 π 0 0 0
0 0 0 e 0 0
0 0 0 0 e 0
0 0 0 0 0 π




π 0 0 0 0 0
0 e 0 0 0 0
0 0 π 0 0 0
0 0 0 e 0 0

0 0 0 0
√

2 0
0 0 0 0 0 π


1An m× n matrix A represents a linear transformation T ∈ Homk(k

n, km) via the map T (~v) = A~v where ~v is an n× 1 vector.
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We next investigate if every matrix is similar to its rational canonical form. Recall, as above, that the category of k[x]-
modules is equivalent to the category of “k-vector spaces with fixed endomorphism” (see Homework 126). The objects in
this latter category are pairs (V, T ) where V is a k-vector space and T ∈ Homk(V, V ). A morphism between two objects
(V1, T1) and (V2, T2) in this category is a map ϕ ∈ Homk(V1, V2) satisfying ϕ ◦ T1 = T2 ◦ ϕ.

Definition. Suppose k is a field, V is a k-vector space, and T, S ∈ Homk(V, V ). We say that T and S are similar
provided that there exists φ ∈ Homk(V, V )× such that φ ◦ T = S ◦ φ.

(184) Suppose S, T ∈ Homk(V, V ) are similar. Show that the corresponding k[x]-modules are isomorphic. The converse
is true as well, see Homework 120.

(185) Does the definition of similar given above agree with the notion of similar1 for n× n matrices?
(186) Is every matrix similar to its rational canonical form? That is, are two matrices similar if and only if they have the

same invariant factors?
Rational canonical form appears with great regularity on the QR exams. Be sure you can do problems like the following.

(187) How many similarity classes of 4 × 4 matrices over F3 with minimal polynomial x2 − a exist? Write down their
rational canonical forms.

Something to Think About
Suppose A is an n× n matrix. In Homework 113 you show that A and AT have the same rational canonical form. Hence,
the two matrices are similar. In fact, they are symmetrically similar – that is, there is a symmetric2 n × n matrix P for
which A = PATP−1. You now have the tools to prove this, so give it a try.

Suppose that you have found a symmetric P for which A = PATP−1. Note that we then have

(PAT )T = AP T = AP = PP−1AP = PAT ,

so PAT is symmetric. Since A = (PAT )P−1, we conclude that every n × n matrix can be written as the product of two
symmetric matrices!

While applying the Structure Theorem for Finitely Generated Modules over a PID to finitely generated abelian groups
is often straight-forward, applying it to canonical forms for transformations (and matrices) is often a bit trickier. The
following table summarizes how to translate between the two settings.

Finite Groups Matrices

Decompose a finite abelian group as a direct product of
cyclic groups (in invariant factor form)

Determine the rational canonical form of a given
matrix

Determine whether two given finite abelian groups are
isomorphic Determine whether two given matrices are similar

Determine all abelian groups of a given order Determine all similarity classes of matrices over a field
with a given characteristic polynomial

Determine all finite abelian groups of rank n and a
given exponent

Determine all similarity classes of n× n matrices over
a field with a given minimal polynomial

The use of the word “rank” in this context is highly nonstandard (though [DF04] uses it), we really mean that the size of
any minimal generating set of our finite abelian group is n.

1Two n× n matrices A and B are called similar provided that B = P−1AP for some invertible n× n matrix P .
2An n× n matrix P is symmetric provided that PT = P .
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We begin by recalling some ideas from linear algebra. Suppose k is a field, V is a k-vector space, and T ∈ Homk(V, V ).
We say that λ ∈ k is an eigenvalue for T provided that there is a nonzero v ∈ V for which T (v) = λv. If µ ∈ k is
an eigenvalue for T , then any nonzero element of Vµ = ker(µ IdV −T ) is called an eigenvector for T . We call Vµ the
µ-eigenspace of V . We say that T is diagonalizable provided that there is a basis for V consisting of eigenvectors for T .

(188) Suppose T is nilpotent, that is Tn = 0 for some n ∈ N. Describe the possible eigenvalues of T .
(189) Suppose T 2 + 3T = − IdV . Describe the possible eigenvalues of T .

For the remainder of this worksheet, assume V is a finite dimensional k-vector space.

(190) Suppose A ∈ Mat2×2(R) and SA ∈ HomR(R2,R2) is given by SA(~x) = A~x for a 2 × 1 column matrix ~x. For
each of the matrices below, describe the eigenvalues and eigenspaces for the corresponding SA.

(a) A =

[
π 0
0 π

]
(b) A =

[
π 0
0 e

]
(c) A =

[
e
√

2
0 e

]
(d) A =

[
e
√

2
0 π

]

(e) A =

[
0 π
e 0

]
(f) A =

[
0 π
−e 0

]
(g) A =

[√
2 π

e
√

2

]
(h) A =

[√
2 π

−e
√

2

]
(191) Fix ρ ∈ k. Show that the following statements are equivalent.

• ρ is an eigenvalue for T .
• (ρ IdV −T ) ∈ Homk(V, V ) is not injective.
• (ρ IdV −T ) is not surjective.
• (ρ IdV −T ) is not an isomorphism.
• det(ρ IdV −T ) = 0.
• ρ is a root for χT (x) = det(x IdV −T ), the characteristic polynomial of T .
• Vρ 6= {0}.

(192) Compute the characteristic polynomial of SA for each A that occurs in Prompt 190.
(193) If λ is the only eigenvalue for T , is it true that V = Vλ?

Recall that VT denotes the k[x]-module associated to the pair (V, T ).
(194) Show that γ ∈ k is an eigenvalue for T if and only if (x− γ) : VT → VT has nontrivial kernel.

We now explore how the minimal polynomial of T and the characteristic polynomial of T are related. Since V is finite
dimensional, VT is a finitely generated torsion k[x]-module. The Structure Theorem for Finitely Generated Modules over
a PID (invariant factor form) says that

VT ' k[x]/(f1)⊕ k[x]/(f2)⊕ k[x]/(f3)⊕ · · · ⊕ k[x]/(fm)

for unique monic polynomials (aka invariant factors) f1, f2, . . . , fm of k[x] with f1 | f2 | · · · | fm. In Prompt 182 we found
that fm is the minimal polynomial of T ; that is fm is the (unique) minimal degree monic polynomial for which f(T ) = 0.

(195) Roots and eigenvalues.
(a) Suppose p ∈ k[x] is the minimal polynomial for T . Suppose α ∈ k is a root of p. Show that α is an eigenvalue

of T . [Hint: Write p = (x− α)q. Since p is minimal, q cannot annihilate V . . . .]
(b) Suppose p ∈ k[x] is the minimal polynomial for T . If α is an eigenvalue for T , show that p(α) = 0.
(c) Show that the characteristic and minimal polynomials of T have the same roots, except for multiplicities.

(196) If p ∈ k[x] and S ∈ Homk(V, V )×, show that p(STS−1) = Sp(T )S−1. Conclude that T and STS−1 have the
same minimal polynomials and the same characteristic polynomials.

(197) Characteristic polynomials and invariant factors.
(a) Suppose f ∈ k[x] has positive degree. Show that the characteristic polynomial of its companion matrix, Cf ,

is f .
(b) Use Prompts 196 and 186 to show that χT (x) = f1(x)f2(x) · · · fm(x).
(c) Write down the rational canonical form of SA for each A that occurs in Prompt 190.

(198) (Cayley-Hamilton Theorem). Use Prompts 195, 196, and 197 to show that χT (T ) = 0.

Something to Think About
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The Cayley-Hamilton Theorem is a very powerful tool (see, for example, Homework 128) and it holds for matrices with
entries in any commutative ring R. In the latter context it says is that if R is a commutative ring and φ ∈ HomR(Rn, Rn),
then χφ(φ) = 0. There are several very slick proofs of this, can you prove it?

More generally, if M is any finitely generated R-module then one can show that if φ ∈ HomR(M,M) and M is
generated by n elements, then there exist a1, a2, · · · , an ∈ R such that

φn + a1φ
n−1 + a2φ

n−2 + · · ·+ an = 0.

In fact, if I is an ideal in R and φ(M) ⊂ IM then we can take aj ∈ Ij .
This can be further generalized to Nakayama’s Lemma, a result of fundamental importance in commutative algebra:

Suppose A is a commutative ring. Let a be an ideal in A, and let N be a finitely-generated module over A.
If aN = N , then there exists an r ∈ 1 + a such that rN = {0}.

Can you show that Nakayama’s Lemma implies the Cayley-Hamilton Theorem?
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Worksheet for 10 October
Modules: Jordan form (c)2018 UM Math Dept

licensed under a Creative Commons
By-NC-SA 4.0 International License.

Vocabulary: elementary divisors, Jordan block, Jordan canonical form, geometric multipliciy, semisimple
Suppose k is a field. Recall that the category of k[x]-modules is equivalent to the category of “k-vector spaces with
fixed endomorphism” (see Homework 126). Suppose V is a finite dimensional k-vector space and T ∈ Homk(V, V ). Let
VT denote the corresponding k[x]-module; note that since V is finite dimensional, VT is a finitely generated torsion k[x]-
module. The Structure Theorem for Finitely Generated Modules over a PID (elementary divisor form). says that

VT ' k[x]/(pα1
1 )⊕ k[x]/(pα2

2 )⊕ k[x]/(pα3
3 )⊕ · · · ⊕ k[x]/(pαss )

where pα1
1 , pα2

2 , . . . , pαss are positive powers of not necessarily distinct monic irreducibles in k[x]. We call pα1
1 , pα2

2 , . . . , pαss
the elementary divisors of T ; they are unique up to reordering.

(199) Can we write V = V1 ⊕ V2 ⊕ · · · ⊕ Vs with Vi ' k[x]/(pi)
αi and each Vi being T -stable?

(200) Show α1 · deg(p1) + α2 · deg(p2) + · · ·+ αs · deg(ps) = dim(V ) and χT (x) =
∏s
i=1 p

αi
i (x).

(201) Suppose A ∈ Mat2×2(R) and SA ∈ HomR(R2,R2) is given by SA(~x) = A~x for a 2 × 1 column matrix ~x. For
each of the matrices below, describe the elementary divisors of SA.

(a) A =

[
π 0
0 π

]
(b) A =

[
π 0
0 e

]
(c) A =

[
e
√

2
0 e

]
(d) A =

[
e
√

2
0 π

]

(e) A =

[
0 π
e 0

]
(f) A =

[
0 π
−e 0

]
(g) A =

[√
2 π

e
√

2

]
(h) A =

[√
2 π

−e
√

2

]
For the remainder of this worksheet, assume χT factors completely into linear factors over k.

Since χT (x) factors into linear factors, each pi is of the form (x− λi) for some eigenvalue λi of T .
(202) Suppose that pαii (x) = (x − λi)

αi ∈ k[x]. Show that with respect to the basis x = ((x − λ)αi−1, (x −
λ)αi−2, . . . , (x− λ)2, (x− λ), 1) we have x[resVi T ]x ∈ Matαi×αi(k) is given by the matrix

Jλi,αi =



λi 1 0 0 · · · 0 0
0 λi 1 0 · · · 0 0
0 0 λi 1 · · · 0 0
0 0 0 λi · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · λi 1
0 0 0 0 · · · 0 λi


[Hint: x = λ+ (x− λ). Also, why is x a basis?]

Definition. The matrix Jλi,αi is the Jordan block of size αi corresponding to λi.

(203) Show that there is a basis v of V for which v[T ]v is given by the block-diagonal matrix
Jλ1,α1

Jλ2,α2

Jλ3,α3

. . .
Jλs,αs


The matrix in Prompt 203 is the Jordan canonical form of T . It is not as canonical as the rational canonical form: over
most fields there is no way to choose the order of the different Jordan blocks that occur.

(204) Express χT (x) as a product of the elementary divisors of T ; if your answer is not expressed entirely in terms of
x and the eigenvalues of T , then try again. In terms of your fomula for χT (x), what does it mean that the monic
irreducibles pi are not necessarily distinct?

(205) Suppose A,B ∈ Matn×n(k) and both χA and χB factor completely into linear factors. If the Jordan canonical
form or A and B agree (up to ordering of Jordan blocks), then are A and B similar?
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(206) Suppose λ is an eigenvalue of T . Show that dimk(Vλ), the geometric multiplicity of λ, is equal to the number of
Jordan blocks corresponding to λ in the Jordan canonical form of T .

Nilpotent transformations play an important role in many areas of mathematics.
(207) Does a nilpotent transformation T always have a Jordan form?
(208) Characterize the nilpotent matrices in Matn×n(k) in terms of their Jordan canonical form.
(209) Suppose k is a field and A ∈ Matn×n(k). Suppose j ∈ Z≥0 has the property that Aj+1 = 0 and Aj 6= 0. Show

j ≤ n.
(210) Show that the Jordan canonical form of A can be written as As + An where (i) As is diagonalizable, (ii) An is

nilpotent, and (iii) AsAn = AnAs. Conclude that T has a similar decomposition T = Ts + Tn.
The subscript n stands for nilpotent, what about the s?

Definition. Suppose k is a field, W is a finite dimensional k-vector space, and S ∈ Homk(V, V ).We say that S is
semisimple provided that its minimal polynomial is a square free product of irreducible monic polynomials in k[x].

Note that the minimal polynomial for AS (and hence Ts) has distinct roots, hence S is semisimple.
(211) Suppose k is a field, W is a k-vector space, and φ ∈ Homk(W,W ). If φ is both semisimple and nilpotent, then

what is φ?
(212) (Bonus). Suppose W is a finite dimensional k-vector space and φ ∈ Homk(W,W ). Show that φ is semisimple if

and only if every φ-stable subspace has a φ-stable complement. That is, if X ⊂ W is a φ-stable subspace of W ,
then there exists a φ-stable subspace Y ⊂W for which W = X + Y and X ∩ Y = {0}.

Something to Think About
Under the assumption that χT factors completely into linear factors, in Prompt 210 we wrote T = Ts+Tn where Ts ◦Tn =
Tn ◦ Tn, Ts is semisimple, and Tn is nilpotent. Ts is usually called the semisimple part of T and Tn is called the nilpotent
part of T . This decomposition is called a Jordan-Chevalley decomposition of T . For perfect fields1 such a decomposition
holds even when χT doesn’t completely factor into linear factors.

Here are some facts about this decomposition:
• The decomposition is unique.
• There exist f, g ∈ k[x] such that Ts = f(T ) and Tn = g(T ). [This immediately implies that any element of

Homk(V, V ) that commutes with T must also commute with both Ts and Tn.]
• If U ⊂W ⊂ V and T (W ) ⊂ U , then Ts(W ) ⊂ U and Tn(W ) ⊂ U .

How many of these facts can you prove? (See Homework 129.)

1A field F is said to be perfect provided that every irreducible polynomial over F has distinct roots. Math 594 will have much more to say about
perfect fields. Every finite field and every characteristic zero field is perfect.
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Worksheet for 12 & 17 October
Modules: Structure Theorem for Finitely Generated Modules over a PID (c)2018 UM Math Dept

licensed under a Creative Commons
By-NC-SA 4.0 International License.

Vocabulary: composition series, composition factors, length
The series of Homework problems that includes exercises (70), (82), (103), (117), and (127) provides an algorithmic proof
of the Structure Theorem for Finitely Generated Modules over a PID (invariant factor form):

Structure Theorem for Finitely Generated Modules over a PID (invariant factor form). Suppose R is a PID and M
is a finitely generated R module. Then

M ' Rr ⊕R/(a1)⊕R/(a2)⊕R/(a3)⊕ · · · ⊕R/(am)

for a unique integer r ≥ 0 and unique proper, nonzero ideals (a1), (a2), . . . , (am) of R with a1 | a2 | · · · | am.

An outline of the proof: Suppose the finitely generated module M is presented by some ` × t matrix A with entries
in R. If this matrix is diagonal, then it follows immediately that its cokernel, which is isomorphic to M , is a direct sum
of cyclic modules R/(ai). So we want to show that over a PID we can choose a generating set for M and a generating
set for the module of relations K in such a way that A is diagonal. In Homework (127) you proved that changing the
generators for M (respectively K) amounts to multiplying A on the right (respectively left) by an invertible matrix over R.
In Homework (70) you saw how to diagonalize (small)A algorithmically over Z using EROs and ECOs. In Homework (82)
you saw how to diagonalize A algorithmically over Euclidean domains using EROs and ECOs. In Homework (103) you
saw how to diagonalize A algorithmically over PIDs using EROs and ECOs and an additional invertible transformation. In
Homework (117) you proved the uniqueness statement of the structure theorem. This approach to the Structure Theorem
for Finitely Generated Modules over a PID (invariant factor form) is useful for performing computations – be sure that you
can carry it out in practice. In [DF04, pp. 480–481] the algorithm is discussed for finitely generated torsion k[x]-modules.

In Homework 116 you used the Chinese Remainder Theorem to derive the elementary divisor form of the Structure
Theorem for Finitely Generated Modules over a PID:

Structure Theorem for Finitely Generated Modules over a PID (elementary divisor form). Suppose R is a PID and
M is a finitely generated R module. Then

M ' Rr ⊕R/(pα1
1 )⊕R/(pα2

2 )⊕R/(pα3
3 )⊕ · · · ⊕R/(pαss )

for a unique integer r ≥ 0 and the pα1
1 , pα2

2 , . . . , pαss are positive powers of not necessarily distinct primes in R.

The conclusion of the elementary divisor form of the structure theorem may be recast as

M ' Rr ⊕

 ⊕
(p)∈Spec(R)\{(0)}

⊕
n∈I(p)

R/(pn)


where Spec(R) denotes the set of prime ideals in R and I(p) = (n1, n2, · · · , nkp) is a list of integers with 0 ≤ n1 ≤ n2 ≤
. . . ≤ nkp . Note that I(p) is the list (0) for all but finitely many (p) ∈ Spec(R).

(213) Prove that the elementary divisor form of the structure theorem may be recast as claimed.

The Prompts below outline another proof of the structure theorem.

(214) Suppose R is a PID and M is a torsion free finitely-generated R-module. Show that M is free. [Hint: Let ` be
the cardinality of a maximal linearly independent subset of M . Use Homework 110 to show M is isomorphic to a
submodule of R`. Homework 121 may be useful.]

(215) Suppose R is a PID and M is a finitely generated R-module. From Prompt 166 we know M/Mtor is free; say
M/Mtor ' Rr.
(a) Show M 'Mtor ⊕Rr.
(b) Is r unique? Why?

[Hint: Homework 107 and Homework 47 may be useful.]

Prompt 215 shows that if M is a finitely generated module over a PID, then Mtor is finitely generated. We already knew
this. Indeed, since R is a PID, from Prompt 60 it is Noetherian. From Prompt 153 we know that every finitely generated
module over a PID is Noetherian. Thus, Mtor ≤M is finitely generated.
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(216) (Chinese Remainder Theorem for finitely generated torsion modules over a PID) Suppose R is a PID and M is a
fintely generated R-module. Show

Mtor '
⊕

(p)∈Spec(R)\{(0)}

M(p).

[Hint: Mimic your proof of Homework 118.] Is it necessary to assume thatM is finitely generated? What isM(0)?
(217) Suppose R is a PID, M is a finitely generated R-module, and (p) ∈ Spec(R) \ {(0)}. Let y1, y2, . . . , yn be

a set of generators for M(p). Thanks to Homework 124 we have AnnR(yj) = (pkj ) for kj ∈ Z≥0. WOLOG,
k1 ≤ k2 ≤ · · · ≤ kn.
(a) Show (M(p)/〈yn〉)(p) = M(p)/〈yn〉.
(b) Suppose x̄ ∈M(p)/〈yn〉and AnnR(x̄) = (pe).

(i) Show e ≤ kn.
(ii) Show there exists x ∈M(p) projecting to x̄ such that AnnR(x̄) = AnnR(x) = (pe).

(218) Suppose R is a PID, M is a finitely generated R-module, and (p) ∈ Spec(R) \ {(0)} with M(p) 6= {0}. Show
that there exists unique e1, e2, . . . , en in Z>0 with e1 ≤ e2 ≤ · · · ≤ en so that

M(p) ' R/(pe1)⊕R/(pe2)⊕ · · · ⊕R/(pen).

Moreover, any generating set for M(p) has n or more elements. [Hint: For uniqueness you may want to use
Prompt 58, Homework 98, and Homework 47. For existence, you may want to use induction on the minimal set of
generators together with Homework 123 and Prompt 217.]

(219) Conclude that the Structure Theorem for Finitely Generated Modules over a PID (elementary divisor form) is true.

Just as the elementary divisor form of the structure theorem followed without too much trouble from the invariant factor
theorem (see Homework 116 ), going in the reverse direction is also relatively straightforward.

(220) Suppose Mtor ' ⊕M(pj) where p1, p2, . . . pm ∈ Spec(R) are distinct and M(pj) 6= {0}. For each pj , write

M(pj) ' R/(p
ej,1
j )⊕R/(pej,2j )⊕ · · · ⊕R/(p

ej,nj
j ).

with 0 < ej,1 ≤ ej,2 ≤ · · · ≤ ej,nj .
(a) Show am =

∏m
j=1 p

ej,nj
j is the annhilator of M(p).

(b) How to define the am−1, am−2, . . . , a1 occurring in the invariant factor form of the structure theorem?
(c) Bonus. Show that this works.

Some things to Think About
[A] While PIDs are a fairly large class of rings, many interesting rings are not PIDs. For example, most of the rings
that arise in representation theory aren’t commutative. What sort of structure theorems might exist in these more general
settings? The Jordan-Hölder Theorem is one example of such a result. To state it, we need to expand our vocabulary a bit.

Let R be a ring. We call an R-module N simple provided that the only submodules of N are {0} and N . A composition
series for an R-module M is a finite chain of submodules

{0} = M0 (M1 (M2 ( · · · (Mk = M

for which Mj+1/Mj is simple for all j. The R-modules Mj+1/Mj are called the composition factors of the composition
series and k is called the length of the composition series.

SupposeM is anR-module that admits a composition series. The Jordan-Hölder Theorem states that (a) any given chain
of submodules of M can be refined to a composition series, (b) any two composition series of M have the same length,
and (c) any two composition series of M have the same composition factors up to rearrangement and isomorphism.1

How is this a generalization? How might you prove this? What conditions on M will guarantee that M admits a
composition series? Are there rings for which every finitely generated module admits a composition series?
[B] Does the functorial map from a finitely generated abelian group G to its torsion-free quotient G/Gtor have a functorial
splitting?

1The Hölder program, named for Otto Hölder, asked for a classification of all finite simple groups – do you see how this is connected to the
Jordan-Hölder Theorem?
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Worksheet1 for 22 Oct 2018
Tensor products (c)2018 UM Math Dept

licensed under a Creative Commons
By-NC-SA 4.0 International License.

[I]t is the things you can prove that tell you how to think about tensor products. In other words, you
let elementary lemmas and examples shape your intuition of the mathematical object in question. There’s
nothing else, no magical intuition will magically appear to help you “understand” it.

–Johan de Jong, in the comments to Cathy O’Neil’s post What tensor products taught me about living my life2

Vocabulary: tensor product, tensors, bilinear, pure tensor, elementary tensor, rank-one tensor
Suppose R is a commutative ring3 with identity and L, M , N , and P are unital R-modules.

We know how to “add” M and N : we just look at the direct sum M ⊕ N . Tensor products may be thought of as an
answer to the question: how to “multiply” M and N? The tensor product of M and N will be denoted by M ⊗R N .
Elements of M ⊗R N will be called tensors and look like

∑
ri(mi ⊗ ni) with ri ∈ R (abfmz), mi ∈ M and ni ∈ N .

We call mi ⊗ ni a pure tensor or elementary tensor or rank-one tensor; since the pure tensors span M ⊗R N , it is often4

enough to understand how things work for them and “extend by linearlity” to the whole of M ⊗R N .
(221) Since we want to “multiply” M and N , we probably should require some version of the distribution laws – what

would those look like (in terms of elementary tensors)?
In addition to the analogue of the distribution laws, we also want:

(*) r(m⊗ n) = (rm)⊗ n = m⊗ (rn) for r ∈ R, m ∈M , and n ∈ N .

The tensor product of M and N is going to be an R-module that is, in some appropriate sense, as free as possible and
satisfies the relations encoded in both Equation (*) and your answer to Prompt (221). You have encountered these types of
relations before (think about the dot product, the Hilbert-Schmidt inner product, a general inner product, matrix multipli-
cation, the cross product, . . . ). The mathematical term for them is bilinear:

Definition. A map B : M ×N → P is said to be bilinear provided that B is linear in each variable, that is
• B(rm, n) = rB(m,n) and B(m1 +m2, n) = B(m1, n) +B(m2, n)
• B(m, rn) = rB(m,n) and B(m,n1 + n2) = B(m,n1) +B(m,n2)

for all r ∈ R, m,m1,m2 ∈M , and n, n1, n2 ∈ N .
From our discussion thus far, we should require the map fromM×N toM⊗RN that sends (m,n) tom⊗n to be bilinear.

(222) If B : M ×N → L is bilinear and f ∈ HomR(L,P ), then f ◦B : M ×N → P is bilinear.
(223) Suppose n ∈ Z>1. Show that the map B : Rn × Rn → Matn(R) defined by B(v, w) = vwT is bilinear. Show

that, in general, the image of B is not a submodule of Matn(R). [Hint: What is the rank of B(v, w)?]
(224) Suppose B : M ×N → P is bilinear. Is ker(B) a submodule?
Motivated by Prompt (222) and our quest for the freest R-module that satisfies both Equation (*) and your answer to

Prompt (221) we introduce the following universal property.
Universal Property of tensor products. The tensor product M⊗RN is anR-module with a bilinear map⊗ : M×N →
M ⊗R N such that for every bilinear map ϕ : M × N → P there is a unique linear map ϕ̄ ∈ HomR(M ⊗R N,P ) for
which the following diagram commutes.

M ×N M ⊗R N

P

⊗

ϕ
∃! ϕ̄

As a candidate for the tensor product ofM andN , look at theR-module T := FR(M×N)/S where S is the submodule of
R⊕(M×N) = FR(M ×N) generated by ι(rm, n)− rι(m,n), ι(m, rn)− rι(m,n), ι(m1, n) + ι(m2, n)− ι(m1 +m2, n),
and ι(m,n1) + ι(m,n2)− ι(m,n1 + n2). Here ι : M ×N → R⊕(M×N) is the natural (set) inclusion map.

1The development here follows Keith Conrad’s Tensor Products.
2mathbabe.org/2011/07/20/what-tensor-products-taught-me-about-living-my-life/
3Note that [DF04] does not assume that R is commutative. When R is not commutative, the tensor product is not, in general, an R-module.

However, it is always an abelian group. Tensor products over non-commutative rings come up all the time in, for example, representation theory. It
is challenging enough to come to grips with tensor products over a commutative ring, so we’ll focus our attention on this case.

4Though not always!
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(225) The universal mapping property of free modules allows us to extend ϕ to a unique linear ϕ′ so that the diagram

M ×N FR(M ×N)

P

ι

ϕ
∃!ϕ′

commutes. Use the bilinearity of ϕ to show that S ⊂ kerϕ′.
(226) Use the universal property of quotients to conclude that there is a unique linear ϕ̄ so that the diagram

M ×N T

P

b

ϕ
∃! ϕ̄

commutes. Wait! What is the map b in this diagram? Is it bilinear?
(227) Show that if (T ′, b′) also satisfies the universal property of tensor products, then there is a unique isomorphism

from T to T ′. Because of this uniqueness, we refer to the pair (M ⊗R N,⊗) as the tensor product of M and N .
[Hint: IdT is the unique linear map for which b = IdT ◦b . . . ]

“I wasn’t asking much: I just wanted to figure out the most basic properties of tensor products. And it seemed like a moral
issue. I felt strongly that if I really really wanted to feel like I understand this ring, which is after all a set, then at least I
should be able to tell you, with moral authority, whether an element is zero or not. For f***s sake!”

– Cathy O’Neil in her post What tensor products taught me about living my life1

(228) Practice with the definitions.
(a) Since M ⊗R N is an R-module (how?), every element of M ⊗R N is a linear combination of elementary

tensors. Show that if (mi | i ∈ I) spans M and (nj | j ∈ J) spans N , then (mi ⊗ nj | i ∈ I and j ∈ J) spans
M ⊗R N .

(b) Show that R⊗RM 'M .
(c) Show that N ⊗RM 'M ⊗R N .
(d) Show that a simple tensor m ⊗ n ∈ M ⊗R N is zero if and only if for every bilinear map ϕ : M × N → P

we have ϕ(m,n) = 0. Conclude that m⊗ 0 = 0⊗ n = 0.
(e) Show that

∑
i rimi ⊗ ni ∈ M ⊗R N is zero if and only if for every bilinear map ϕ : M ×N → P we have∑

i riϕ(mi, ni) = 0.
(f) Show that M ⊗R N = 0 if and only if for every bilinear map ϕ : M ×N → P we have ϕ = 0.

(229) Examples that hurt one’s brain a bit.
(a) Show that Q⊗Z Z/43Z = 0.
(b) Show that if A is a finite abelian group, then A⊗Z Q = 0.
(c) Show that Q⊗Z Q/Z = 0.
(d) Show that (Q/Z)⊗Z (Q/Z) = 0
(e) Show that (Z/43Z)⊗Z (Z/43Z) 6= 0. (Bonus: What is it?)

Some Things to Think About
[A] Suppose k is a field and V , W are k-vector spaces. If (vi | i ∈ I) is a basis for V and (wj | j ∈ J) is a basis for W ,
then we know from Prompt (228a) that (vi ⊗ wj | i ∈ I and j ∈ J) spans the k-vector space V ⊗k W . Is it a basis? For
what class of rings and modules would you expect a basis for the tensor product to arise in this way?

[B] If you have ever studied tensors in physics (always with R ∈ {R,C}), what is the relation between the tensor product
we’ve discussed today and the tensors you encountered in physics?

1mathbabe.org/2011/07/20/what-tensor-products-taught-me-about-living-my-life/
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The goal today is to gain some intuition about tensor products and drive home this important point: universal properties
can help you avoid much grief. Suppose R is a commutative ring.

(230) Suppose E and F are free R-modules. Let (ei | i ∈ I) and (fj | j ∈ J) be bases for E and F respectively.
(a) Suppose v =

∑
i viei ∈ E (abfmz) and w =

∑
j wjfj ∈ F (abfmz). For i0 ∈ I and j0 ∈ J define

Bi0j0 : E × F → R by B(v, w) = vi0wj0 . Show that this map is bilinear.
(b) Use the universal property of tensor products to conclude that there is a unique linear map B̄i0j0 : E⊗RF → R

for which B̄i0j0(v ⊗ w) = vi0wj0 .
(c) Show that (ei ⊗ fj |i ∈ I and j ∈ J) is linearly independent.
(d) Use Prompt (228a) to conclude that (ei ⊗ fj |i ∈ I and j ∈ J) is a linearly independent spanning set for

E ⊗R F . Conclude that E ⊗R F is a free R-module.
(e) If k is a field and V , W are finite dimensional k-vector spaces, what is the dimension of V ⊗k W ?
(f) (Bonus.) Show that R[X]⊗R R[Y ] is isomorphic to R[X,Y ].

(231) Elementary or not?2

(a) Suppose I is an ideal in R. Show that all tensors in R/I ⊗RM are elementary.
(b) Show that not every element of the R-module C⊗R C is elementary. [Hint: Use the result of Prompt (230d)]
(c) Suppose k is a field and n ∈ Z>1. Recall from Prompt (223) that B : kn × kn → Matn(k) defined by

B(v, w) = vwT is bilinear but its image is not a submodule of Matn(k). Show that the unique linear map
B̄ : kn ⊗k kn → Matn(k) for which B = B̄ ◦ ⊗ is an isomorphism. What does this tell you about the
elementary tensors in kn ⊗k kn? [Hint: With respect to the standard basis of kn, what is eieTj ?]

(232) (a) Can we define an R-linear map f : C⊗R C→ C for which f(z ⊗ w) = zw̄?
(b) Can we define an R-linear map h : C⊗R C→ C for which h(z ⊗ w) = zw?
(c) Can we define an R-linear map ` : C⊗R C→ C for which `(z ⊗ w) = z + w?

Life Tip. Suppose you want to define a linear map g : M ⊗R N → P by very carefully defining g on every elementary
tensorm⊗n. Does the linearity of g follow from “additivity”? NO. The map g will be linear if and only if the corresponding
map G : M ×N → P defined by G(m,n) = g(m⊗ n) is bilinear; so find G and check its bilinearity. Huh, how about:

(233) If g ∈ HomR(M ⊗R N,P ) is there a G ∈ BilR(M ×N,P ) for which G(m,n) = g(m⊗ n)∀(m,n) ∈M ×N?
(234) Suppose f : M⊗RN → P has the property that f(m⊗n) = 0 impliesm⊗n = 0. Is f injective? [Hint: Consider

C⊗R C and f(z ⊗ w) = zw̄.]
Life Tip. The injectivity of a linear map f : M ⊗R N → P cannot be checked on elementary tensors (see Prompt 234.).
However, if one also has a linear g : P →M ⊗RN for which f ◦ g(p) = IdP (p) for all p ∈ P and g ◦ f(t) = IdM⊗RN (t)
for all elementary tensors t, then f is an isomorphism. Why?

(235) Suppose I and J are ideals in R. In Prompt (30) we showed that I ∩ J is the kernel of the natural map R →
R/I ⊕R/J . Here we establish an analogous result for R/I ⊗R R/J . Can you guess what this result might say?
(a) Recall that in Prompt (231a) we showed that every tensor in R/I ⊗RM is elementary. Show that R/I ⊗R/J

is a cyclic R-module with generator 1̄⊗ 1̄.
(b) Use the natural function R/I × R/J → R/(I + J) that sends (x̄, ȳ) to xy mod I + J to produce a linear

map f : R/I ⊗R R/J → R/(I + J) with f(x̄⊗ ȳ) = xy.
(c) Define a linear map R→ R/I ⊗R R/J by r 7→ r(1̄⊗ 1̄). Show that this descends to a linear map g : R/(I +

J)→ R/I ⊗R R/J .
(d) Show that f ◦ g = IdR/(I+J) and g ◦ f = IdR/I⊗RR/J .
(e) Conclude that the map x̄⊗ ȳ 7→ xy induces an isomorphism R/I ⊗R R/J ' R/(I + J). How unique is it?
(f) Show R⊗R R ' R.

Something to Think About
Given ideals I and J in R, we know how to construct the ideals I + J , I ∩ J and IJ of R. We have shown R/I ∩ J ↪→
R/I ⊕R/J and R/(I + J) ' R/I ⊗R R/J . What sort of object might R/IJ correspond to?

1The development here continues to follow Keith Conrad’s Tensor Products.
2Sherlock Holmes never said the phrase “Elementary, my dear Watson, elementary.” in any of the tales written by Arthur Conan Doyle.
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Vocabulary: tensor product of maps, tensoring with N , restriction of scalars, extension of scalars, base change
Suppose R is a commutative ring. Let M , M ′, N , and N ′ be unital R modulues.

Our first goal is to understand the relationship (if any) between HomR(M,M ′) ⊗ HomR(N,N ′) and HomR(M ⊗R
N,M ′ ⊗R N ′). We begin by looking at the latter object.

(236) Suppose ϕ : HomR(M,N) and ψ ∈ HomR(M ′, N ′).
(a) Define B : M × M ′ → N ⊗ N ′ by B(m,m′) = ϕ(m) ⊗ ψ(m′). Show that this map is bilinear. Let

T (ϕ,ψ) ∈ HomR(M ⊗RM ′, N ⊗R N ′) denote the corresponding linear map.
(b) The map T (ϕ,ψ) is called the tensor product of ϕ and ψ; in an (acceptable) abuse of notation, we will often

denote T (ϕ,ψ) by ϕ⊗ ψ. Why is this an abuse of notation?

Suppose τ ∈ HomR(M,M ′). The linear maps IdN ⊗τ : N ⊗RM → N ⊗RM ′ and τ ⊗ IdN : M ⊗RN →M ′⊗RN are
called tensoring with N .

(237) Suppose a, b ∈ Z. Let ι : aZ→ Z be the inclusion map. Tensoring with Z/bZ gives a map aZ⊗Z Z/bZ→ Z/bZ.
Describe the image. Conclude that “tensoring with N” need not preserve injectivity.2

(238) Suppose ϕ : M → M ′ is surjective. Show that ϕ ⊗ IdN : M ⊗R N → M ′ ⊗R N is surjective. [Hint: You may
want to use the result of Prompt 228a. ]

As discussed in Prompt (236b) T (ϕ,ψ) and ϕ ⊗ ψ are really very different objects – the first belongs to HomR(M ⊗R
N,M ′ ⊗R N ′) while the second is an elementary tensor in HomR(M,M ′) ⊗ HomR(N,N ′). The next problem justifies
the abuse of notation discussed in Prompt (236b).

(239) Show that there is a linear map S : HomR(M,M ′)⊗R HomR(N,N ′)→ HomR(M ⊗RN,M ′⊗RN ′) for which
S(ϕ⊗ ψ) = T (ϕ,ψ).

Suppose S is a commutative ring and f ∈ Hom(R,S) is a ring homomorphism. We now investigate an idea called
“extension of scalars.”

(240) Show that S is an associative3 R-algebra where r ∈ R acts on s ∈ S by r · s = f(r)s.
(241) Suppose L is a unital associative S-algebra. Show that L is an R-module where r · ` = f(r)` for all r ∈ R and

` ∈ L. This means that you need to recall and verify axioms M1 through M4 in the definition of module. This
process is called restriction of scalars and is sometimes denoted LR or f∗L.

(242) Since M and S are both unital R-modules, we can form the R-module S ⊗RM . As you will now verify, S ⊗RM
has a (unique) S-module structure that, on elementary tensors, satisfies

(**) s · (s′ ⊗m) = ss′ ⊗m.
Here s, s′ ∈ S and m ∈M . You will also show that r · t = f(r)t for all tensors t in the S module S ⊗RM . This
process is called extension of scalars or base change and is sometimes denoted MS or f!M .
(a) Since S ⊗R M is an R-module, module axiom M1 is free. (Why?). To define multiplication, choose s ∈ S

and consider the map
µs : S ×M → S ⊗RM

defined by µs(s′,m) = ss′ ⊗ m. Show that µs is R-bilinear. Conclude that there is a multiplication map
S × S ⊗RM to S ⊗RM that sends (s, s′ ⊗m) to ss′ ⊗m.

(b) Using the scalar multiplication of S on S ⊗RM defined above, verify at least one of axioms M2 through M4
for the S-module S ⊗RM . Which axiom? Ask.

(c) Show that the S-module structure on S⊗RM defined above satisfies r · t = f(r)t for all tensors t ∈ S⊗RM
and all r ∈ R.

(d) Bonus. Show that this is the unique S-module structure on S ⊗RM satisfying (**) for elementary tensors.
(243) (a) Show S ' S ⊗R R as S-modules.

(b) Show that, as an S-module, S ⊗R Rn ' Sn. [Hint: You may need Homework 150.]
(244) Bonus. Similarly, M ⊗R S has an S-module structure given, on elementary tensors, by s⊗ (m⊗ s′) = m⊗ ss′.

1The development here follows Keith Conrad’s Tensor Products II.
2Hint: You may want to use Homework 154a to answer the injectivity question.
3Meaning the product operation S × S → S is both bilinear and associative.
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If ι : M → S ⊗R M is the R-homomorphism arising from tensoring f : R → S by M , then M/ ker(ι) is the largest
quotient of M that can be embedded into any S-module (where we need to remember that the R-module structure on S is
given by f ).

(245) Bonus. Verify that the (unique)R-linear isomorphism S⊗RM 'M⊗RS given by s′⊗m 7→ m⊗s′ on elementary
tensors is also S-linear.

(246) Show that tensoring by S has the following properties:
(a) If f ∈ HomR(M,N), then IdS ⊗f is an S-linear map from S ⊗RM to S ⊗R N .
(b) The identity map IdM ∈ HomR(M,M) goes to IdS ⊗ IdM which is IdS⊗RM ∈ HomS(S ⊗RM,S ⊗RM).
(c) If f ∈ HomR(M,N) and g ∈ HomR(N,N ′) then (IdS ⊗g) ◦ (IdS ⊗f) = (IdS ⊗g ◦ f) ∈ Hom(S ⊗R

M,S ⊗R N ′).
You have just verified that tensoring by S defines a functor from the category of R-modules to the category of S-modules.
Is this functor faithful? is it full?

Some Things to Think About

[A] How do you think that tensoring by S interacts with direct sums? For example, should it be the case that forR-modules
M1 and M2 we have

S ⊗R (M1 ⊕M2) ' (S ⊗RM1)⊕ (S ⊗RM2)

as S-modules. If this is true, how unique is the isomorphism?

[B] If L is an S-module and M is an R-module, then is M ⊗R L naturally an S-modules? What is its relationship with
(S ⊗RM)⊗S L?
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Vocabulary: right exact

Suppose R is a commutative ring. Let A, B, C, and M be unital R modulues.

The notation ⊕ and ⊗ is very suggestive of addition and multiplication. We have already seen that these operations are
“commutative” in the sense that A⊕B ' B ⊕A and A⊗R B ' B ⊗R A. What about the analogues of distributivity and
associativity?

(247) This problem establishes that there is a unique R-linear isomorphism M ⊗R (A⊕B) ' (M ⊗R A)⊕ (M ⊗R B)
where m⊗ (a, b) 7→ (m⊗ a,m⊗ b).
(a) Show/Sketch that the natural map τ : M × (A⊕B)→ (M ⊗R A)⊕ (M ⊗R B) is bilinear.
(b) Show/Sketch that for all bilinear maps β : M × (A⊕ B) → N there is a unique linear map ` : (M ⊗R A)⊕

(M ⊗R B) → N so that ` ◦ τ = β. [Hint: To define ` look at B(m, (a, 0)) and B(m, (0, b)) and use the
universal property of tensor products to get linear maps M ⊗R A→ N and M ⊗R B → N .]

(c) To finish, consider the case where N is M ⊗R (A⊕B).

The above result says that tensor products commute with direct sums. It turns out that M ⊗R (⊕i∈IAi) ' ⊕i∈I(M ⊗RAi)
where I is an indexing set. Caution. Tensor products do not commute with arbitrary direct products.

(248) This problem establishes that there is a unique R-linear isomorphism A⊗R (B ⊗R C) ' (A⊗R B)⊗R C where
a⊗ (b⊗ c) 7→ (a⊗ b)⊗ c.
(a) For uniqueness: use Prompt 228a to show that ((a⊗ b)⊗ c : (a, b, c) ∈ A× B × C) spans (A⊗ B)⊗R C.

Similarly, show (a⊗ (b⊗ c) | (a, b, c) ∈ A×B × C) spans A⊗R (B ⊗R C).
(b) Show that for each c ∈ C there is a unique linear map `c : A ⊗R B → A ⊗R (B ⊗R C) that maps a ⊗ b to

a⊗ (b⊗ c). [Hint: Consider the natural trilinear map A×B × C → A⊗R (B ⊗R C). For each c ∈ C look
at the natural associated bilinear map Bc : A×B → A⊗R (B ⊗R C). ]

(c) Show/Sketch that the map (A⊗R B)× C → A⊗R (B ⊗R C) that sends (t, c) to `c(t) is bilinear.
(d) Use the universal property of tensor products to produce a unique R-linear isomorphism A⊗R (B ⊗R C)→

(A⊗R B)⊗R C where a⊗ (b⊗ c) 7→ (a⊗ b)⊗ c.
(e) In a very similar fashion, construct an inverse map (A⊗R B)⊗R C → A⊗R (B ⊗R C) .

(249) Is every elementary tensor in A⊗R (B ⊗R C) of the form a⊗ (b⊗ c)?

Since these analogues of commutativity, associativity, and distributivity are only true “up to isomorphism”, they define
operations on the “set of isomorphism classes of R-modules”. While we will not take it up here, pursuing these idea leads
to interesting mathematics (see, e.g., Grothendieck rings).

One of the more important properties of tensoring by N is that it is right exact. This means that if 0 → A
α−→ B

β−→
C → 0 is exact, then A⊗RN

α⊗IdN−−−−→ B⊗RN
β⊗IdN−−−−→ C⊗RN → 0 is also exact. Thanks to Prompt 237, right-exactness

is the most we can hope for.

(250) Show that β ⊗ IdN is surjective. [Hint: You’ve already done this.]
(251) Set I = (α ⊗ IdN )(A ⊗R N); this is the image of α ⊗ IdN . Show that we have an inclusion of R-modules:

I ⊂ ker(β ⊗R IdN ) ⊂ B ⊗R N . Conclude that the map β ⊗ IdN factors to a surjective R-linear map f from the
cokernel (B ⊗R N)/I to C ⊗R N .

(252) For c ∈ C, let bc ∈ B be a fixed element of β−1{c}. Show that the assignment (c, n) 7→ (bc ⊗ n) + I produces a
well defined R-bilinear map g̃ : C ×N → (B ⊗R N)/I .

(253) Show there is an R-linear map g : C ⊗R N → (B ⊗R N)/I for which g ◦ f = Id(B⊗RN)/I .
(254) Conclude that I = ker(β⊗R IdN ). This shows that (cokernel of α)⊗RN is the same as the cokernel of (α⊗IdN ).
(255) Conclude that tensoring by N is right exact.

Something to Think About

Under what conditions on N might tensoring with N also be left exact? That is, when might it happen that if 0→ A
α−→

B
β−→ C is exact, then 0 → A ⊗R N

α⊗IdN−−−−→ B ⊗R N
β⊗IdN−−−−→ C ⊗R N is also exact? Is left exactness equivalent to

requiring that (kernel of α)⊗R N is the same as the kernel of (α⊗ IdN )?
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Soon we will use ideas from homological algebra to study these questions. An R-module M for which the functor
N 7→ N ⊗RM is left exact is said to be flat; a term that arose from considerations in (algebraic) geometry.
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Suppose R is a commutative ring. The point of this worksheet is to provide some additional exposure to tensor products.
Some of the questions may be repeats. Do them anyway.

(256) Suppose I is an ideal in R and M is an R-module. The inclusion map 0 → I → R induces a map I ⊗R M →
R⊗RM .
(a) Is the induced map injective? [Justify your answer!]
(b) Show that the image of the induced map in M is IM [Here we identify R ⊗R M with M under the natural

isomorphism.]
(257) Suppose M is an R-module and I is an ideal of R. Show that R/I ⊗RM 'M/IM

(258) Show that for all ideals I, J of R we have

R/I ⊗R R/J ' R/(I + J).

(259) Compute Z/mZ⊗Z Z/nZ for m,n ∈ Z≥0.
(260) Show that your answer to Prompt 259 is correct in two ways: by appealing to the right exactness of tensoring and

by computing it by hand.
(261) Suppose S is a PID and (r), (s) are nonzero ideals of S. What is S/(r)⊗S S/(s)?
(262) Suppose S is a PID and M , N are S-modules. Use the structure theorem for modules over a PID and Prompt 261

to describe M ⊗S N .
Some problems to emphasize the role of the ring.

(263) Compute Q⊗Q Q and Q⊗Z Q. Compute C⊗R C and C⊗C C.
(264) Compute Q/Z⊗Z Q/Z and Q/Z⊗Q/Z Q/Z.
(265) What is Q/Z⊗Z Q?
(266) Show that the element represented by 2⊗ 1 is zero in Z⊗Z Z/(2) but is nonzero in 2Z⊗Z Z/(2).

Some problems about basic properties of tensor products
(267) Suppose that M and N are R modules. Show that for all m ∈ M and n ∈ N we have 0 ⊗m = n ⊗ 0 = 0 in

N ⊗RM .
(268) If S is an integral domain with field of fractions K, then what is K/S ⊗S K/S?
(269) Suppose I is a principal ideal in the integral domain S. Prove that the S-module I ⊗S I has no nonzero torsion

elements. That is, if 0 6= s ∈ S and n ∈ I ⊗S I , then sn = 0 if and only if n = 0.
(270) Suppose (v, w) is a basis for R2. Show that v⊗w+w⊗ v ∈ R2⊗R R2 cannot be written as an elementary tensor.
(271) Suppose that F is a field and V is an F -vector space. Let v, w ∈ V . When is v ⊗ w = w ⊗ v?

Our friend I = (2, x) in S = Z[x].
(272) Show that Z/2Z ' S/I . Thus Z/2Z is an S module that is annhilated by both 2 and x.
(273) The point of this problem is to show that 2⊗ x 6= x⊗ 2 in I ⊗S I .

(a) Show that the map f : I × I → Z/2Z defined by

f(anx
n + an−1x

n−1 + · · ·+ a1x+ a0, bmx
m + bm−1x

m−1 + · · ·+ b1x+ b0) =
a0

2
b1 mod 2

is S-bilinear.
(b) Show that there is an S-module homomorphism from I ⊗S I to Z/(2) that maps p(x)⊗ q(x) to p(0)

2 q′(0).
(c) Conclude that 2⊗ x 6= x⊗ 2 in I ⊗S I . (In particular, 2⊗ x− x⊗ 2 6= 0.)

(274) Show that , = 2 ⊗ x − x ⊗ 2 ∈ I ⊗S I is a torsion element. Compare to Prompt 269. In fact, show that both 2
and x kill , and the S submodule of I ⊗S I generated by , is isomorphic to S/I .

(275) Show that 2⊗ 2 + x⊗ x is not an elementary tensor in I ⊗S I . [Hint: construct a function on I ⊗S I that is zero
on every elementary tensor . . . ]

Something to Think About
Suppose R is a commutative ring, D ⊂ R is multiplicative, and M is an R-module. How does D−1R play with⊗R? What
is M ⊗RD−1R? If N is a D−1R module, what is N ⊗D−1RD

−1M? If R is an integral domain with field of fractions K,
what sort of object is M ⊗R K?
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If you have ever glanced at an advanced text in differential geometry or physics, then you may be wondering how the
tensors we have defined in Math 593 are related to those you have encountered in the wild. We will look at this a bit here,
and return to the topic in homework. The point of this worksheet is not to give an exhaustive treatment of tensors in their
native habitats. Rather, the point is to help you overcome your instinct to run when you encounter them.1

(276) Let k be a field. Suppose V andW are finite dimensional k-vector spaces with ordered bases v and w, respectively.
Suppose dim(V ) = n and dim(W ) = m. For v ∈ V we let [v]v denote the n × 1 coordinate matrix of v with
respect to v.
(a) For 0 6= v ∈ V and 0 6= w ∈W define A(v, w) ∈ Matn×m(k) by A(v, w) = [v]v[w]Tw. Show that A(v, w) is

a rank one matrix. (See also Prompt 231c and Prompt 223.)
(b) Show that the nonzero elementary tensors in V ⊗k W are in bijective correspondence with the rank one

matrices in Matn×m(k).
(c) Suppose t ∈ V ⊗k W . The rank of t is defined to be the minimal number of pure tensors you need to add

together to recover t.2 Suppose we write t =
∑n

i=1 vi ⊗ wi. Show that the matrix
∑n

i=1A(vi, wi) has rank k
if and only if t has rank k.

(d) Suppose ((vi, wi) ∈ V ×W | 1 ≤ i ≤ n) is a list of vectors in V ×W . Show that
∑
A(vi, wi) = 0 if and

only if for all finite dimensional vector spaces U and for all f ∈ Bilk(V ×W,U) we have
∑
f(vi, wi) = 0.

(e) Is the map
∑
vi ⊗ wi 7→

∑
A(vi, wi) an isomorphism of k-vector spaces?

Being a savvy student, you noticed that the results of Prompt 276 follow easily from the far more elegant statement
V ⊗W ' V ⊗W ∗∗ ' Homk(W

∗, V ) (see Homework 142). Sometimes, glossy and elegant can only be truly appreciated
after tears and toil.
In physics, if k = R and V = W = Rn, then for a,b ∈ Rn the matrix A(a,b) of Prompt 231c is called a dyad3 and is
denoted ab. Dyads are examples of what are known as “second rank4 tensors composed of the components of two vectors”
and a second rank tensor is5 a quantity with 2 indices,6 e.g. Aµ1µ2 , whose Cartesian components Ãµ1µ2 in a new coordinate
system are obtained from the original ones by the rule

Ãµ1µ2 =
∑

1≤ν1,ν2≤n
Aν1ν2aµ1ν1aµ2ν2

where (aµν) is the matrix expressing the first coordinate system of Rn in terms of the second.
(277) Suppose k is R or C and let V denote an n-dimensinal k-vector space. Let e = (e1, e2, . . . , en) be a basis for V .

An element D ∈ V ⊗2 = V ⊗ V looks like D =
∑
vk ⊗ wk for (vk, wk) ∈ V × V .

(a) If we write vk =
∑
ckiei and w` =

∑
b`jej , then D =

∑
1≤i,j≤nD

ijei ⊗ ej where Dij =
∑

k ckibkj .

1“If you really want to impress your friends and confound your enemies, you can invoke tensor products . . . People run in terror from the ⊗
symbol. Cool.” –Brad Osgood

2Warning! The phrase “rank of a tensor” is also used in multilinear algebra where it means something completely different.
3A dyadic is a linear combination of dyads.
4Warning! “Rank of a tensor” is also used to describe the minimum number of pure tensors you need to add together to recover the tensor.
5I paraphrase from various physics textbooks.
6“In matters of aesthetics and mathematical notation, no one loves an index. According to one school of thought, indices are the pawns of an

arcane and archaic notation, the front-line troops, the cannon fodder, first to perish in the confrontation of an inner product. Only their shadows
persist. Like the putti of a Renaissance painting or the cherubim of an earlier era or, like mediaeval gargoyles, indices are mere embellishments,
unnecessary appendages that adorn an otherwise bare mathematical symbol. Tensor analysis, it is claimed despite all evidence to the contrary, has
nothing whatever to do with indices. ‘Coordinate-free methods’ and ‘operator calculus’ are but two of the rallying slogans for mathematicians of this
persuasion. ‘Computation’, on the other hand, is a reactionary and subversive word. Stripped of its appendages, freed from its coordinate shackles, a
plain unadorned letter is the very model of a modern mathematical operator.

Yet this extreme scorn and derision for indices is not universal. It can be argued, for example, that a ‘plain unadorned letter’ conceals more than it
reveals. A more enlightened opinion, shared by the author, is that, for many purposes, it is the symbol itself, — that ‘plain unadorned letter’ — not
the indices, that is the superfluous appendage. Like the grin on Alice’s Cat, the indices can remain long after the symbol has gone. Just as the grin
rather than the Cat is the visible display of the Cat’s disposition, so too it is the indices, not the symbol, that is the visible display of the nature of the
mathematical object. Surprising as it may seem, indices are capable of supporting themselves without the aid of crutches!

In matters of index notation and tensor analysis, there are few neutral observers. . . . ” –Peter McCullagh
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(b) Suppose that ẽ = (ẽ1, ẽ2, . . . , ẽn) is another basis for V and let (aij) =ẽ [IdV ]e denote the change of basis
matrix. Show that D =

∑
1≤i,j≤n D̃

ij ẽi ⊗ ẽj where D̃ij =
∑

1≤k,`≤nD
k`aikaj`.

(c) Conclude that D is a “second rank tensor.” This shows that, in particular, dyadics are tensors in Math 593.

In differential geometry and general relativity a k-tensor on a finite dimensional real vector space V is an element of
Mult(V k,R), the vector space of multilinear functions from V × V × · · · × V to R. Thus, a 2-tensor is a bilinear map
from V × V to R; that is, it is an element of BilR(V × V,R).

(278) In this Prompt a connection between tensors in general relativity/differential geometry and tensors in Math 593 is
made. This will be pursued further in homework.
(a) Show BilR(V 2,R) ' (V ⊗2)∗. [Hint: This is supposed to be easy.]
(b) Show Bil(V 2,R) is (canonically) isomorphic to (V ∗)⊗2. [Warning! This is not true if V is infinite dimen-

sional. Homework 155b may help.]
(c) Conclude that a tensor in general relativity/differential geometry is a tensor in Math 593.

OK, back to Math 593 material.
(279) The tensor product of algebras is an algebra. Suppose R is a commutative ring and A and B are R-algebras.

(a) Suppose C is an R-module. Show that C is an R-algebra if and only if there is a linear map mC ∈
HomR(C ⊗R C,C).

(b) Show that if there is an R-algebra multiplication map on A⊗R B satisfying (a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′ for
all pure tensors, then it is unique.

(c) Show
(A⊗R B)⊗R (A⊗R B) ' ((A⊗R B)⊗R A)⊗R B ' (A⊗R (B ⊗R A))⊗R B ' (A⊗R (A⊗R B))⊗R B

' (A⊗R A)⊗R B)⊗R B ' (A⊗R A)⊗R (B ⊗R B).

(d) Trace through what happens in the above isomorphisms to the element (a⊗ b)⊗ (a′ ⊗ b′).
(e) Compose these isomorphism with the tensor product mA⊗mB ∈ HomR((A⊗RA)⊗R (B⊗RB), A⊗RB)

where mA : A ⊗ A → A and mB : B ⊗R B → B are the R-linear maps corresponding to multiplication on
the algebras A and B to conclude we have an R-linear map in HomR(A⊗R B)⊗R (A⊗R B), A⊗R B) that
maps (a⊗ b)⊗ (a′ ⊗ b′) to aa′ ⊗ bb′.

(f) Use this R-linear map to conclude that A⊗R B is an R-algebra.

Some things to Think About
[A] Think about the following quotes. The first is part of a response1 by Kim Aaron to the question “What is the physical
meaning of a tensor?”

A tensor is a description about what happens in one direction due to what’s happening in other directions.

The second is part of a response2 by Warren Davis to the question “What is a tensor?”
An example of a second order3 tensor is the so-called inertia matrix (or tensor) of an object. For three
dimensional objects, it is a 3 × 3 = 9 element array that characterizes the behavior of a rotating body.
As is well known to anyone who has played with a toy gyroscope, the response of a gyroscope to a force
along a particular direction (described by a vector), is generally re-orientation along some other direction
different from that of the applied force or torque. Thus, rotation must be characterized by a mathematical
entity more complex than either a scalar or a vector; namely, a tensor of order two.

[B] Tensors arise in quantum mechanics – one is looking at the (completed) tensor product of Hilbert spaces. I couldn’t
find something in this direction that was both concise and interesting; if you have an idea, please let me know.
[C] For more examples of tensors in the wild, see Peter McCullagh’s book Tensor Methods in Statistics.4

1www.quora.com/What-is-the-physical-meaning-of-a-tensor-What-are-interesting-examples-of-tensors-in-physics
2http://www.physlink.com/Education/AskExperts/ae168.cfm
3i.e., rank two
4Available at http://www.stat.uchicago.edu/˜pmcc/tensorbook/. I particularly like the introductory passage titled “Difficult

Questions.”
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Worksheet for 5 Nov 2018
Higher tensors, symmetric and alternating maps (c)2018 UM Math Dept
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By-NC-SA 4.0 International License.

Vocabulary: multilinear maps, multilinear form, skew-symmetric maps, symmetric maps, alternating maps, higher tensor
products, dth exterior power module, 2nd symmetric power module,
Suppose R is a commutative ring. Let M , M1, M2, . . . , and P be unital R modules. We will freely use the fact that
products and tensor products are associative operations.

Definition. Suppose f : M1 ×M2 × · · · ×Mn−1 ×Mn → P is a function. The function f is called R-multilinear
provided that it is R-linear in each variable (for fixed values of the remaining variables).

(280) Show that f(X,Y, Z) = XY Z − Y XZ − XZY + Y ZX − ZY X + ZXY is a multilinear function from
Mat`×`(R)×Mat`×`(R)×Mat`×`(R) to Mat`×`(R).

(281) Show that the set of multilinear maps from M1 ×M2 × · · · ×Mn−1 ×Mn to P has a natural R-module structure.

Just as bilinear functions were the key to defining tensor products, multilinear functions are the key to defining higher
tensor products. A straightforward induction argument (do you see it?) shows that every R-multilinear map M1 ×M2 ×
· · · ×Mn → P factors uniquely through an R-linear map ((· · · (M1 ⊗RM2)⊗RM3)⊗) · · · )⊗RMn)→ P . Thus:

Universal Property of higher tensor products. The tensor product M1 ⊗R M2 ⊗R · · · ⊗R Mn is an R-module with
a multilinear map ⊗n : M1 ×M2 × · · · ×Mn → M1 ⊗R M2 ⊗R · · · ⊗R Mn such that for every R-multilinear map
ϕ : M1 ×M2 × · · · ×Mn → P there is a unique linear map ϕ̄ ∈ HomR(M1 ⊗RM2 ⊗R · · · ⊗RMn, P ) for which the
following diagram commutes.

M1 ×M2 × · · · ×Mn M1 ⊗RM2 ⊗R · · · ⊗RMn

P

⊗n

ϕ
∃! ϕ̄

(282) Show there is a bijective correspondence between theR-module of multilinear maps fromM1×M2×· · ·×Mn−1×
Mn to P and HomR(M1 ⊗RM2 ⊗R · · · ⊗RMn, P ).

Definition. Set Md = M ×M × · · · ×M and M⊗d = M ⊗RM ⊗R · · · ⊗RM (there are d copies of M on the RHS of
both of these expressions). The space of R-multilinear functions f : Md → P is denoted MultdR(M,P ).

The R-module M⊗d is often denoted T d(M). An R-multilinear function with values in R is often called an R-multilinear
form.

Thanks to our work above, for every R-module Q and every ϕ ∈ MultdR(M,Q) there is a unique ϕ̄ ∈ HomR(M⊗d, Q)
for which the following diagram commutes.

Md M⊗d

Q

⊗d

ϕ
∃! ϕ̄

There are two natural submodules of MultdR(M,P ) that are ubiquitous in mathematics:

Definition. A function f ∈ MultdR(M,P ) is called alternating provided that f(m1,m2, . . . ,md) = 0 whenever there
exists i 6= j such that mi = mj . It is called symmetric provided that

f(m1,m2, . . . ,md) = f(mσ(1),mσ(2), . . . ,mσ(d))

for all σ ∈ Sd, the symmetric group on d letters.
The R-submodule of MultdR(M,P ) consisting of alternating functions is denoted AltdR(M,P ) and the R-submodule of
MultdR(M,P ) consisting of symmetric functions is denoted Symd

R(M,P ).

(283) Show that if 2 ∈ R×, then f ∈ MultdR(M,P ) is alternating if and only if it is skew-symmetric (i.e., switching two
entries results in a change of sign). Conclude that

f(mσ(1),mσ(2), . . . ,mσ(d)) = sgn(σ)f(m1,m2, . . . ,md)
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for all σ ∈ Sd. What can you say when 2 6∈ R×?
(284) Suppose k is a field. Show that the map (~v, ~w) 7→ ~vT ~w (aka the dot product) defines an element of Sym2

k(k
n, k)

(285) Suppose f ∈ MultdR(M,P ). Reformulate the condition for f to belong to the submodule Symd
R(M) in terms of

transpositions (aka involutions on {1, 2, 3, . . . , d}).
(286) Show that the function f defined in Prompt 280 belongs to Alt3

R(Mat`×`(R),Mat`×`(R)).

Just as MultdR(M, ·) corresponds to the universal object M⊗d = T d(M), so too AltdR(M, ·) and Symd
R(M, ·) have their

corresponding universal objects.
For example, every function in AltdR(M, ·) is multilinear and vanishes on d-tuples that have two equal entries. Thus,

we should consider the R-submodule X = 〈m1 ⊗m2 ⊗ · · · ⊗md |mi = mj for some i 6= j〉 of M⊗d and our candidate
universal object is the quotient module

∧d
R(M) = M⊗d/X , which is called the dth wedge power module or dth exterior

power module. The induced map

∧d : Md M⊗d
∧d
R(M)

⊗d

is alternating,1 and the image of (m1,m2, . . . ,md) ∈ Md under this map is denoted m1 ∧ m2 ∧ · · · ∧ md, which is
sometimes called a pure wedge in analogy with pure tensors.

(287) Show that for all R-modules Q and all f ∈ Alt2
R(M,Q) there exists a unique f̄ ∈ HomR(

∧2
R(M), Q) for which

the following diagram commutes. (You will consider the general case in Homework 187.)

M ×M (M ⊗RM)/〈m⊗m〉

Q

∧2

f
f̄

(288) Show that for allR-modulesQ and all f ∈ Sym2
R(M,Q) there exists a unique f̄ ∈ HomR((M⊗RM)/〈m1⊗m2−

m2⊗m1〉, Q) for which the following diagram commutes. (You will consider the general case in Homework 188.)

M ×M M ⊗M (M ⊗RM)/〈m1 ⊗m2 −m2 ⊗m1〉

Q

⊗2

f
f̄

The quotient module S2
R(M) = (M ⊗RM)/〈m1 ⊗m2−m2 ⊗m1〉 is called the 2nd symmetric power module.

Something to Think About

Given f ∈ MultkR(M,R) and g ∈ Mult`R(M,R), we can form an element of Multk+`
R (M,R) by sending

(m1,m2, . . .mk,mk+1, . . . ,mk+`) to f(m2,m2, . . . ,mk)g(mk+1,mk+2, . . . ,mk+`). This suggests that we have maps
⊗ : M⊗k ×M⊗` → M⊗(k+`), ∧ :

∧k(M) ×
∧`(M) →

∧k+`(M), and · : Sk(M) × S`(M) → Sk+`(M). Can you
define such maps? Even stronger, it suggests that perhaps we should set M⊗0 := R, M⊗1 = M , and study the graded R-
module

T (M) =
⊕
d≥0

M⊗d = R⊕M ⊕M⊗2 ⊕M⊕3 ⊕ · · ·

This turns out to be a very useful way to view things. How would you define
∧

(M) or S(M) as a quotient of T (M)?
Would you be able to recover

∧d(M) as the “degree d piece of
∧

(M)” or Sd(M) as the “degree d piece of S(M)”?

1Note that X is the smallest submodule of M⊗d for which the induced map from Md to M⊗d/X is alternating.
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Worksheet for 7 Nov 2018
Bilinear forms (c)2018 UM Math Dept
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Vocabulary: bilinear form, symmetric, alternating, skew-symmetric, anti-symmetric, rank, nondegenerate, cogredient,
congruent
Bilinear forms appear in pretty much every part of mathematics: in Euclidean geometry one sees the dot product, in
relativity theory one sees the Minkowski inner product, in the study of Lie algebras and Lie groups one sees the Killing
form, in Math 593 bilinear forms are everywhere, . . . .

Suppose k is a field and V is a k-vector space.

Definition. A k-bilinear form on V is an element of Bil(V × V, k). A k-bilinear form B on V is said to be
• symmetric provided that B(x, y) = B(y, x) for all x, y ∈ V ,
• alternating provided that B(u, u) = 0 for all u ∈ V , and
• skew-symmetric (or anti-symmetric provided that B(s, t) = −B(t, s) for all s, t ∈ V .

(289) For v, w ∈ R2, let v · w denote the usual dot product (which is really just vTw). Suppose A ∈ Mat2×2(R) and set
BA(x, y) = x · (Ay). BA will serve as a template for understanding bilinear forms in the finite dimensional case.
(a) Show that BA ∈ Bil(R2 × R2,R).
(b) Under what conditions will BA be symmetric? [Hint: Do some calculations with respect to a basis.]
(c) Under what conditions will BA be alternating?
(d) Under what conditions will BA be skew-symmetric?

If things went well, your answers to Prompts 289c and 289d were the same; these will be generalized in Homework 180.
The agreement between alternating and skew-symmetry almost always holds (for vector spaces). However, bilinear forms
over characteristic two fields usually require special care. Depending on your perspective, this “special care” is either cool
or a headache.1

(290) Show that every alternating form is skew symmetric. [Hint: A standard trick in bilinear form calculuations is to
look at B(u+ v, u+ v).]

(291) Show that when the characteristic of k is not two we have that every skew-symmetric form is alternating.
(292) Note that in characteristic two alternating⇒ skew-symmetric⇔ symmetric. In characteristic two can you produce

a symmetric bilinear form that is not alternating?

The involution f ∈ Homk(V
2, V 2) that takes (v, v′) to (v′, v) induces an action on the k-vector space Bil(V 2, k).

(293) When k is not of characteristic two, we have Bil(V 2, k) = Bil(V 2, k)(1) ⊕ Bil(V 2, k)(−1). [Hint: Look at
B +B ◦ f and B −B ◦ f . Why do we need to assume that the characteristic of k is not two?]

(294) Conclude that everyB ∈ Bil(V 2, k) can be decomposed asB = S+Awhere S,A ∈ Bil(V 2, k) with S symmetric
and A alternating. How is this related to Homework 147?

Suppose now that V is finite dimensional and that v = (v1, v2, . . . , vn) is a basis of V . Recall that for y ∈ V we write the
coordinates of y with respect to v as [y]v. Here [y]v = [y1, y2, . . . , yn]T if and only if y =

∑
yivi.

(295) Suppose B ∈ Bil(V 2, k). Define M = M(B,v) ∈ Matn×n(k) by setting Mij = B(vi, vj). Show that B(x, y) =
[x]TvM [y]v.

(296) Suppose A ∈ Matn×n(k). Define BA(x, y) = [x]TvA[y]v. Show that BA ∈ Bil(V 2, k).
(297) Show that B 7→M(B,v) from Bil(V 2, k) to Matn×n(k) is an isomorphism of k-vector spaces.

Warning: The k-algebra isomorphism Endk(V ) ' Matn×n(k) given by T 7→v [T ]v (see Homework 108) is a completely
different beast than the k-module isomorphismB 7→M(B,v). In particular, while we can add and scalar multiply bilinear
forms, there is no natural way to define the composition of bilinear forms on V .

However, we can make use of the k-module isomorphism B 7→ M(B,v) to think about what the rank, determinant,
trace, etc. of M(B,v) might mean for B. Our first order of business is to figure out if there is any relationship between
M(B,v) and M(B, ṽ) where ṽ is another basis for V .

(298) Let Q =ṽ [IdV ]v and fix B ∈ Bil(V 2, k).
(a) Show that Q is invertible.

1To see another reason why, depending on your perspective, two may turn out to be cool or a headache, check out the graph of A000001, the
number of groups of order n, at The On-line Encyclopedia of Integer Sequences. oeis.org/A000001/graph.
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(b) Show that M = QT M̃Q. where M = M(B,v) and M̃ = M(B, ṽ). (The matrices M and M̃ are said to be
cogredient or congruent, cogrediency is an equivalence relation.)

(c) Show that for all T ∈ Endk(V ) we have v[T ]v = Q−1
ṽ[T ]ṽQ.

Thanks to Prompt 298b and Homeworks 164a and 164b the following defintion makes sense.

Definition. Fix a basis v of V and a bilinear form B ∈ Bil(V × V, k). B is said to be nondegenerate provided that
det(M(B,v)) 6= 0. The rank of B is defined to be the rank of M(B,v).

Thanks to Prompts 289c and 289d (along with Homework 180) we know that the map B 7→ M(B,v) should take sym-
metric bilinear forms to symmetric matrices (those for which A = AT ), skew-symmetric bilinear forms to skew-symmetric
matrices (those for which A = −AT ), and alternating forms to skew-symmetric matrices all of whose diagonal entries are
zero. It is comforting that in the change of coordinates expression of Prompt 298b we see that if M̃ is symmetric then so
too is M . Similarly, if one of M̃ or M is skew-symmetric, then so too is the other. If one of them has all diagonal entries
does the other?

Something to Think About
It should trouble your soul that the map B 7→M(B,v) involves a choice – why are we favoring the “right” variable? Why
not favor the left and define BA(x, y) = (A[x]v)T [y]v? Does this choice make a difference? How to account for it?
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Vocabulary: Sylvester’s Law of Inertia, signature, quadratic form

Suppose k is a field not of charactersitc two. In Homework 143 EROs and ECOs were used to show that if A ∈
Matn×n(k) is a symmetric matrix, then there exists invertible Q ∈ Matn×n(k)× so that QTAQ is diagonal. In terms of
bilinear forms on a finite dimensional vector space V , this means that if B ∈ Bil(V 2, k) is a symmetric bilinear form on
V , then

(*) there is a basis v = (v1, v2, . . . , vn) of V for which M(B,v) is diagonal;

that is, B(vi, vj) = biδij for some bi ∈ k. Because it helps motivate some later ideas, let’s prove this result again.1

(299) Show that if B 6= 0, then there exists x ∈ V for which B(x, x) 6= 0. [Hint: Consider B(u+ v, u+ v)−B(u, u)−
B(v, v).]

(300) Suppose we can choose u1, u2, . . . , uk ∈ V for whichB(ui, uj) = biδij with bi 6= 0. Let Vk = span(u1, u2, . . . , uk).
Set V ⊥k = {w ∈ V |B(v, w) = 0 for all v ∈ Vk}.
(a) Show that Vk ∩ V ⊥k = {0}.
(b) Suppose y ∈ V . Show that

x = y −
k∑
i=1

B(ui, y)b−1
i ui

belongs to V ⊥k .
(c) Conclude that V = Vk ⊕ V ⊥k . (Here we are forming an “internal direct sum.”)

(301) Show that Property (*) holds. [If B = 0, then any basis will satisfy Property (*), so there is nothing to prove. Let
us assume B 6= 0 . . . ]

Warning: From Homework 143 we know that Property (*) need not hold when k has characteristic two.
Since a basis v can be chosen so that M(B,v) is diagonal, it is natural to ask: how unique are the diagonal entries

of M(B,v) – that is, can we find a way to classify all elements of Bil(V 2, k) in terms of n-tuples? This turns out to be
an extremely interesting question. It follows from Prompt 298b that we could hope that the diagonal entries of M(B,v)
are, up to rearrangement, uniquely determined modulo (k×)2 – that is, we could hope that the elements of Bil(V 2, k) are
determined by n-tuples of elements of k×/(k×)2. However, Homework 143c shows that this doesn’t work already for
Bil(Q2 ×Q2,Q).

In special situations, like k finite or k algebraically closed, one can parameterize the bilinear forms up to cogrediency
(see [J85, §6.3]). For ordered fields, we have the following result.

(302) (Sylvester’s Law of Inertia) Suppose that k is an ordered field.2 Suppose B ∈ Bil(V 2, k) and there exist bases
u = (u1, u2, . . . , un) and ũ = (ũ1, ũ2, . . . , ũn) so that

M(B,u) = diag(m1,m2, . . . ,mr, 0, 0, . . . , 0)

with m1,m2, . . . ,mp positive and mp+1,mp+2, . . . ,mr negative and

M(B, ũ) = diag(m̃1, m̃2, . . . , m̃r̃, 0, 0, . . . , 0)

with m̃1, m̃2, . . . , m̃p̃ positive and m̃p̃+1,mp̃+2, . . . ,mr̃ negative.
(a) Show that r = r̃. [Hint: See Homework 164a]
(b) Consider x ∈ V + = span(u1, u2, . . . , up). Show that B(x, x) ≥ 0 with equality if and only if x = 0.
(c) Consider y ∈ V − = span(ũp̃+1, ũp̃+2, . . . , ũn). Show that B(y, y) ≤ 0.
(d) Since V + ∩ V − = {0} (why?), conclude that p ≤ p̃. [Hint: dim(V + + V −) = dim(V +) + dim(V −) −

dim(V + ∩ V −) – why?]

1The following proof is due to Lagrange.
2We say that a field k is ordered provided that: (a) if x, y ∈ k>0, then xy > 0 and x+ y > 0; and (b) if z ∈ k then exactly one of the following

is true: (i) z > 0, (ii) z = 0, or (iii) z < 0. Wait, what does the symbol > mean?
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Thanks to Prompt 302, the following definition makes sense.

Definition. Suppose k is an ordered field, V is an n dimensional k-vector space, and B ∈ Bil(V ×V,R). Choose a basis
u of V such that M(B,u) is diagonal. Let n+ denote the number of positive entries on the diagonal of M(B,u), and let
n− denote the number of negative entries on the diagonal of M(B,u). The difference (n+ − n−) is called the signature
of B. [Some people call the triple ((n− (n+ + n−), n+, n−, (n− (n+ + n−)) the signature of B.]

Note that (n+ + n−) is the rank of B.
(303) Suppose V is an n dimensional real vector space and B ∈ Bil(V × V,R). Suppose the rank of B is k and its

signature is `. Show there exists a basis u = (u1, u2, . . . , un) of V such that

M(B,u) = diag(1, 1, . . . , 1,−1,−1, . . . ,−1, 0, 0, . . . 0)

with (k + `)/2 ones, (k − `)/2 minus ones, and n− k zeros.

Definition. A quadratic form on V is a map Q : V → k for which
(1) Q(ax) = a2Q(x) for all a ∈ k and x ∈ V , and
(2) the function (x, y) 7→ BQ(x, y) := Q(x+ y)−Q(x)−Q(y). belongs to Bil(V 2, k).

(304) Show that if B ∈ Bil(V 2, k), then QB(x) = B(x, x) is a quadratic form on V . What is the relationship between
QB and BQ? Is the theory of quadratic forms the same as that of symmetric binary forms (when the characteristic
of k is not two)?

Something to Think About
The classification of quadratic forms/symmetric bilinear forms is often very challenging. The solution for k = Q is quite
beautiful and is known as the Hasse-Minkowski theorem. This theorem says that two bilinear formsB andB′ in Bil(V 2,Q)
are equivalent if and only if they are equivalent in Bil((V ⊗QR)2,R) and Bil((V ⊗QQp)

2,Qp) for all primes p. This is an
example of putting to good use a philosophy known as the local-global principle or Hasse principle which states that we
can often understand/solve/make progress on a problem over Q by understanding/solving/making progress on it over every
completion of Q (that is, R and Qp for all primes p). Can you think of other problems to which the local-global principle
might apply?
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Worksheet for 12 Nov 2018
Inner products (c)2018 UM Math Dept

licensed under a Creative Commons
By-NC-SA 4.0 International License.

Vocabulary: complex conjugate, inner product, conjugate linear, symmetric sesquilinear form, Hermitian form, inner
product space, orthogonal complement, normal
Throughout this worksheet k is either the field of real numbers, R, or the field of complex numbers, C. If z ∈ C, then we
denote by z the complex conjugate of z and set |z| =

√
zz, this is sometimes called the modulus of z. In Cartesian form

we have a+ ib = a − ib and in polar form we have reiθ = re−iθ. (Note that r =
∣∣reiθ∣∣.) Complex conjugation is an

involution on C, and the set of fixed points of this involution is the field R.

Definition. Suppose k is either R or C and let V be a k-vector space. An inner product on V is a function 〈 , 〉 : V ×V →
k that satisfies

(1) For all u,w, v ∈ V we have 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉.
(2) For all u,w ∈ V and a ∈ k we have 〈au,w〉 = a〈u,w〉.
(3) For all u,w ∈ V we have 〈u,w〉 = 〈w, u〉.
(4) for all v ∈ V we have 〈v, v〉 ≥ 0 with equality if and only if v = 0.

In words: an inner product is a bi-addivive function from V ×V to k which is linear in the first term, conjugate symmetric,
and positive definite.

(305) Show that if V is an R-vector space, then an inner product on V is a symmetric bilinear form.
(306) Suppose V is a C-vector space and 〈 , 〉 is an inner product on V . Show that for all u, v, w ∈ V and c ∈ C we have

〈w, u + cv〉 = 〈w, u〉 + c〈w, v〉. In particular, an inner product is not a bilinear form since it is linear in the first
variable and conjugate linear in the second.1

Since an inner product over C is not bilinear, it is sometimes called a symmetric sesquilinear form or Hermitian form to
remind us that it is not bilinear.

(307) Suppose V is a finite dimensional k-vector space. Let v = (v1, v2, . . . , vn) be a basis for V . For x, y ∈ V define
〈x, y〉 =

∑
i xiyi where x =

∑
xkvk and y =

∑
yjvj . Show this defines an inner product on V .

(308) Let C0([0, 1], k) denote the k-vector space of k-valued continuous function on [0, 1]. For f, g ∈ C0([0, 1]) set
〈f, g〉 =

∫ 1
0 f(x)g(x) dx. Show this defines an inner product on C0([0, 1], k).

Definition. An inner product space is a real or complex vector space, together with a specified inner product on that
space.

Note that in the Homework b problems, we have been restricting ourselves to real inner product spaces.

Definition. Suppose V is an inner product space with inner product 〈 , 〉. For v ∈ V define the norm of v, denoted ||v||,
by ||v|| =

√
〈v, v〉. A nonzero list of vectors (u1, u2, . . . , um) in V is said to be orthogonal provided that 〈ui, uj〉 = 0 for

all 1 ≤ i 6= j ≤ m and it is said to be orthonormal provided that it is an orthogonal list with ||uk|| = 1 for all 1 ≤ k ≤ m.
Finally, if W is a subspace of V , then the orthogonal complement to W in V is W⊥ = {v ∈ V | 〈v, w〉 = 0 for all w ∈
W}.

In Homework 198 it will be shown that W +W⊥ = V and W ∩W⊥ = {0}.
Suppose V is an inner product space and T ∈ Homk(V, V ). It is natural to ask: when does there exist an orthonormal

eigenbasis for V ? That is, when can we find an orthonormal basis (u1, u2, . . .) for V so that T (uj) = αjuj for αj ∈ k and
all indices j? We explore this question for the case when V is finite-dimensional. Suppose V has dimension n.

Exactly as in Homeworks 131d and 131e we can define the adjoint, T ∗ ∈ Homk(V, V ), of T by requiring that
〈T (v), w〉 = 〈v, T ∗(w)〉 for all v, w ∈ V . Note that T ∗∗ = T .

(309) Suppose T ∈ Homk(V, V ). Suppose that W is a subspace of V that is T invariant. Show that W⊥ is T ∗-invariant.
(310) Suppose v = (v1, v2, . . . , vn) is an orthonormal basis for V . Show that v[T ∗]v is the conjugate transpose of v[T ]v.

That is, if aij denotes the entry in the ith row and jth column of v[T ]v, then the entry in the kth row and `th column
of v[T ∗]v is a`k. Do we need to assume that the basis v is orthonormal?

(311) Conclude that if T admits an orthonormal basis u = (u1, u2, . . . , un) for V so that T (uj) = αjuj for αj ∈ k, then
u[T ]u = diag(α1, α2, . . . , αn) and u[T ∗]u = diag(α1, α2, . . . , αn).

1Some people do things in the opposite order – their inner products over C are linear in the second variable and conjugate linear in the first
variable; this leads to much confusion.
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Thanks to Prompt 311 if k = R and T admits an orthonormal eigenbasis, then since all eigenvalues are in R, we conclude
that T is self-adjoint (that is, T = T ∗). As you will show in Homework 210, the converse is also true: if k = R and
T = T ∗, then T admits an orthonormal eigenbasis.

What if k = C? In this case, it seems that all we can conclude is that T and T ∗ commute; that is T ◦ T ∗ = T ∗ ◦ T .
While this condition doesn’t appear to be very strong, it turns out that it is sufficient.1

Definition. Suppose V is finite-dimensional inner product space. A linear transformation T ∈ Homk(V, V ) is said to be
normal provided that T ◦ T ∗ = T ∗ ◦ T .

We the remainder of this worksheet we assume that V is a finite dimensional inner product space.
(312) Bonus. Show that T ∈ HomC(V, V ) is normal if and only if T = R+ iS with R and S self adjoint.
(313) Suppose N ∈ HomC(V, V ) is normal.

(a) Show that ||N(v)|| = ||N∗(v)|| for all v ∈ V .
(b) Show that N − c IdV is normal for all c ∈ C.
(c) Show that if v is an eigenvector for N with eigenvalue α, then v is an eigenvalue of N∗ with eigenvalue α.

(314) Suppose T ∈ HomC(V, V ) with V 6= {0}. Show that T admits an eigenvector v with ||v|| = 1.
(315) Suppose T ∈ HomC(V, V ) is normal and V 6= {0}. Let u be a norm one eigenvector for T .

(a) Let U = spanC(u). Use Prompt 313 to show that both T and T ∗ preserve both U and U⊥.
(b) Show that the restriction of T to U⊥ is normal.

(316) (Spectral Theorem for Normal Operators) Conclude: If T ∈ HomC(V, V ) is normal, then T admits an orthonormal
eigenbasis. [Hint: If V = {0}, there is nothing to prove. If dimC(V ) = 1, then . . . .]

Some things to Think About
[A] Suppose V is a finite-dimensional inner product space over C with inner product 〈 , 〉. Even though 〈 , 〉 is not bilinear,
it turns out that just as for bilinear forms when given an orthogonal basis v of V one can produce a conjugate symmetric
matrix M(v) so that

〈x, y〉 = [x]Tv M(v) [y]v.

Since a conjugate symmetric matrix is normal (why?), we can find an orthogonal basis u so that M(u) is diagonal. Can we
find a basis w so that M(w) is the identity? How are these bases related?
[B] There are many important generalizations of the spectral theorem. Some, like the Singular Value Decomposition,
play a very important role in applied mathematics. Others, like the Spectral Theorem for Compact Self-adjoint Opera-
tors, play an important role in functional analysis and representation theory. Why are theorems like the spectral theorem
uselful/important?

1This condition is stronger than it appears. Here is a way to think about it: in Homework 163 we saw that over R the condition S ◦S∗ = S∗◦S =
IdV means that S must be an orthogonal transformation. The condition that T and T ∗ commute is a ‘small’ relaxation of this requirement.
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The Snake Lemma (c)2018 UM Math Dept

licensed under a Creative Commons
By-NC-SA 4.0 International License.

Vocabulary: snake lemma, connecting homomorphism
Suppose R is a ring. Consider the following commutative diagram consisting of two (horizontal) exact sequences of
R-modules linked by (vertical) R-module homomorphisms.

A′ B′ C ′ 0

0 A B C

α′

f

β′

g h

α β

The first goal today is to construct a homomorphism ∂ : ker(h) → coker(f), called a connecting homomorphism so that
the sequence

ker(f) ker(g) ker(h) coker(f) coker(g) coker(h)∂

is exact. Thanks to Homeworks 156 and 145 we know that this sequence is exact at both ker(g) and coker(g). Thus,
we concentrate on constructing1 ∂. You will verify exactness at ker(h) and coker(f) in Homeworks 202 and 223. The
following diagram illustrates why this result is often called the snake lemma.

ker f ker g kerh

A′ B′ C ′ 0

0 A B C

coker f coker g cokerh

β′

f g h

α

∂

(317) Choose c′ ∈ ker(h).
(a) Show there is a b′ ∈ B′ for which β′(b′) = c′.
(b) Show that g(b′) ∈ α(A).
(c) Show there exists a unique a ∈ A for which α(a) = g(b′).
(d) Show that if b̃′ ∈ B′ with β(b̃′) = c′, then there exists a′ ∈ A′ such that α(f(a′)) = g(b′)− g(b̃′).
(e) Conclude that the assignment c′ 7→ a+ im(f) is a well-defined map ∂ : ker(h)→ coker(f).

(318) Is ∂ : ker(h)→ coker(f) an R-module homomorphism?
Here are some quick applications of the snake lemma.

(319) Suppose that R is a ring and M is a finitely presented R-module. Recall that this means there exist finitely
generated free R-modules E and F so that

E → F →M → 0

is exact. Suppose
0→ K → L→M → 0

1If you need extra help with the construction of ∂, please see the opening scene of the 1980 movie It’s My Turn.
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is exact with L a finitely generated free module. Show that K is finitely generated.
(320) (Bonus.) Show that the converse of Prompt 145b is true. Recall that we are looking at the surjective map

R`/ARt → R`/K induced by the identity map from R` to R`.
(321) Suppose R is a ring. Consider the following commutative diagram consisting of two (horizontal) exact sequences

of R-modules linked by (vertical) R-module homomorphisms.

0 A′ B′ C ′ 0

0 A B C 0

α′

f

β′

g h

α β

Suppose that two of the three functions in the set {f, g, h} are isomorphisms, what, if anything, can you conclude
about the third?

Something to Think About
Here is some dialog between Tunococ and Jack Schmidt under the heading Intuition behind the snake lemma on Stack

Exchange.1

I’ve been struggling with this for some time. I can prove the Snake Lemma, but I don’t really “understand”
it. By that I mean if no one told me Snake Lemma existed, I would not even attempt to prove it. I believe I
am missing some important intuition that tells me that the lemma “could” be true before actually trying to
prove it. Please give me some pointers.

A special case is easy to see: Imagine A ≤ A′ ≤ B = B′, and C = B/A and C ′ = B′/A′ with the
obvious maps from a module M to M ′. The kernels are 0, 0, and A′/A. The cokernels are A′/A, 0, 0. The
last kernel and the first cokernel are linked.
The snake lemma is then just one of the isomorphism theorems. As you deform B and B′ more, how do
the kernels and cokernels deform? The last kernel and first cokernel no longer need be isomorphic, but the
kernel and cokernel of that linking (snakey) map can be described in terms of the kernels and cokernels
already there. A specific relation is the snake lemma.
Example deformation
An example deformation might be helpful: distort the A′ → B′ → C ′ sequence by quotienting out by
some M ≤ B (imagine M = IB for some ideal I , so we are tensoring the second line with R/I). How
does this change the kernels and cokernels?
The first line is

0→ A→ B → B/A→ 0,

and the second line becomes

0→ (A′ +M)/M → B′/M → B′/(A′ +M)→ 0

so the kernels areA∩M ,M , and (A′+M)/A and the cokernels become (A′+M)/(A+M), 0, and 0. The
last kernel and the first cokernel are related, but not equal. One clearly has the relation 0→ (A+M)/A→
(A′+M)/A→ (A′+M)/(A+M)→ 0 where the last two nonzero terms are the last kernel and the first
cokernel. The first term is weird though. We apply another isomorphism theorem to write (A+M)/A ∼=
M/(A ∩M) and then the solution is clear: We already have 0 → A ∩M → M → M/(M ∩ A) → 0 so
we splice these two together to get the snake lemma:

0→ A ∩M →M → (A′ +M)/A→ (A′ +M)/(A+M)→ 0→ 0→ 0

Did that help?

1https://math.stackexchange.com/questions/182562/intuition-behind-snake-lemma
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Homological algebra: introduction (c)2018 UM Math Dept

licensed under a Creative Commons
By-NC-SA 4.0 International License.

Vocabulary: chain complex, homology, resolution, finite, free resolution

Definition. Suppose R is a ring. A chain complex of R-modules is a sequence of R-modules and R-module homomor-
phisms

· · · Mi+1 Mi Mi−1 · · ·di+2 di+1 di di−1

such that di ◦ di+1 = 0 for all i. The chain complex is often denoted M• or (M•, d•).

We have encountered many chain complexes. For example, every short exact sequence is a chain complex.

Definition. Suppose M• is a chain complex of R-modules. The ith homology of M• is the R-module Hi(M•) :=
ker(di)/ im(di+1).

(322) If N• is a chain complex of R-modules, then N• is exact if and only if all of its homology modules are zero.

Eventually, we will define a category whose objects are chain complexes of R-modules. For now we look at a family of
complexes that arise fairly often.

(323) Suppose R is a ring and M is an R-module. The main idea explored in this prompt appeared when when we
discussed what it meant for a module to be presented.
(a) Show that there is a free R-module F0 and a map ϕ ∈ HomR(F0,M) so that

0 ker(ϕ) F0 M 0ι ϕ

is exact. Pop quiz: (T/F) If R is a PID, then ker(ϕ) is free.
(b) Show that there is a free R-module F1 and a map ρ ∈ HomR(F1, ker(ϕ)) so that

0 ker(ρ) F1 ker(ϕ) 0
ρ

is exact.
(c) Show that

F1 F0 M 0
d1 ϕ

is a complex of R-modules where d1 = ι ◦ ρ. Is the complex exact at F0 and/or M?
(d) Show that we may iterate this process to produce a chain complex F• of free R-modules

· · · Fj+1 Fj Fj−1 · · · · · · F1 F0 0
dj+2 dj+1 dj dj−1 d2 d1 d0

where

Hi(F•) '

{
0 i 6= 0

M i = 0

Definition. Suppose R is a ring and N is an R-module. A (left) resolution of N is an exact sequence

· · · Qn Qn−1 · · · · · · Q1 Q0 N 0

where each Qm is an R-module. A resolution is said to be finite provided that only finitely many of the modules Qm are
nonzero.

There are also right resolutions (where arrows originate at the zero module rather than terminate there), but the distinction
between left and right is usually clear from context so that we just call both species resolutions.

We often abuse language and say that the chain complex Q• given by

· · · Qn Qn−1 · · · · · · Q1 Q0 0
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is a resolution ofN . The only change is at the tail: the sequence Q0 N 0 has been changed to Q0 0.

Note that this is still a complex, sometimes called a deleted complex, it just is no longer exact. If fact, we have1

Hi(Q•) '

{
0 i 6= 0

N i = 0.

Various adjectives can be added to the word resolution. E.g., a free resolution Q• is a resolution for which each Qm is free.
(324) Suppose R is a ring. Show that every R-module has a free resolution.
(325) Suppose R is a PID and M is an R-module. Show that there is a free resolution of M of length at most one. Can

there be a free resolution of M of length two? length three? infinite length? [Hint: See Homework 121.]

For the remainder of this worksheet, we will assume that R is a commutative ring. Let M and N be R-modules. Suppose
that F• is a free resolution of M .

(326) Show that the sequence F• ⊗R N

· · · Fi+1 ⊗R N Fi ⊗R N Fi−1 ⊗R N · · ·di+2⊗RIdN di+1⊗RIdN di⊗RIdN di−1⊗RIdN

is a chain complex of R-modules.
(327) What is the zeroth homology of the complex in Prompt 326? [When people ask questions like this, they are

assuming that the tail of the complex under consideration is

· · · F1 ⊗R N F0 ⊗R N 0.]
d2⊗RIdN d1⊗RIdN d0⊗RIdN

(328) Let’s look at Z/nZ for n > 1.
(a) Show that

0 Z Z Z/nZ 0
µn

is a free resolution of Z/nZ where µn(j) = nj.
(b) Compute the homology modules for the complex that arise from tensoring with Z/mZ for m > 1. That is,

compute the homology modules for the complex

0 Z⊗Z Z/mZ Z⊗Z Z/mZ 0
µn⊗ZIdZ/mZ

(c) Compute the homology modules for the complex that arises from tensoring with Q/Z.
(d) Compute the homology modules for the complex that arises from tensoring with Q.

(329) For each Z-module A ∈ {Z/mZ,Q/Z,Q} that you considered in Prompt 328 there is a connection between the
homology modules you calculated and the torsion subgroup nA = {a ∈ A |na = 0} of A. What is it?

Something to Think About
If you have never dealt with cohomology or homology before, then this worksheet probably feels very artificial.2 You may
be asking questions like: Why introduce an auxiliary sequence of modules? Can we assume that all free resolutions are
finite? Why do our resolutions have decreasing indices?

The latter question is a matter of convention and, like choosing a basis, is really a matter of using what is convenient for
the problem at hand. When one uses increasing indices, one has cohomology rather than homology, and it all works more
or less the same.

The first question is easier to answer if you’ve seen enough mathematics – homology and cohomology are useful tools
for making many otherwise seemingly intractable problems approachable. For example, in this class we have asked (but
not answered): when is IJ = I ∩ J for ideals I and J in a commutative ring R? (Co)homology will provide an answer.

A bigger issue to think about is this: Suppose R is a ring and M is an R-module. As we have seen, there is not a unique
free resolution Q• of M . How will the homology modules Hi(Q• ⊗R N) reflect this lack of uniqueness?

1Some people define a resolution of N by saying that it is a chain complex whose homology is concentrated in degree zero and isomorphic to
N ; this leaves a bit of ambiguity that we later do not want – see [A09, pp. 592– ].

2“Homology/cohomology is just like anything else in mathematics. At first it may seem strange, but once you understand it, it becomes familiar.”
–J.S. Milne
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Worksheet for 21 Nov 2018
Homological algebra: the long exact sequence. (c)2018 UM Math Dept

licensed under a Creative Commons
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Vocabulary: homomorphism of complexes, short exact sequence of complexes, homotopic
Let R be a ring.

Definition. Suppose M• and N• are chain complexes of R-modules. A homomorphism of complexes α : M• → N• is a
list of homomorphisms (αj ∈ HomR(Mj , Nj)) for which the following diagram commutes.

· · · Mj+1 Mj Mj−1 · · ·

· · · Nj+1 Nj Nj−1 · · ·

dMj+2 dMj+1

αj+1

dMj

αj

dMj−1

αj−1

dNj+2 dNj+1 dNj dNj−1

(330) Suppose M• and N• are chain complexes of R-modules, and α : M• → N• is a chain complex homomorphism.
Show that α naturally induces an R-module homomorphism Hj(α) ∈ HomR(Hj(M•),Hj(N•)). The diagram
below may be useful.

Mj+1 Mj Mj−1

Nj+1 Nj Nj−1

dMj+1

αj+1

dMj

αj αj−1

dNj+1 dNj

Recall that Hj(M•) = ker(dMj )/ im(dMj+1) and Hj(N•) = ker(dNj )/ im(dNj+1).
One of the more amazing and useful facts of life is that a short exact sequence of chain complexes produces a long exact
sequence in homology.1

Definition. Suppose L•, M•, and N• are chain complexes of R-modules. A short exact sequence of complexes

0 L• M• N• 0α β

is a sequence of homomorphisms of chain complexes such that

0 Lj Mj Nj 0
αj βj

is a short exact sequence of R-modules for every j.

(331) (long exact sequence in homology) Suppose 0 L• M• N• 0α β
is a short-exact se-

quence of chain complexes. We are going to produce a long exact sequence in homology:

· · ·

Hj+1(L•) Hj+1(M•) Hj+1(N•)

Hj(L•) Hj(M•) Hj(N•)

Hj−1(L•) Hj−1(M•) Hj−1(N•)

· · ·

δj+1

δj

δj−1

δj−2

There are many things to verify, and common wisdom says that such verifications are best done on one’s own. I’m
not so sure that common wisdom is correct on this one; so we will check a few things. A portion of a very large

1There are all kinds of (co)homologies in life. A short exact usually produces some sort of long sequence, but it may not be exact. So, be careful.
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commutative diagram has been created to help us. (Notice that arrows that were once horizontal are now vertical
and vice-versa. This is done on purpose.)

0 Lj+2 Mj+2 Nj+2 0

0 Lj+1 Mj+1 Nj+1 0

0 Lj Mj Nj 0

0 Lj−1 Mj−1 Nj−1 0

dLj+3 dMj+3 dNj+3

dLj+2

αj+2

dMj+2

βj+2

dNj+2

dLj+1

αj+1

dMj+1

βj+1

dNj+1

dLj

αj

dMj

βj

dNj

dLj−1

αj−1

dMj−1

βj−1

dNj−1

(a) Are the rows of the above diagram exact? Are the columns exact?
(b) (i) Show that there is a map δ : ker dNj+1 → Lj/ im(dLj+1). [Be sure to check that the map you produce is

well-defined.]
(ii) Suppose n ∈ ker(dNj+1). Show that dMj (αj(δ(n))) = 0. Conclude that δ(n) ∈ ker dLj . Hence, we may

regard δ as a map from ker dNj+1 to Hj(L•).
(iii) Why does ker dNj+1 contain im(dNj+2)? If n ∈ im(dNj+2), show there is an m′ ∈ Mj+2 so that

βj+1(dMj+2(m′)) = n. Conclude that δ(n) is zero.
(iv) Conclude that there is a map δj : Hj+1(N•)→ Hj(L•). Is it an R-module map?

(c) Thanks to Prompt 330, we now have a long sequence of R-modules:

· · · Hj+2(N•) Hj+1(L•) Hj+1(M•) Hj+1(N•) Hj(L•) Hj(M•) · · ·
δj+1 δj

Show it is exact. [Hint: Leave the bulk of the work for home.]
(332) Suppose (A•, d

A
• ) and (B•, d

B
• ) are two complexes and f, g : A• → B• are two chain complex homomorphisms.

From Prompt 330 we know that f and g induce maps H(f),H(g) : H(A•) → H(B•). It is natural to ask: when
might it be the case that Hn(f) = Hn(g)? Here we develop one (sufficient, but not necessary) criterion that is
useful in practice.
(a) The chain complex homomorphisms f and g are said to be homotopic provided that for all n ∈ Z there exists

hn ∈ HomR(An, Bn+1) such that

fn − gn = dBn+1hn + hn−1d
A
n .

Use the diagram below to trace through what this definition means.

· · · An+1 An An−1 · · ·

· · · Bn+1 Bn Bn−1 · · ·

dAn+2 dAn+1 dAn dAn−1

dBn+2 dBn+1 dBn dBn−1

(b) We wish to show that H(f•) = H(g•). Suppose ā ∈ Hn(A) = ker(dAn )/ im(dAn+1). Why is it enough to show
that if a ∈ ker(dAn ) represents ā, then fn(a)− gn(a) ∈ im(dBn+1) ?

(c) Show that if f• and g• are homotopic, then H(f•) = H(g•).
(d) Is homotopy an equivalence relation on chain complex homomorphisms?

Something to Think About
Suppose R is a commutative ring and M is an R-module. Tensoring with M is a right exact functor. Homology will help
us understand/measure the failure of the left exactness of this functor. How would you proceed?
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Suppose R is a ring and X is an R-module. In Prompt 323 we showed that X admits a (deleted1) projective2 resolution

· · · Qn Qn−1 · · · · · · Q1 Q0 0.

Do (deleted) injective resolutions exist? Recall:

Definition. An R-module I is said to be injective provided that for every exact sequence 0 L M of
R-modules and for every g ∈ HomR(L, I) there exists g̃ ∈ HomR(M, I) so that the following diagram commutes

0 L M

I

g
g̃

Thanks to Homework 207 we know3 that for each R-module Y there is an injective R-module I with Y ⊂ I .
(333) Suppose M is an R-module.

(a) Show that M admits a (right) injective resolution4

0 M I0 I1 · · · · · · In−1 In · · ·
[Hint: Imitate Prompt 323, but reverse the arrows and look at cokernels rather than kernels.]

(b) What is the cohomology of the deleted resolution 0 I0 I1 I2 · · ·
Suppose M is an R-module and P•, P ′• are two projective resolutions of M . Prompt 334 establishes that any two chain
complex homomorphisms from P• to P ′• are homotopic, and Prompt 335 establishes a similar result for injective resolutions
of M .

(334) Suppose M and N are R modules. Let (P•, d•) and (P ′•, d
′
•) be (left) projective resolutions of M and N .

(a) Suppose ϕ ∈ HomR(M,N). Show that there is a homomorphism of complexes f : P• → P ′• with f−1 = ϕ.
That is, show that for all n ∈ Z≥0 there exists fn ∈ HomR(Pn, P

′
n) such that the following diagram

· · · P2 P1 P0 M 0

· · · P ′2 P ′1 P ′0 N 0

d3 d2

f2

d1

f1

d0

f0 ϕ

d′3 d′2 d′1 d′0

commutes. [Hint: for the inductive step look at im(fn ◦ dn+1) ⊂ ker d′n.]
(b) Suppose there is a second homomorphism of complexes f ′ : P• → P ′• with f ′−1 = ϕ. Show that f and f ′

are homotopic. [Hint: Recall that you want to construct maps hn ∈ HomR(Pn, P
′
n+1) for which fn − f ′n =

d′n+1hn + hn−1dn. Show fn − f ′n − hn−1dn : Pn → P ′n has image in ker(d′n). Define hn to be the map that
extends, via projectivity, fn − f ′n − hn−1dn : Pn → P ′n/ ker(d′n)→ 0.]

(335) Suppose M and N are R modules. Let (I•, d•I) and (J•, d•J) be (right) injective resolutions of M and N .
(a) Suppose ϕ ∈ HomR(M,N). Show that there is a homomorphism of complexes g : I• → J• with g−1 = ϕ.

That is, show that for all n ∈ Z≥0 there exists gn ∈ HomR(In, Jn) such that the following diagram

0 M I0 I1 I2 · · ·

0 N J0 J1 J2 · · ·

d−1
I

ϕ

d0I

g0

d1I

g1

d2I

g2

d−1
J d0J d1J d2J

1that is, Hi(Q•) = 0 if i 6= 0 and H0(Q•) ' X .
2Actually, we showed that M admits a free resolution, but every free R-module is projective thanks to Homework 172.
3We only considered commutative rings, for non-commutative rings, see [Lan02, XX §4]
4Really a coresolution – but nobody uses this terminology.
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commutes. [Hint: For the inductive step look at the cokernels In/ im(dn−1
I ).]

(b) Suppose ` is a second homomorphism of complexes ` : I• → J• with `−1 = ϕ. Show that g and ` are
homotopic. [Hint: Recall that you want to construct maps hn ∈ HomR(In, Jn−1) so that gn−`n = dn−1

J hn+

hn+1dnI . Show gn − `n − dn−1
J hn : In → Jn vanishes on im(dn−1

I ) and then define hn+1 to be the map that
extends, via injectivity, fn − gn − dn−1

J hn : In/ im(dn−1
I )→ Jn.]

We are now going to apply functors to our (co)resolutions and take (co)homology. Which type of resolution: projective or
injective? For covariant functors, one has:

• right exact↔ (left) projective resolution↔ homology
• left exact↔ (right) injective resolution↔ cohomology

(336) Make a similar chart for contravariant functors. What’s the “rule”?
For our purposes general functors are, well, a bit too general. We are going to restrict our attention to additive functors
from the category of R-modules to the category of Z-modules. (Reality check: what’s the category of Z-modules?)

Definition. An additive functor or covariant additive functor from the category of R-modules to the category of Z-
modules is a mapping that assigns to every R-module M an abelian group F (M) and assigns to every morphism
f ∈ HomR(M,N) between R-modules M and N a morphism F (f) ∈ HomZ(F (M), F (N)) such that the follow-
ing properties hold:

• F (IdM ) = IdF (M) for all R-modules M .
• F (g ◦ f) = F (g) ◦ F (f) for all f ∈ HomR(M,N) and g ∈ HomR(N,P ) and all R-modules M,N,P , and
• F (f1 + f2) = F (f1) + F (f2) for all fi ∈ HomR(M,M ′) and all R-modules M,M ′.

The notion of contravariant additive functor is defined in a similar fashion.

(337) Suppose M is an R-module.
(a) Show that Y 7→ HomZ(Y,M) is a left-exact contravariant additive functor from the category of R-modules

to the category of Z-modules. (Why Z-modules and not R-modules?)
(b) Show that if R is commutative, then X 7→ X ⊗R M is a right-exact additive functor from the category of

R-modules to the category of Z-modules. (Why Z-modules and not R-modules?)
(338) Suppose F is a right exact additive functor from the category ofR-modules to the category of Z-modules. Suppose

M is an R-module and let (P•, d•) be a (left) projective resolution of M .

(a) Show that · · · F (Pn) F (Pn−1) · · · · · · F (P1) F (P0) 0
F (dn) F (dn−1) F (d2) F (d1)

is a com-
plex of Z-modules.

(b) Use Prompt 334 and Prompt 332 to conclude that LnF (M) := Hn(F (P•)) is well-defined (up to unique
isomorphism) and independent of the choice of projective resolution. We call M 7→ LnF (M) the nth left-
derived functor of F . [Hint: Take ϕ = IdM and use the additivity of F .]

(c) What is L0F (M)?
(339) Suppose F is a left exact additive functor from the category of R-modules to the category of Z-modules. Suppose

M is an R-module and let (I•, d•) be a (right) injective resolution of M .

(a) Show that 0 F (I0) F (I1) · · · · · · F (In−1) F (In) · · ·
F (d0I) F (d1I) F (dn−2

I ) F (dn−1
I ) F (dnI )

is a com-
plex of Z-modules.

(b) Use Prompt 335 and Prompt 332 to conclude that RnF (M) := Hn(F (I•)) is well-defined (up to unique
isomorphism) and independent of the choice of injective resolution. We call M 7→ RnF (M) the nth right-
derived functor of F . [Hint: Take ϕ = IdM and use the additivity of F .]

(c) What is R0F (M)?

Something to Think About
We call RnF a functor. Is it? Given an R-module M , we certainly get a Z-module RnF (M). However, if N is another
R-module and α ∈ HomR(M,N), is there a corresponding morphism RnF (α) ∈ HomZ(F (M), F (N))? What about
LnF ; is it a functor?
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Suppose R is a ring.

(340) Suppose F is an additive right exact functor from the category of R-modules to the category of Z-modules.
(a) Recall the construction of the nth left-derived functor of F .
(b) Show that the nth left-derived functor of F is a functor from the category of R-modules to the category of

Z-modules.
(341) Suppose F is an additive left exact functor from the category of R-modules to the category of Z-modules.

(a) Recall the construction of the nth right-derived functor of F .
(b) Show that the nth right-derived functor of F is a functor from the category of R-modules to the category of

Z-modules.

The derived functors associated to “tensoring” and “taking homomorphisms” provide a rich source of examples for the
homological machinery we have developed/will develop.

Definition. Suppose R is a commutative ring and M is an R-module. The nth left-derived functor of tensoring by M
(i.e., the right-exact functor Y 7→M ⊗R Y ) is denoted by Torn(M, ·) or TorRn (M, ·).

(342) Suppose that S is a commutative ring and N,M are S-modules. Compute TorS0 (M,N).
(343) Suppose m,n ∈ Z>1. Compute TorZj (A,Z/nZ) for A ∈ {Z/mZ,Q/Z,Q} and j ∈ Z. [Hint: See Prompt 328.]
(344) Consider the Z/(18)-module Z/(6) and let ϕ ∈ HomZ/(18)(Z/(18),Z/(6)) be the natural map ϕ(k + (18)) =

k + (6).

(a) Show that · · · Z/(18) Z/(18) Z/(18) Z/(18) Z/(6) 0
µ3 µ6 µ3 µ6 ϕ

is a pro-
jective resolution of Z/(6). Here µj(k) = jk.

(b) Suppose M is a Z/(18)-module. Show

TorZ/(18)
n (M,Z/(6)) '


M/6M n = 0

6M/3M n ∈ Z≥1 and odd

3M/6M n ∈ Z≥1 and even.

Here kM = {m ∈M | km = 0}.

Definition. SupposeR is a ring andM is anR-module. The nth right-derived functor of the (covariant) left exact functor
Z 7→ HomR(M,Z) is denoted by Extn(M, ·) or ExtnR(M, ·).

Suppose N is an R module. One could just as easily have considered the nth right-derived functor of the contravariant left
exact functor Y 7→ HomR(Y,N) and called the resulting homology groups extn(·, N). It turns out (see [Jac89, p. 353]
or [A09, p. 677]) that extn(M,N) ' Extn(M,N) for all R-modules M and N , so which approach you use is a matter of
personal preference and convenience. Everyone uses the notation Ext for either.

(345) Suppose that S is a ring and N,M are S-modules. Compute Ext0
S(M,N).

(346) We need some injectives so that we can compute. Suppose m ∈ Z>1 and I ≤ Z/(m) is an ideal.
(a) Show that there exists k ∈ Z with k | m such that I = kZ/(m). Conclude that if d = m

k , then I =d Z/(m) =
{x ∈ Z/(m) | dx = 0}.

(b) Suppose f ∈ HomZ/(m)(I,Z/(m)). Show that there exists ` ∈ Z/(m) for which f(i) = `i for all i ∈ I .
Conclude that there exists f̃ ∈ HomZ/(m)(Z/(m),Z/(m)) for which resI f̃ = f .

(c) Show that Z/(m) is an injective Z/(m)-module. [Hint: Imitate the proof of Homework 161.]
(d) (Bonus.) More generally, if R is a PID and a ∈ R, show R/(a) is an injective R/(a)-module.

(347) Consider the Z/(18)-module Z/(6) and let ψ ∈ HomZ/(18)(Z/(6),Z/(18)) be the natural map ψ(k + (6)) =
3k + (18).

(a) Show that 0 Z/(6) Z/(18) Z/(18) Z/(18) Z/(18) · · ·ψ µ6 µ3 µ6 µ3 is an in-
jective resolution of Z/(6). Here µj(k) = jk.
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(b) Suppose M is a Z/(18)-module. Show

ExtnZ/(18)(Z/(6),M) '


6M n = 0

3M/6M n ∈ Z≥1 and odd

6M/3M n ∈ Z≥1 and even.

Here kM = {m ∈M | km = 0}. [Caution: Do we use a projective or an injective resolution?]
(c) Suppose M is a Z/(18)-module. Compute ExtnZ/(18)(M,Z/(6)). [Caution: Do we use a projective or an

injective resolution? Also, your answer may not be pretty.]
Before continuing on, we need to examine how derived functors interact with exact sequences.

(348) Review Prompt 331.
(349) Suppose that R is a ring and 0 L M N 0 is a short exact sequence of R-modules.

Let · · · P1 P0 L 0 and · · · Q1 Q0 N 0 be projec-
tive resolutions of L and N , respectively.
(a) Show that for each n we have Pn ⊕Qn is a projective R-module.
(b) Show that · · · P1 ⊕Q1 P0 ⊕Q0 M 0 is a projective resolution of M such

that the following diagram has exact columns, exact rows, and commutes.

0 P2 P2 ⊕Q2 Q2 0

0 P1 P1 ⊕Q1 Q1 0

0 P0 P0 ⊕Q0 Q0 0

0 L M N 0

0 0 0

(c) Conclude that if F is an additive right-exact functor from the category of R-modules to the category of Z-
modules, then we have a long exact sequence

· · · Lj+2F (N) Lj+1F (L) Lj+1F (M) Lj+1F (N) LjF (L) LjF (M) · · ·
δj+1 δj

that ends with

· · · L1F (N) F (L) F (M) F (N) 0
δ0

In Homework 215 you will establish the same result for right-derived functors arising from additive left exact functors.
Something to Think About

As you noticed in Prompt 329, the functor Tor has something to do with measuring torsion. In Homework 217 you will ce-
ment the relationship by showing that for R a commutative ring and r ∈ R a non-zero-divisor we have TorR1 (N,R/(r)) '
rN for all R-modules N . Here rN is the R-module of r-torsion elements of N , that is, rN = {n ∈ N | rn = 0}. What
might Ext1(M,N) measure?
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(350) Suppose R is a ring. Show that the following conditions on an R-module M are equivalent.
• M is injective.
• Ext1

R(N,M) = 0 for all R-modules N .
• ExtnR(N,M) = 0 for all n > 0 and all R-modules N .

[Hint: Use Homework 215.]

In Homework 214 you will show that an R-module N is projective R-module iff Ext1
R(N,M) = 0 for all R-modules M

iff ExtnR(N,M) = 0 for all n and all R-modules M . Since we know that (a) Y 7→ HomR(Y,M) is exact if and only if M
is injective and (b) X 7→ HomR(M,X) is exact if and only if M is projective, the equivalencies established in Prompt 350
and Homework 214 are not unexpected.
On the other hand, we have not yet given a name to those modules M for which Z 7→ Z ⊗RM is exact.

(351) Suppose R is a commutative ring. Show that the following conditions on an R-module M are equivalent.
• Tensoring by M is exact.
• TorR1 (M,N) = 0 for all R-modules N .
• TorRn (M,N) = 0 for all n > 0 and all R-modules N .

[Hint: Use Prompt 331.]

Definition. Suppose R is a commutative ring. An R-module M that satisfies any of the equivalent conditions of
Prompt 351 is said to be flat.

What sorts of modules are flat?
(352) Suppose R is commutative. Show that R is a flat R-module.
(353) Suppose R is a commutative ring and F is a free R-module. Show that F is a flat R-module. What does this say

about modules over a field k?

Just as every free module is projective, in Homework 212 you will show that ever projective module is flat. Is every flat
module projective? Is every injective module flat? Is every flat module injective?

(354) Show that Q is a flat but not projective Z-module. [Hint: Use Homework 209.]
(355) Show that Q/Z is an injective, but not flat, Z-module. [Hint: 0→ Z→ Q.]
(356) Is every flat module injective?

Suppose R is a commutative ring and M,N are R-modules. We have shown that M ⊗R N ' N ⊗RM . It turns out that
the same is true (see [A09, p. 676]) for TorRn :

TorRn (M,N) ' TorRn (N,M).

Suppose R is any ring and M and N are R-modules. We now show that Ext1(M,N) measures the extensions1 of M
by N . Let E(M,N) denote the set of extensions of M by N . Given Ẽi = 0 N Ei M 0 ∈
E(M,N) for i ∈ {1, 2} we say that Ẽ1 is equivalent to Ẽ2 provided that there is a commutative diagram

0 N E1 M 0

0 N E2 M 0

IdN IdM

[What sort of map must the middle vertical arrow be?] When this happens, we write Ẽ1 ∼ Ẽ2.

(357) Show that ∼ is an equivalence relation on E(M,N).

Fix Ẽ = 0 N E M 0α β ∈ E(M,N). Suppose P is a projective R-module and π ∈
HomR(P,M) is surjective.

1Recall that P is an extension of M by N provided that 0→ N → P →M → 0 is exact.
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(358) Why does such a P exist?

Let K = ker(π), and let ι ∈ HomR(K,P ) denote the natural inclusion. Since P is projective, there exists u ∈
HomR(P,E) for which β ◦ u = π. Note that u is not, in general, unique.

(359) Given the choices above, show that there is a unique ν ∈ HomR(K,N) such that

0 K P M 0

0 N E M 0

ι

ν

π

u IdM

α β

commutes.
(360) Show that the following sequence is exact.

0 HomR(M,N) HomR(P,N) HomR(K,N) Ext1
R(M,N) 0π∗ ι∗

(361) Note that ν ∈ HomR(K,N), so it defines an element ν̄ of Ext1
R(M,N) ' coker ι∗.

(a) Show that the image of ν in Ext1
R(M,N) does not depend on the choice of u, and so we have a map

E(M,N)→ Ext1
R(M,N) given by Ẽ 7→ ν̄ = ν̄(Ẽ).

(b) Show that if E = N ⊕M , then ν̄ = 0. This is why N ⊕M is called the trivial extension of M by N .
(c) Show that the map Ẽ 7→ ν̄ = ν̄(Ẽ) descends to a map from E(M,N)/∼ to Ext1

R(M,N).
(362) (Bonus.) Construct an inverse map. That is, construct a map e : Ext1

R(M,N) → E(M,N) such that (a) for
κ ∈ Ext1

R(M,N) we have κ = ν̄(e(κ)) and (b) for Ẽ ∈ E(M,N) we have e(ν̄(Ẽ)) ∼ Ẽ. [See Homework 219.]
(363) Conclude that Ext1

R(M,N) measures the extensions of M by N up to natural equivalence.
(364) Consider the Z/(18)-modules Z/(6) and Z/(3) ⊕ Z/(9). Up to equivalence, how many extensions of Z/(6) by

Z/(3)⊕ Z/(9) are there?
Something to Think About

Since Ext1
R(M,N) measures the number of extensions of M by N , what might Ext2(M,N) measure? It turns out

that Ext2(M,N) and higher Exts measure something very similar.1 For example, Ext2
R(M,N) measures the two-step

extensions
0 N E1 E2 M 0

of M by N up to a natural equivalence. Can you formulate when two two-step extensions might be equivalent? Can you
think of a situation where understanding the two-step extensions might be important?

1See Yoneda, Nobuo, On Ext and exact sequences, J. Fac. Sci. Univ. Tokyo Sect. I, 8, 1960, pp. 507–576.
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Suppose R is a commutative ring. Because they are explicit, fairly easy to compute with, and measure important invari-
ants, Koszul1 complexes are useful in commutative algebra and algebraic geometry. The goal here is to provide a gentle
introduction to their definition.

(365) Suppose k is a field.
(a) Consider

0 k[x] k[x] k 0
µx π

where π : k[x]→ k ' k[x]/(x) is the natural projection. Prove that this is an exact sequence of k-modules.
(b) Consider

0 k[x, y] k[x, y]⊕ k[x, y] k[x, y] k 0
d2 d1 π

where π : k[x, y]→ k ' k[x, y]/(x, y) is the natural projection, d1(f, g) = fx+gy, and d2(h) = (hx,−hy).
Prove that this is an exact sequence of k-modules.

(c) Consider

0 k[x, y, z] k[x, y, z]⊕3 k[x, y, z]⊕3 k[x, y, z] k 0
d3 d2 d1 π

where π : k[x, y, z] → k ' k[x, y, z]/(x, y, z) is the natural projection, d1(f, g, h) = fx + gy + hz,
d2(f ′, g′, h′) = (−zg′ + yh′,−zf ′ + xh′,−yf ′ + xg′), and d3(f ′′) = (xf ′′, yf ′′, zf ′′). Prove that this
is an exact sequence of k-modules.

This is a very explicit way to create a free resolution of k. Was the fact that k is a field important? How to generalize
beyond three variables? How to generalize this construction from k[x] to R? [Yes, I mean R, not R[x].] You should give
this latter question some thought before proceeding – the answer below is an algebra meme.2

(366) Suppose a ∈ R. Consider

0 R R R/(a) 0
µa π

where π is the canonical projection and µa(r) = ar.
(a) Prove that this is a complex.
(b) Prove that if a is a non-zero-divisor in R, then the sequence is exact.

(367) Suppose a, b ∈ R. Consider

0 R R⊕R R R/(a, b) 0
d2 d1 π

where π is the canonical projection, d1(r, s) = ra+ sb, and d2(t) = (bt,−at).
(a) Prove that this is a complex.
(b) Prove that if a is a non-zero-divisor inR and b is a non-zero-divsor modulo (a) (i.e., b+(a) is a non-zero-divsor

in R/(a)), then the sequence is exact.
(368) Suppose a, b, c ∈ R. Consider

0 R R⊕R⊕R R⊕R⊕R R R/(a, b, c) 0
d3 d2 d1 π

where π is the canonical projection, d1(r, s, t) = ra+ sb+ tc, d2(u, v, w) = (−cv + bw,−cu+ aw,−bu+ av),
and d3(z) = (az,−bz, cz).
(a) Prove that this is a complex. [I found it useful to write down matrices for the maps.]
(b) Prove that if a is a non-zero-divisor inR, b is a non-zero-divsor modulo (a), and c is a non-zero-divisor module

(a, b) (i.e., b+ (a, b) is a non-zero-divsor in R/(a, b), then the sequence is exact.

1Named for Jean-Louis Koszul (1921-2018).
2meme noun. an element of a culture or system of behavior that may be considered to be passed from one individual to another by nongenetic

means, especially imitation. (defintion provided by google)
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How to generalize this to ideals with four or more generators? You should give this some thought before proceeding.
(369) Suppose a1, a2, . . . , an ∈ R. Let I = (a1, a2, . . . , an). Consider

(*) 0 R '
∧n(Rn)

∧n−1(Rn) · · ·
∧0(Rn) = R R/I 0

dn dn−1 d1 π

where π is the natural projection and dr ∈ HomR(
∧r(Rn),

∧r−1(Rn)) is defined (on basis elements) by

dr(ei1 ∧ ei2 ∧ · · · ∧ eir) =
r∑
j=1

(−1)j+1 aij ei1 ∧ ei2 ∧ · · · ∧ êij ∧ · · · ∧ eir

where the hatted element is deleted.
(a) Show that Prompts 366, 367, and 368 correspond to n ∈ {1, 2, 3} in (*).
(b) Show that (*) is a complex.
(c) Conjecture conditions on a1, a2, . . . , an that will ensure that (*) is exact.
(d) (Bonus.) Verify your conjecture.

Definition. Suppose R is a commutative ring and ϕ ∈ HomR(R⊕n, R). Define dr ∈ HomR(
∧r(R⊕n),

∧r−1(R⊕n)) on
basis elements by

dr(ei1 ∧ ei2 ∧ · · · ∧ eir) =
r∑
j=1

(−1)j+1 ϕ(eij ) ei1 ∧ ei2 ∧ · · · ∧ êij ∧ · · · ∧ eir

where the hatted element is deleted. The resulting complex

0
∧n(R⊕n)

∧n−1(R⊕n) · · ·
∧0(R⊕n) = R R/ im(ϕ) 0

dn dn−1 d1 π

is the Koszul complex associated to ϕ. The map π is the natural projection.

(370) Show that the complex considered in Prompt 369 is a Koszul complex.
Something to Think About

We could have more easily defined a map dr ∈ HomR(
∧r(R⊕n),

∧r+1(R⊕n)) by fixing v ∈ R⊕n and setting

dr(x) = v ∧ x.
for r > 0 and d0(1) = v. Can you, in under five seconds, show that

0
∧0(R⊕n) = R

∧1(R⊕n) · · ·
∧n(R⊕n) 0d0 d1 dn−1

is a complex? Does the resulting complex (also called a Koszul complex) have any desirable properties? [Yes.]
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Vocabulary: group algebra of G, convolution, ring of Laurent polynomials, group action, R-action, (G,R)-modules, set
of fixed points, automorphism group of N , Hi(G, ·), augmentation map

Suppose G is a group with identity e and R is a commutative ring. We want to use the mathematics we’ve developed to
study the action of G on various spaces. To do this, we need to produce a ring.

Recall (see Prompt 115) that Fun′(G,R) denotes the free R-module that consists of functions f : G → R for which
f(g) = 0 for all but finitely many g ∈ G.

Definition. The group algebra of G over R, denoted R[G], is the R-module Fun′(G,R) equipped with the product

(f ∗ h)(u) =
∑
g∈G

f(g)h(g−1u).

The operation ∗ is called convolution.

Warning! For locally compact Hausdorff groups (places where one can integrate), there is a different definition of group
algebra. It specializes to the one above when the topology on G is the discrete topology.

(371) Show that R[G] is an algebra. Does this require R to be commutative?
(372) Does convolution on R[G] have an idenitity? What is it?
(373) Show that R[Z] ' R[x, x−1] as algebras. The algebra R[x, x−1] is called the ring of Laurent polynomials on R;

the natural product operation gives R[x, x−1] an algebra structure.
(374) Suppose m ∈ Z>1 and Cm = 〈c〉 is a cyclic group of order m. Show that R[Cm] ' R[x]/(xm − 1) as algebras.
(375) For a non-abelian group like S3 or GL43(C), there will not be any “polynomial-ish” way to realize R[G]. Why?

In the non-abelian case, it is often useful to think of elements of R[G] as sums of the form
∑
ag[g] with ag ∈ R zero for

all but finitely many g ∈ G.
Recall that if X is a set, then an action of G on X is a map G×X → X such that

• gh · x = g · (h · x) for all h, g ∈ G and x ∈ X .
• e · x = x for all x ∈ X .

Definition. An R-action of G on an R-module M is an action of G on M that also satisfies
• g · rm = r(g ·m) for all r ∈ R, g ∈ G, and m ∈M
• g · (m+m′) = g ·m+ g ·m′ for all g ∈ G and m,m′ ∈M

An R-module N equipped with an R-action is called a (G,R)-module; its set of fixed-points is NG = {n ∈ N | g · n =
n for all g ∈ G}.

Note that every R-module N is a (G,R)-module with respect to the trivial R-action of G on N .

(376) Suppose L is a (G,R)-module. Show that LG is a (G,R)-submodule of L.
(377) Show that R[G] is naturally a (G,R)-module. When G is finite, what is is R[G]G?
(378) Show that specifying a G-action on an R-module N is equivalent to specifying a group homomorphism ϕ : G →

AutR(N) = HomR(N,N)×. The group AutR(N) is called the automorphism group of N .
(379) Show that every (G,R)-module is naturally an R[G]-module and vice-versa.

When k is a field, the study of k[G]-modules is called representation theory.

(380) (Very Important Example) A great many counterexamples in this area of mathematics derive from the following
example. So, learn it and remember it.
(a) Let G = Z. We define actions of G on R and R⊕R by

• g · r = r for all r ∈ R and g ∈ G
• g · [x, y]T = [x+ gy, y]T for g ∈ G and [x, y]T ∈ R⊕2.

(i) Show that these are G-actions.
(ii) For g ∈ G, write down the matrix by which g acts with respect to the standard bases (e.g., for the trivial

action on R⊕n, the matrix representing the action of g ∈ G is Idn).
(iii) Compute the set of G fixed-points of R and R⊕2 with respect to these actions.
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(b) Show that the following sequence is an exact sequence of R[G]-modules.

0 R R⊕R R 0α β

where α(r) = [r, 0]T and β([x, y]T ) = y.
(c) Show that taking fixed-points is not exact – that is, show that

0 RG (R⊕R)G RG 0α β

is not exact.

Group cohomology provides a way to measure the failure of exactness when taking fixed-points. It is a powerful tool
in number theory (e.g., Galois cohomology) and algebra (e.g., classification of central simple algebras). Since the set of
fixed-points has nothing to do with the R-structure of our modules,

for the remainder of this worksheet our ring is Z.

(381) Show that M 7→ MG is a left-exact additive functor from the category of Z[G]-modules to the category of Z-
modules.

The nth right-dervied functor of M 7→ MG is denoted Hn(G, ·); it is a functor from Z[G]-modules to Z-modules. Since
projective modules are easier to find than injectives, we recognize that

(382) MG ' HomZ[G](Z,M) (where Z is being thought of as a G-module with trivial action)
and so Hn(G, ·) ' ExtnZ[G](Z, ·) ' extn(Z, ·).

(383) LetG = Cm, a cyclic group of order m ∈ Z>1. SupposeM is a Z[Cm]-module. Recall that Z[Cm] ' Z[x]/(xm−
1). [This smells like geometric sums . . . ]
(a) Show that the complex below is a projective resolution of Z.

· · · Z[Cm] Z[Cm] Z[Cm] Z[Cm] Z 0
µN µ(1−x) µN µ(1−x) ε

where N = 1+x+ · · ·+xm−1 and ε(
∑
cg[g]) =

∑
cg. [The map ε is called an augmentation map, so called

because it “augments the algebra Z[G].” ]
(b) Apply the functor M 7→ HomZ[Cm](·,M) to the appropriate deleted complex to arrive at the complex

0 M M M M · · ·
µ(1−x) µN µ(1−x) µN

Be sure to explain why we can use the “same” maps rather than, for example, µ∗(1−x).
(c) Show that

Hi(G,M) =


ker(µN : M →M)/µ(1−x)M if i > 0 is odd
MCm/µN (M) if i > 0 is even
MCm if i = 0

0 if i < 0

Something to Think About
If you did it correctly, then your work in Prompt 383 felt awkwardly specialized to the situation. This is a good time for a
very important lesson in mathematics/life: sometimes we do what we do because it works.

A second and related lesson is this: it is probably best to think of Exti, Tori, Hi, etc. as symbols that represent
important things that are often complicated. However, with some cleverness and work, we can understand what these
symbols represent when we need to. This is not a foreign idea to you. What is π?
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Vocabulary: bar resolution, standard resolution, one-cocycle, crossed-homomorphism, one-coboundary, principal crossed
homomorphsim
Suppose G is a group with identity e. There is a standard Z[G] resolution of Z that is useful when computing group
cohomology – the resolution goes by two names: the bar resolution or the standard resolution. We will provide an
introduction, details are left to the interested reader.

We know that given an exact sequence

0 A B C 0α β

of Z[G]-modules, we have a long exact sequence

0 AG BG CG H1(G,A) H1(G,B) · · ·α β ∂

(384) Why do we know that such a long exact sequence exists?
(385) Show: The failure of β : BG → CG to be surjective is measured by ker(H1(G,A)→ H1(G,B)).
(386) Suppose c ∈ CG.

(a) Show there exists b ∈ B such that β(b) = c.
(b) Show that for all g ∈ G there exists a unique ag ∈ A for which α(ag) = gb − b. Thus, we can define a

function fc,b : G→ A by fc,b(g) = ag.
(c) Show that for all x, y ∈ G we have axy = xay + ax; thus fc,b : G→ A satisfies fc,b(xy) = xfc,b(y) + fc,b(x)

for all x, y ∈ G. Such a function is called a one-cocycle or crossed-homomorphism1, and the group (under
addition) of such functions is denoted Z1(G,A).

(d) Suppose a ∈ A. Show that the function `a : G → A given by `a(g) = ga − a is also a one-cocycle, called
a one-coboundary or principal crossed homomorphsism. We let B1(G,A) denote the subgroup of Z1(G,A)
consisting of one-coboundaries.

(e) Note that for all a ∈ A we have fc,b + `a = fc,b+α(a). Use the fact that C ' B/ im(α) to conclude that the
equivalence class represented by fc,b in Z1(G,A)/B1(G,A) depends only on c. We denote this equivalency
class by fc.

(f) Show that if c = β(b′) for some b′ ∈ BG, then fc ∈ Z1(G,A)/B1(G,A) has trivial image inZ1(G,B)/B1(G,B).

Motivated by the above, we guess (correctly) that H1(G,A) ' Z1(G,A)/B1(G,A). This suggests that we should look to
calculate Hn(G,A) by choosing a resolution of Z that naturally involves functions on Gn = G×G×G× · · · ×G.

The idea is to look at a sequence like

(†) · · · Fun′(G3,Z) Fun′(G2,Z) Z[G] Z 0.
d3 d2 d1 ε

We define a Z[G]-module structure onPn = Fun′(G(n+1),Z) by setting g·[(g0, g1, g2, g3, . . . , gn)] = [(gg0, gg1, gg2, gg3, . . . , ggn)]
for g ∈ G and (g1, g2, . . . , gn) ∈ Gn.

(387) Verify that Pn is a free Z[G]-module.
The map ε occurring in the complex (†) is the augmentation map. On basis vectors, we have d1([(g0, g1)]) = [g0] − [g1],
d2([(g0, g1, g2)]) = [(g1, g2)]− [(g0, g2)] + [(g0, g1)], and

dn([(g0, g1, . . . , gn)]) =

n∑
j=0

(−1)j [(g0, g1, . . . , ĝj , . . . gn)].

(388) Verify that (†) is exact at P1, Z[G], and Z.
(389) (Bonus.) Show that † is a complex.
(390) (Bonus.) Show that † is exact. [Hint: form ≥ 1 define hm : Pm → Pm+1 on basis elements by h([(g0, g1, . . . , gm)] =

[(s, g0, g1, . . . , gm)]. Check that dm+1hm + hm−1dm = IdPm .]

1So called because if G acts trivially on A, then f is a true homomorphism.
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Suppose M is a Z[G]-module. Applying the functor M 7→ HomZ[G](·,M) to the appropriate deleted complex we arrive at
the complex

0 HomZ[G](Z[G],M) HomZ[G](Fun′(G2,Z),M) HomZ[G](Fun′(G3,Z),M) · · ·
d∗1 d∗2 d∗3

(391) Show that HomZ[G](Fun′(Gm+1,Z),M) can be identified with those elements f ∈ HomZ(Fun′(Gm+1,Z),M)
that satisfy

(*) f(gg0, gg1, . . . , ggm) = g · f(g0, g1, . . . , gm).

(392) Show that a function f ∈ HomZ(Fun′(Gm+1,Z),M) that satisfies (*) is completely determined by its values at
elements of Gm of the form (e, y1, y1y2, y1y2y3, . . . , y1y2y3 · · · ym).

If we define
ϕ(x1, x2, . . . , xm) = f(e, x1, x1x2, x1x2x3, . . . , x1x2x3 · · ·xm),

then δ∗ϕ(z1, z2, . . . , zm, zm+1) is

z1 · ϕ(z2, z3, . . . , zm+1) +
m∑
j=1

(−1)jϕ(z1, z2, . . . zj−1, zjzj+1, zj+2 . . . , zm+1) + (−1)m+1ϕ(z1, z2, . . . , zm)

Important: We are identifying HomZ[G](Fun′(Gm+1,Z),M) with functions of m-variables, so the δ∗ above corresponds
to the map d∗m+1 from HomZ[G](Fun′(Gm+1,Z),M) to HomZ[G](Fun′(Gm+2,Z),M).

(393) (Bonus) Prove that the formula for δ∗ is correct.
(394) Describe Hj(G,M) for j ∈ {0, 1, 2}. [Your answer will be in terms of cycles and coboundaries.]

Something to Think About
It is rare to see an H3(G,M) in the wild. In practice, it is enough to have a good understanding of how to calcuate

Hj(G,M) for j ∈ {0, 1, 2}.
That said, it is pretty common to be in a situation whereG is acting on something more exotic than an abelian group. For

example, the group Z/(2) acts on C via conjugation, hence it acts on natural C-objects like SL2(C) that are not abelian.

Here is a typical example from the wild. Let X =

[
1 1
0 1

]
and let O(C) =SL2(C) X; the SL2(C)-orbit of X under

conjugation. The centralizer, let us call it U(C), of X in SL2(C) consists of all matrices of the form
[
±1 x
0 ±1

]
with

x ∈ C. We have an exact sequence of “complex objects”

0 U(C) SL2(C) O(C) 0.

When we take Z/(2) fixed points, we get

0 U(R) SL2(R) O(R)

and this is not right exact because, for example, O(R) contains the element
[
1 −1
0 1

]
, which is not SL2(R)-conjugate to

X . Any thoughts on how to proceed?
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Math 593. Homework 0b (Due September 10, a Monday!)
(This is much longer than a usual Monday homework.)

(1) (*) The Kuratowski-Zorn lemma will be used freely in this class. There is no assumption that you have seen it or its
many equivalent formulations before. Please familiarize yourself with it (see, for example, [DF04, pp. 907–909]).

(2) Fix a prime p. Consider the subset A ⊂ Q consisting of those q ∈ Q that can be expressed as a/b with a ∈ Z and
b ∈ Z \ pZ. Is A a ring (with respect to the usual operations on Q)? [Z \ pZ is the complement of pZ in Z.]

(3) Basics of vector spaces.
(a) If F is a field, then Fn and F [x] are examples of F -vector spaces. Give six examples of vector spaces that are

more interesting than the two already given.
(b) Suppose F is a field and V an F -vector space. Let 0F and 0V denote the additive identities of F and V ,

respectively. Verify the following statements.
(i) For all a ∈ F we have a0V = 0V .

(ii) For all v ∈ V we have 0F v = 0V .
(iii) For all v ∈ V we have (−1)v = −v.
(iv) If a ∈ F and v ∈ V such that av = 0V , then a = 0F or v = 0V .

(c) Recall the definitions of words like linearly dependent, span, linear combination, linearly independent, basis,
linear transformation, subspace, etc.

(d) What is span(∅)? What is dim({0})? Is the empty set linearly independent? What is a basis for {0}? If a list
of vectors contains 0, can it be linearly independent? How many two-dimensional subspaces are in R3? How
many two-dimensional subspaces are in F 3 if F is a finite field with q elements?

(4) Some problems about linear independence (and a little bit of span).
(a) Show that the list T = (sin(nt) |n ∈ N) is a linearly independent list of C∞((−π, π)).
(b) Suppose F is a field and V is an F -vector space. An indexed list S ⊂ V is linearly independent if and only if

for all finite sublists A ⊂ S we have that A is linearly independent.
(c) Suppose F is a field and V is an F -vector space. Suppose S ⊂ V is a linearly independent set and w ∈ V \S.

Exactly one of the following is true: Either S ∪ {w} is linearly independent or w ∈ span(S).
(d) Suppose F is a field and V is an F -vector space. Let Sn = (v1, v2, v3, . . . , vn) be a linearly dependent

list of vectors in V . Show there is a smallest j ≤ n such that vj is a linear combination of elements of
Sj−1 = (v1, v2, . . . , vj−1).

(5) Some problems about span. Suppose F is a field and V is an F -vector space.
(a) If X ⊂ V , then span(X) is a subspace of V .
(b) Show that if X ⊂ Y ⊂ V , then span(X) is a subspace of span(Y ).
(c) If W is a subspace of V , then span(W ) = W .
(d) If X ⊂ V , then span(span(X)) = span(X).
(e) Let X,Y, Z be subsets of V . If Y ⊂ span(X) and Z ⊂ span(Y ), then Z ⊂ span(X).

(6) Suppose F is a field and V is an F -vector space. Show that for any indexed list S ⊂ V the following are equivalent.
(a) S is a maximal linearly independent subset of V .
(b) S is a basis for V .
(c) S is a minimal spanning set of V .

(7) Suppose F is a field and V is an F vector space. Suppose X,Y are finite subsets of V with X ⊂ Y , X is linearly
independent, and Y spans V . Show that there exists a basis B of V such that X ⊂ B ⊂ Y .

(8) Suppose F is a field and V is an F -vector space. Suppose X = (x1, x2, . . . , xn) ⊂ V is a finite and linearly
independent list of vectors and suppose Y = (yi | i ∈ I) ⊂ V spans V . Here I is an indexing set. Then there is an
injective function f : Nn = {1, 2, 3, . . . , n} → I such that X ∪ (yi | i ∈ I \ f(Nn)) spans V .

(9) On dimension. Suppose F is a field and V is an F -vector space.
(a) Let S,B ⊂ V be finite lists of vectors.

(i) Suppose B is linearly independent. If |S| < |B|, then S does not span V .
(ii) Suppose B spans V . If |S| > |B|, then S is not linearly independent.

(b) If V admits a finite basis, then all bases of V have the same cardinality. (This is why the definition of the
dimension of a vector space makes sense.)

(c) If W is a subspace of V and V is finite dimensional, then any basis of W may be extended to a basis of V .
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Math 593. Homework 1a (Due September 14)
(10) (*) SupposeG is a finite cyclic group and d ∈ N divides |G|, the order ofG. Show that there are exactly d elements

in G whose order divides d.
(11) (*) What are the subgroups of Z?
(12) (*) Suppose G and H are groups and ϕ : G → H is a group homomorphism. Show that ker(ϕ) is a normal

subgroup of G and G/ ker(ϕ) is isomorphic to im(ϕ) as groups.
(13) (*) SupposeG is a group andH ,K are normal subrgoups ofGwithH ≤ K. Show thatK/H is a normal subgroup

of G/H and (G/H)/(K/H) is isomorphic to G/K as groups.
(14) (*) Suppose S is a finite set and f : S → S. Show that the following are equivalent.

• f is injective.
• f is surjective.
• f is bijective. [That is, f is an isomorphism in the category of sets.]

(15) (*) Suppose R is a ring. Is every R-module also a ring?
(16) (*) Suppose R is a commutative ring. Show that R[x1, x2, . . . , xn], the set of polynomials in indeterminates

x1, x2, . . . , xn and coefficients in R, is a commutative ring where multiplication is given by (fg)(x) = f(x)g(x).
(17) (*) Suppose R is a commutative ring. The polynomial algebra R[x1, x2, . . . , xn] with multiplication given by

(fg)(x) = f(x)g(x) is an associative, commutative algebra.
(18) (*) Suppose A is an R-algebra. Is A also a ring? Is A a module over the ring R?
(19) (*) Suppose R is a ring and a, b ∈ R. Show: If b ∈ R× and a | b, then a ∈ R×.
(20) Suppose k is a field.

(a) Suppose V is a k-vector space and T ∈ Endk(V ). Show that V is a k[x]-module where pv = p(T )v for
p ∈ k[x] and v ∈ V .

(b) Show that if M is a k[x]-module, then M is a k-vector space and there exists T ∈ Endk(V ) so that for
p ∈ k[x] and v ∈ V we have pv = p(T )v.

(c) Conclude that modules over k[x] are parameterized by pairs (V, T ) where V is a k-vector space and T ∈
Endk(V ).

Definition. Suppose A is a Z-module (that is, A is an abelian group). An element a ∈ A is called a torsion element of
A provided that there exists a nonzero m ∈ Z for which ma = 0. The set of torsion elements in A is denoted Tor(A)
or Ator. The abelian group A is said to be a torsion group provided that A = Ator. If Ator = {0}, then A is said to be
torsion free.

(21) (a) Suppose that A is a Z-module. Show that Ator is a subgroup of A; it is called the torsion subgroup of A.
(b) Suppose that A is a Z-module. Show that A/Ator is torsion free.
(c) Describe (Z[x]/(x2 + 1))tor.
(d) Show that the Z-module Q/Z is a torsion group.

(22) (*) Suppose R is a commutative ring.
(a) Show that A is an associative1 R-algebra with identity2 if and only if A is a ring together with a ring map

R→ A whose image is contained in the center of A.
(b) Suppose A1 and A2 are two associative R-algebras. Show that f ∈ HomR−alg(A1, A2) if and only if f is a

ring map that commutes with the maps of R to each Ai.
(23) Suppose that R is a ring.

(a) Show there is a unique ring homomorphism f : Z→ R. [Hint: for uniqueness, note that f(0) = f(0 + 0).]
(b) The kernel of f is a subgroup of Z, hence of the form nZ for some n ∈ Z. We define the characteristic of R

to be n. Show that if R is a field, then n is a prime number or zero.
(c) (Bonus) Show that every ring is naturally an associative Z-algebra.

(24) Suppose R is a commutative ring. Let Bil(M ×N,P ) denote the R-bilinear maps from M ×N to P . Show that
Bil(M ×N,P ) is an R-module where r ∈ R acts on B ∈ Bil(M ×N,P ) by (rB)(a, b) = B(ra, b) = B(a, rb).
What can you say about Bil(M ×N,P ) if R is not commutative?

(25) (*) Show that Matn(Q) with multiplication defined by [A,B] = AB−BA is a Q-algebra that is neither associative
nor commutative.

1That is, the bilinear map A×A→ A is associative.
2That is, the bilinear map A×A→ A admits an identity.
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(26) Suppose that R is a ring.
(a) If I is a an ideal1 in R, show that R/I is naturally a ring, called the quotient ring.
(b) (First Isomorphism Theorem.) Show that if R and S are rings and σ : R → S is a ring homomorphism, then

R/ ker(σ) is isomorphic (in the category of rings) to im(σ).
(c) Conclude that if σ is surjective, then R/ ker(σ) ' S.

(27) What is the cardinality of the following rings.
(a) Z[x]/(6, 2x− 1).
(b) Z[x]/(x2 − 3, 2x+ 4).

(28) Suppose R is a nonzero ring. An element e ∈ R is called idempotent if e2 = e. Assume e is an idempotent in R
and er = re for all r ∈ R. Prove that Re and R(e − 1) are two sided ideals of R and that R ' Re × R(1 − e).
Show that e and (1− e) are identities for the subrings Re and R(1− e), respectively.

(29) Let R be a ring. Suppose I, J ⊂ R are ideals. Show that I ∪ J is an ideal if and only if I ⊂ J or J ⊂ I .

Definition. A category C consists of a class of objects, Ob(C), and sets of morphisms between those objects. For every
ordered pair of objectsA,B in Ob(C) there is a set HomC(A,B) of morphisms fromA toB, and for every ordered triple
A,B,C in Ob(C) there is a law of composition of morphisms

HomC(A,B)×HomC(B,C)→ HomC(A,C).

For f ∈ HomC(A,B) and g ∈ HomC(B,C) we write gf for the image of (f, g) in HomC(A,C). The objects and
morphisms of C satisfy the following axioms:

C1: the composition of morphisms is associative;
C2: for each object C in C there is an identity morphism, IdC ∈ EndC(C) := HomC(C,C);
C3: for every ordered pair A,B in Ob(C) we have f IdA = f and IdB f = f for all f ∈ HomC(A,B); and
C4: if A,B,C,D in Ob(C) and A 6= C or B 6= D, then HomC(A,B) and HomC(C,D) are disjoint sets.

(30) (*) Show that the category of rings, the category of modules, and the category of algebras are all categories.
(31) Suppose k is a field. Let C denote the collection of pairs (V, T ) where V is a k-vector space and T ∈ Homk(V, V ).

Show that if we declare that a morphism between two pairs (V1, T1) and (V2, T2) is a map ϕ ∈ Homk(V1, V2)
satisfying ϕ ◦ T1 = T2 ◦ ϕ, then C is a category.

(32) Let R be a ring. For r ∈ R and 1 ≤ i 6= j ≤ n define the n× n matrix E(i, j, r) by

E(i, j, r)k` =


1 if k = `,
r if k = i and j = `, or
0 otherwise.

Suppose X is an m × n matrix. What is the effect of right multiplication by E(i, j, r) on X? Suppose Y is an
n×m matrix. What is the effect of left multiplication by E(i, j, r) on Y ? What is the inverse of E(i, j, r)?

(33) Let R be a ring. For r ∈ R× := {x ∈ R | ∃s ∈ R for which xs = sx = 1} and 1 ≤ i ≤ n define the n× n matrix
E(i, r) by

E(i, r)k` =


1 if k = ` 6= i,
r if k = ` = i, or
0 otherwise.

Suppose X is an m×n matrix. What is the effect of right multiplication by E(i, r) on X? Suppose Y is an n×m
matrix. What is the effect of left multiplication by E(i, r) on Y ? What is the inverse of E(i, r)?

(34) Let R be a ring. For 1 ≤ i < j ≤ n define the n× n matrix E(i, j) by

E(i, j)k` =


1 if k = ` 6∈ {i, j},
1 if {k, `} = {i, j}, or
0 otherwise.

Suppose X is an m×n matrix. What is the effect of right multiplication by E(i, j) on X? Suppose Y is an n×m
matrix. What is the effect of left multiplication by E(i, j) on Y ? What is the inverse of E(i, j)?

1Recall that “ideal” means “two-sided ideal.”
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I will assume that you are familiar with the idea of a free abelian group on a set S. If your undergraduate abstract algebra
class did not cover this concept, then here is a crash course. We will denote a free abelian group on a set S by F (S). As a
set, the elements of F (S) are the formal Z-linear finite combinations of elements of S. That is

n1s1 + n2s2 + · · ·+ n`s`

where n1, n2, . . . , n` ∈ Z, s1, s2, . . . s` ∈ S and ` ∈ N. By convention F (∅) = {0}. The product of two elements in
F (S) is given by component wise addition of the coefficients. If S has finite cardinality, say |S| = m, then F (S) is
isomorphic, as a group, to Z⊕m =

⊕m
i=1 Z, the direct sum of m copies of Z. A “Z-algebra presentation” of an algebra

means a set of generators and relations for the algebra. For example, a Z-algebra presentation of the Gaussian integers Z[i]
is Z[x]/(x2 + 1). Free abelian groups satisfy the following universal property:
Universal Property of free abelian groups. Suppose S is a set. A free abelian group with basis S is an abelian
group, denoted F (S) or F ab(S), together with an injection ι : S → F (S) such that for every abelian group A and every
(set) function f : S → A there exists a unique group homomorphism f̃ : F (S) → A for which the following diagram
commutes.

S F (S)

A

ι

f
∃! f̃

(35) Show that a free abelian group with basis S is unique up to unique isomorphism.
(36) (*) Describe Z[x]/(x2 − 2)
(37) Show that F (N) ' F (N× N) as abelian groups. Is it true that F (N) ' F (N)× F (N)?
(38) Suppose A and B are finite sets. Show that F (A) ' F (B) as abelian groups if and only if A ' B as sets. [Hint:

From linear algebra you know that two k-vector spaces are isomorphic iff they have the same dimension.] Bonus.
Show the result is valid without the assumption that A and B are finite.

If you have never dealt with exact sequences before, it is time to start. If you have, help your peers.
(39) (*) Suppose R is a ring, M1,M2,M3 are R-modules, and di ∈ HomR(Mi,Mi−1). Show that di ◦ di+1 = 0 is

equivalent to im(di+1) ⊂ ker(di).

Definition. Suppose R is a ring. A chain complex of R-modules is a sequence of R-modules and R-module homomor-
phisms

· · · Mi+1 Mi Mi−1 · · ·di+2 di+1 di di−1

such that di ◦ di+1 = 0 for all i. The sequence is said to be exact at Mi provided that im(di+1) = ker(di). The sequence
is said to be exact provided that it is exact at Mi for all i.

(40) (*) Show that a complex
· · · 0 L M · · ·α

is exact at L if and only if α is injective.
(41) (*) Show that a complex

· · · M N 0 · · ·β

is exact at N if and only if β is surjective.
(42) In the notation of Homework 26: Show that if σ is surjective, then the sequence of Z-modules

0 ker(σ) R S 0σ

is exact. This is an example of a short exact sequence. In fact, it is a short exact sequence of R-modules; explain.
Math 593. Homework 1b (Due September 17)

(43) Suppose F is a field and V,W are F -vector spaces.
(a) Show that HomF (V,W ) is an F -vector space.
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(b) If T ∈ HomF (V,W ), then im(T ), the image of T , is a subspace of W and ker(T ), the kernel of T , is a
subspace of V .

(c) If S ∈ HomF (V,W ) is injective, then there exists R ∈ HomF (im(S), V ) such that R ◦ S(v) = v for all
v ∈ V .

(d) If T ∈ HomF (V,W ) is injective, then the image of every linearly independent list of vectors is linearly
independent.

(e) As a sort of converse to the above statement, we have: Suppose T ∈ HomF (V,W ) and B is a basis for V . If
T (B) is linearly independent in W , then T is injective.

(f) If V is finite dimensional and T ∈ HomF (V,W ), then

dim(V ) = dim(ker(T )) + dim(im(T )).

(44) Suppose V and W are finite dimensional F -vector spaces with dim(V ) = dim(W ). Suppose T ∈ HomF (V,W ).
The following are equivalent:
♥ T is injective.
♦ T is surjective.
♠ T is an isomorphism.



Please report any errors you find to smdbackr@umich.edu

Math 593. Homework 2a (Due September 21)

(45) (*) Suppose k is a field and p ∈ k[x] is a polynomial of degree m > 0. Show that p has at most m roots in k. [This
is true even if we count with multiplicity.]

(46) (*) Suppose R is a ring. Show that R has a maximal ideal.
(47) Suppose R is a nonzero commutative ring and I ⊂ R is an ideal. The following results characterize prime and

maximal ideals in terms of their respective quotients.
(a) (*) Show that R is a field if and only if the only possibilities for I are {0} or R.
(b) Show that I is a maximal ideal if and only if R/I is a field. [Hint: Use Homework 47a. In R/I choose and

ideal 0 6= J ⊂ R/I . Define S = {r ∈ R | r + I ⊂ J}.]
(c) (*) Show that I is a prime ideal if and only if R/I is an integral domain.
(d) (*) Conclude that every maximal ideal of a nonzero commutative ring is a prime ideal.

(48) (*) Suppose R is a domain and a, b, c ∈ R with a 6= 0. Show that if ab = ac, then b = c.
(49) (*) Suppose R is a ring. Show that R is a domain if and only if 0 is the only left zero divisor.
(50) (*) Let R be the subring of Q[x] consisting of polynomials with integer constant coefficient. Show that R is an

integral domain, but it is not Noetherian. [Hint: Let In = (x/43n); this example shows that, in fact, not all rings
satisfy the ascending chain condition for principal ideals.]

(51) (*) Let R be the quadratic integer ring Z[
√
−13]. Consider the ideal I generated by 7 and 6 +

√
−13. Show that I

is not principal. [Hint: This is very similar to [DF04, Example 2, p. 273].]
(52) (*) Suppose R is an integral domain.

(a) Show that R[x] is an integral domain.
(b) if D = R \ {0}, then the localization of R at D is called the field of fractions or quotient field of R. Show that

this name is deserved; that is, show D−1R is a field.
(53) (*) Suppose R is a commutative ring and I ⊂ R is an ideal. Show that R \ I is multiplicative if and only if I is a

prime ideal.

Definition. Suppose A is a commutative ring and a, b ∈ A with b 6= 0. A greatest common divisor or gcd of a and b is a
nonzero d ∈ A for which

• d | a and d | b and
• if d′ ∈ A divides both a and b, then d′ | d.

(54) (*) Suppose that A is a commutative ring and d is a gcd of a, b ∈ A. Show that (d) is the smallest principal ideal
containing a and b.

(55) (*) Suppose that A is an integral domain. Show that if d, d′ ∈ A with (d) = (d′), then there is a unit u ∈ A× for
which d = ud′. Conclude that the gcd of a and b in A is unique up to units.

Definition. Suppose R is a ring. An element x ∈ R is said to be nilpotent provided that xn = 0 for some n ∈ N.

(56) (*) Suppose that R is a ring and x ∈ R is nilpotent. Show: (1 + x) ∈ R×.
(57) Suppose R is a ring.

(a) Suppose a, b ∈ R with ab = ba. Show that if a and b are nilpotent, then a+ b is nilpotent. Is this true if a and
b do not commute?

(b) Show that if R is commutative, then the set of nilpotent elements in R form an ideal; it is called the nilradical
of R and often denoted Nil(R).

(c) Suppose R is commutative and D ⊂ R is multiplicative. Show that D−1R is the zero ring if and only if
D ∩Nil(R) 6= ∅.

(58) (*) Suppose that S is a set andR is a ring. Let Fun′(S,R) be the set of functions f : S → R for which f(s) = 0 for
all but finitely many s ∈ S. Show that with respect to pointwise addition of functions and pointwise multiplication
of ring elements, Fun′(S,R) is an R-module.

(59) Suppose R is a ring. Show that the following statements are equivalent.
(a) Every nonempty set of left ideals in R has a maximal element (with respect to inclusion).
(b) If I ⊂ R is a left ideal, then there exist r1, r2, . . . rk ∈ R for which I = (r1, r2, . . . , rk).
(c) R is Noetherian.
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(60) Suppose p is a prime, and let Z(p) denote the localization of Z at p. The map ν = νp : Z(p) \ {0} → Z≥0 defined
by ν(x) = n provided that x ∈ pnZ(p) \ pn+1Z(p) is called a discrete valuation. Show:
(a) ν is surjective.
(b) ν(ab) = ν(a) + ν(b) for all a, b ∈ Z×(p).
(c) ν(a+ b) ≥ min(ν(a), ν(b)) for all a, b ∈ Z(p) \ {0} with a+ b 6= 0.
(d) Show that Z(p) is a Euclidean Domain. [Hint: ν is almost a positive norm.]

(61) (*) Understanding how the Euclidean Algorithm works is pretty important, so do this exercise by hand (or, if you
use a computer, you must program the computer yourself). For each of the following pairs of integers a and b,
determine their greatest common divisor d and write d as a linear combination ax+ by of a and b.
(a) a = 21, b = 34
(b) a = 11391, b = 5673
(c) a = 91442056588823, b = 779086434385541

(62) (*) Understanding how the Euclidean Algorithm works is pretty important, so do this exercise by hand (or, if you
use a computer, you must program the computer yourself). For each of the following pairs of Gaussian integers a
and b, determine their greatest common divisor d and write d as a linear combination ax+ by of a and b.
(a) a = 85, b = 1 + 13i
(b) a = 47− 13i, b = 53 + 56i

(63) Suppose R is a ring and A ⊂ R is a subring that contains the multiplicative idenity element of R. Suppose I is an
ideal in R. Show that A+ I is a subring of R, A ∩ I is an ideal of A, and (A+ I)/I is isomorphic to A/(A ∩ I)
as rings.

(64) Suppose R is a UFD and a, b ∈ R[x]. If the gcd of the coefficients of a is one and the gcd of the coefficients of
b is one, what can you conclude about the gcd of the coefficients of ab? What about the converse: if the gcd of
the coefficients of ab is one, what can you conclude about the gcd of the coefficients of a (resp. b)? [Hint: If your
solution requires that you write out polynomials, then you are not using the full suite of tools at your disposal.]

Definition. Suppose R is a commutative ring and 0 6= c ∈ R \R×. We say that c factors in R provided that there exists
a, b ∈ R for which c = ab and neither a nor b is a unit.

(65) Factoring is a common way to discuss the notion of irreducibility.
(a) Suppose R is a commutative ring and d ∈ R is a non-zero non-unit. Show that d does not factor in R if and

only if d is irreducible.
(b) Warning: the notions of irreducible and factoring are very1 dependent on the underlying ring. Does 7x factor

in Z[x]? Does it factor in Q[x]? Does 6x2 + 9x+ 18 factor in Z[x]? Does it factor in Q[x]?
(66) Let R be an integral domain. R is said to have the Bezout Property provided that every ideal in R that is generated

by two elements is a principal ideal.
(a) Prove that R has the Bezout Property if and only if every pair of elements a, b ∈ R has a gcd d that can be

written as d = az + by for some x, y ∈ R. [Thus, an example of an integral domain for which the Bezout
Property fails is the ring of polynomials in two variables s and t: gcd(st, s2 + st) = s, but the equation
stx+ (s2 + st)y = s has no solutions for (x, y).]

(b) Prove that if R has the Bezout Property, then every finitely generated ideal of R is a principal ideal. [Warning:
there exist integral domains with the Bezout Property which are NOT PIDs. See [DF04, Exercise 12, p. 302].]

(67) Let E be any of the three types of matrices defined in Exercises 32, 33, or 34. Right multiplication by E is called
an elementary column operation (ECO) and left multiplication by E is called an elementary row operation (ERO).
Computationally, EROs and ECOs are very useful in pretty much every branch of mathematics.
(a) If Q ∈ EndR(Rn)× and v = (v1, v2, . . . , vn) is a basis for Rn, then Qv = (Qv1, Qv2, . . . , Qvn) is a basis

for Rn. What does this say about bases and elementary matrix operations?
(b) If T ∈ HomR(Rn, Rm) and S ∈ EndR(Rm)×, then ker(T ) = ker(S ◦ T ). What does this say about kernels

and elementary matrix operations?
(68) Suppose A is a Z-module. For m ∈ N let mA = {a ∈ A |ma = 0}.

(a) Is mA a subgroup of A?
(b) Describe m(Q/Z).
(c) Show that A =

⋃
m∈N mA if and only if A is a torsion group.

1This is why, when discussing polynomials, words like primitive and nonconstant are forever appearing in discussions of irreducibility.
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(69) Suppose R is an commutative ring. If R[x] is a PID, then R is a field. [Hint: Every PID is an integral domain.]
(70) EROs and ECOs: Smith Normal Form over Z for small matrices.1

(a) Suppose that A is a 2 × 2 matrix with entries in Z. Show that there are elementary matrices E1, E2, . . . , Er
and F1, F2, . . . , Fc with entries in Z so that B = Er ·Er−1 · · ·E2 ·E1 ·A · F1 · F2 · · ·Fc−1 · Fc has the form(

b11 0
0 b22

)
with bii ∈ Z and b11 | b22. It turns out, as we shall see later, that B is unique (up to units, which in this case
are ±1) and is called the Smith Normal Form of A.

(b) Suppose that A is a 3 × 3 matrix with entries in Z. Show that there are elementary matrices E1, E2, . . . , Er
and F1, F2, . . . , Fc with entries in Z so that B = Er ·Er−1 · · ·E2 ·E1 ·A · F1 · F2 · · ·Fc−1 · Fc has the formb11 0 0

0 b22 0
0 0 b33


with bii ∈ Z and b11 | b22 | b33. It turns out, as we shall see later, that B is unique (up to units, which in this
case are ±1) and is called the Smith Normal Form of A.

(c) Compute the Smith Normal Form of(
2 0
0 5

)
and

 9 5 7
−9 −6 9
−3 −2 −1

 .

(71) In the ring Z[
√
−13] show that 2, 7, 1 +

√
−13 and 1−

√
−13 are irreducible. Which are prime?

Definition. Suppose R is a ring. A short exact sequence of R-modules is an exact sequence of the form

0 L M N 0α β

We say that M is an extension of N by L.

(72) Suppose 0 L M N 0α β
is a short exact sequence of R-modules. Show that N '

M/ ker(β) 'M/ im(α).
(73) (*) Suppose X,Y are R-modules and f ∈ HomR(X,Y ). Create a short exact sequence from X , ker(f), and

im(f).

Definition. Suppose D is a category. A subcategory C of D is a category for which every object of C is an object
in D and for every ordered pair A,B of objects in C we have HomC(A,B) ⊂ HomD(A,B). We say that C is a
full subcategory of D provided that C is a subcategory of D and for every ordered pair A,B of objects in C we have
HomC(A,B) = HomD(A,B).

(74) (*) Show that the category of fields is a full subcategory of the category of commutative rings.
Math 593. Homework 2b (Due September 24)

(75) Suppose that F is a field and V is an n-dimensional F -vector space. We also assume that F doesn’t have charac-
teristic two. Suppose f : V ×V × · · ·×V ×V → F is a function (there are d copies of V here). The function f is
called multilinear provided that it is linear in each variable (for fixed values of the remaining variables). The space
of multilinear functions on V in d variables with values in F is denoted Multd(V, F ). A function in Multd(V, F )
is called alternating provided that f(v1, v2, . . . , vd) = 0 whenever there exists i 6= j such that vi = vj . It is called
skew-symmetric provided that switching two entries results in a change of sign.
(a) Show that a function f ∈ Multd(V, F ) is skew-symmetric if and only if it is alternating.
(b) The subset of alternating functions in Multd(V, F ) is denoted Altd(V, F ). Show that Altd(V, F ) is a vector

space.
(c) Show that for d > n we have dim(Altd(V, F )) = 0. (If you have time, think about what happens when

d < n.)

1“Anyone who is going to do any work with lattices needs to understand Smith invariants.” – John Stembridge
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(d) Show that dim(Altn(V, F )) ≤ 1
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Math 593. Homework 3a (Due September 28)

(76) Let q(x) = x4 − 10x2 + 1 ∈ Z[x].
(a) Show that q(x) is irreducible in Z[x].
(b) Suppose p is a prime. Show that if a and b are nonsquares in (Z/(p))×, then ab is a square in (Z/(p))×.

Conclude that the image of at least one of 2, 3, and 6 is a square in (Z/(p))×. [You can do this problem
without knowing that (Z/(p))× is cyclic, so don’t assume this in your solution.]

(c) Suppose p is a prime. Let q̄ denote the image of q in (Z/(p))[x].
(i) If the image of 2 in (Z/(p))× is a square, factor q̄ in (Z/(p))[x]. [Hint: q(x) = (x2 − 1)2 − 8x2.]

(ii) If the image of 3 in (Z/(p))× is a square, factor q̄ in (Z/(p))[x]. [Hint: q(x) = (x2 + 1)2 − 12x2.]
(iii) If the image of 6 in (Z/(p))× is a square, factor q̄ in (Z/(p))[x]. [Hint: q(x) = (x2 − 5)2 − 24.]

(d) Conclude that q is irreducible, yet reducible modulo every prime.
(77) Let R be an integral domain with field of fractions F and let q(x) be a monic polynomial in R[x]. Assume that

q = ab where a, b ∈ F [x] are monic polynomials of smaller degree than q. Prove that if a 6∈ R[x], then R is not a
UFD. Conclude (again!) that Z[2

√
2] is not a UFD. [Your proof should not be more than ten short lines.]

(78) Suppose that R is a commutative ring, D ⊂ R is multiplicative, and I ⊂ R \D is an ideal.
(a) Show that there exists an ideal J ⊂ R that is maximal with respect to the properties:

• I ⊂ J
• J ∩D = ∅.

(b) Suppose m ⊂ R is an ideal that is maximal with respect to the properties I ⊂ m and m ∩D = ∅. Show that
m is a prime ideal.

(79) Suppose R is a ring and ϕ ∈ Hom(R,R) = Homring(R,R). For all n ∈ N define ϕn = ϕ ◦ ϕ ◦ · · · ◦ ϕ ∈
Hom(R,R).
(a) Show that if ϕ is surjective, then ϕn is surjective.
(b) Let In = ker(ϕn). Show that In is an ideal and I1 ⊂ I2 ⊂ I3 ⊂ · · · .
(c) Suppose R is Noetherian. Show that if ϕ is surjective, then ϕ is injective.
(d) Is the converse of Homework 79c true?

(80) Let R = Z[
√
−5] and M = (2, 1 −

√
−5) ⊂ R. Define f ∈ HomR(R2,M) by f([x, y]T ) = x2 + y(1 +

√
−5).

Find ~a,~b ∈ R2 so that ~x ∈ ker(f) if and only if ~x ∈ R~a+R~b. [We say that (~a,~b) is a list of generators for ker(f).]
(81) Repeat Homework 70a, but with Z replaced by Euclidean Domain, R. 1

(82) EROs and ECOs: Smith Normal Form over a Euclidean Domain, R. Suppose that A is a nonzero n ×m matrix
with entries in R.
(a) Let b11 be the nonzero g.c.d. of all entries in A. Show2 that there are elementary matrices E′1, E

′
2, . . . , E

′
r and

F ′1, F
′
2, . . . , F

′
c with entries in R so that C = E′r · E′r−1 · · ·E′2 · E′1 ·B · F ′1 · F ′2 · · ·F ′c−1 · F ′c has the form

b11 0 0 · · · 0
0 c22 c23 · · · c2m

0 c32 c33 · · · c3m
...

...
...

. . .
...


where b11 divides cij for all 2 ≤ i ≤ n and 2 ≤ j ≤ m.

1Hint: WOLOG, A 6= 0. Let N : R → Z≥0 be a norm on R (as in [DF04, p. 270]). Transform A into the form
(
b11 0
0 b22

)
with N(b11) ≤

N(b22). If b11 - b22, then transform the above matrix into the form
(
b11 b′22
0 b22

)
where b11 = db22 + b′22 and N(b′22) < b11 . . . .

2Hint: Since A 6= 0, we may define δ(A) := min{N(aij) | aij 6= 0}. Via EROs and ECOs we may assume that N(a11) = δ(A). If ak1 6= 0,
write ak1 = a11zk + zk1 where 0 < N(zk1) < N(a11). Via EROs, we may replace ak1 with zk1, and we have a new matrix, Z, for which
δ(Z) < δ(A). Via EROs and ECOs we may assume N(z11) = δ(Z). Since the image of N is a bounded below discrete set, continuing in this
fashion (and also repeating the above procedure for the first row), we arrive at a matrix Z where the only nonzero entry in the first row and first
column is z11. Of course, it will almost certainly be the case that z11 does not divide each zij . Suppose z11 - zij . Look at the two-by-two submatrix(
z11 0
0 zij

)
and mimic Homework 81. Since the image of N is a bounded below discrete set, continuing in this fashion we arrive at a matrix C

where the only nonzero entry in the first row and first column is c11 and c11 | cij for all i and j.
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(b) Apply induction to conclude that via EROs and ECOs applied to A we can arrive at a matrix(
D 0
0 0

)
where D is a diagonal (square) matrix with nonzero entries a1, a2, . . . , ak satisfying k ≤ min{m,n} and
a1 | a2 | · · · | ak. This is called the Smith Normal Form of A. As we shall see later, it is unique (up to units).

(c) Let R = Q[x]. Compute the Smith Normal Form of(
x− 2 0

0 x− 5

)
and

x− 2 2 −14
0 x− 3 7
0 0 x− 2

 .

(For extra uniqueness: we require all nonzero polynomials that occur in the Smith Normal Form be monic.)
(d) If F is a field, then what is the Smith Normal Form of A ∈ Matn×m(F )?

(83) Suppose R is a rng (yes, rng, not ring). Let I be an ideal of R. Show that the correspondence A ↔ A/I is an
inclusion preserving bijection between the set of subrngs A of R that contain I and the set of subrngs of R/I .
Show that a subrng C of R that contains I is an ideal in R if and only if C/I is an ideal in R/I . What if we replace
“rng” with “ring” in the above? [Hint: look at pretty much any non-prime ideal in Z.]

(84) A characterization of PIDs. Suppose R is a nonzero commutative ring. Prove that R is a PID if and only if R is a
UFD for which the Bezout Property1 holds (see Homework 66). [Hint: One direction is immediate. For the other
direction: suppose I is an ideal with two generators. Since R is a UFD, each element of I may be written as a
product of irreducible factors. Choose a ∈ I to have a minimal number of irreducible factors. Prove that I = (a)
by showing that if there is a b ∈ I \ (a), then (a, b) = (d) leads to a contradiction.]

(85) Suppose k is a field, V is a vector space of one dimension over k, and T ∈ Homk(V, V ). Show that, as k[x]-
modules, V is isomorphic to k[x]/(x−µ) for some µ ∈ k. How unique is µ? Are they isomorphic as k[x]-algebras?

(86) Suppose A is a Z-module. Recall that for m ∈ N we set mA = {a ∈ A |ma = 0}.
(a) Show that if m = rs and (r, s) = 1, then mA = rA+ sA.
(b) Conclude that if we write m as m =

∏
p|m p

e(p) with p prime and e(p) ∈ N, then mA =
∑

p|m p
e(p)

A.

Definition. Suppose C and D are categories. A functor or covariant functor from C to D is a mapping that
• assigns to every object C ∈ C an object F (C) ∈ D and
• assigns to every morphism f : C → C ′ in C a morphism F (f) : F (C)→ F (C ′) in D

such that F (IdC) = IdF (C) for every object C ∈ C and F (g ◦ f) = F (g) ◦ F (f) for all morphisms f : C → C ′ and
g : C ′ → C ′′.

(87) Show that the map P from the category Set to itself that sends a set X to the powerset of X and sends a morphism
f : X → Y in Set to to P (f) : P (X)→ P (Y ) where

P (f)(U) = f [U ] := {f(x) |x ∈ U}

is a functor.

Definition. Suppose C and D are categories. A contravariant functor from C to D is a mapping that
• assigns to every object C ∈ C an object F (C) ∈ D and
• assigns to every morphism f : C → C ′ in C a morphism F (f) : F (C ′)→ F (C) in D

such that F (IdC) = IdF (C) for every object C ∈ C and F (g ◦ f) = F (f) ◦ F (g) for all morphisms f : C → C ′ and
g : C ′ → C ′′.

(88) (*) Show that the map Q from the category Set to itself that sends a set X to the powerset of X and sends a
morphism f : X → Y in Set to to Q(f) : Q(Y )→ Q(X) where

Q(f)(V ) = f−1[V ] := {x ∈ X | f(x) ∈ V }

is a contravariant functor.

1Every ideal generated by two elements is a principal ideal.
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(89) Suppose k is a field and Veck is the category of finite dimensional k-vector spaces. Show that the mapD from Veck
to itself which assigns to each vector space its dual space and to every linear map its dual map is a contravariant
functor.

(90) (*) Suppose that R is a UFD. Show that R[x1, x2, . . . , xm] is a UFD.
Math 593. Homework 3b (Due October 1)

(91) Suppose k is a field and V and W are finite dimensional k-vector spaces with bases v and w, respectively. The
choice of bases gives us a bijective map T 7→w [T ]v between Homk(V,W ) and Matdim(W )×dim(V )(k). Thus, a
linear map between an n-dimensional k-vector space and an m-dimensional k-vector space can be encoded in a
natural way by nm numbers. Suppose U is a third k-vector space with basis u.
(a) Can you think of a way to encode a k-bilinear map from V ×W to U?
(b) Suppose f ∈ Bilk(V ×W,U). Let ((vi, wi) : 1 ≤ i ≤ n) be a list of vectors in V ×W . When is f completely

determined by the values f(vi, wi)? I will be happy if you can come up with good answers for the cases when
V = W = U and dim(V ) ∈ {1, 2}.

(92) Determinant problem
(a) Show that det ∈ Altn(Fn, F ), so dim(Altn(Fn, F )) = 1. (Recall that det(v1, v2, v3, . . . , vn) with vi ∈ Fn

is the determinant of the n× n matrix whose columns are v1 through vn.)
(b) Suppose V is an n-dimensional F -vector space and let v be a basis for V . Define f : V × V × · · · ×

V → F by f(x1, x2, . . . , xn) = det([x1]v, [x2]v, . . . , [xn]v). Show f ∈ Altn(V, F ) and conclude that
dim(Altn(V, F )) = 1.

(c) Continuing the notation of (92b). Suppose that T ∈ End(V ) and h ∈ Altn(V, F ) is nonzero. (i) Show that the
function hT : V × V × · · · × V → F defined by hT (x1, x2, . . . , xn) = h(T (x1), T (x2), . . . , T (xn)) belongs
to Altn(V, F ). (ii) Conclude that there is a constant d ∈ F for which hT = dh. (iii) Show that this constant
is independent of the choice of nonzero h.

(d) Thanks to the previous problem, we can define det(T ) to be the unique element of F for which hT = det(T )h
for any nonzero h ∈ Altn(V, F ). Show: if S, T ∈ End(V ), then det(S ◦ T ) = det(S) det(T ).

(e) Show that if T ∈ End(V ) is invertible, then det(T ) 6= 0.
(f) Suppose that u = (u1, u2, . . . , un) and w = (w1, w2, . . . , wn) are two bases of V that are related by the

change of coordinate matrix A =u[IdV ]w. Show that for any g ∈ Altn(V, F ) we have g(w1, w2, . . . , wn) =
det(A)g(u1, u2, . . . , un).

(g) Show that if T ∈ End(V ) has nonzero determinant, then T is invertible.

Something to Think About
In Homework 84 you showed that a UFD is a PID if and only if the Bezout property holds. It is also true that a UFD is a
PID if and only if every nonzero prime ideal is maximal. Can you show this?
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Math 593. Homework 4a (Due October 5)

(93) Does (8x+ 7x4, 4x2 + 19x4, x2) generate the ideal I = (x3, 4x2, 8x) in Z[x]?
(94) Suppose R is a ring. Let I and J be ideals of R with I ⊂ J . Show that J/I is an ideal of R/I and (R/I)/(J/I)

is isomorphic to R/J as rings. Describe (Z/24Z)/(6Z/24Z).
(95) Suppose k is a field.

(a) Suppose V is a k-vector space and T ∈ Endk(V ). Show that V is a k[x]-module where pv = p(T )v for
p ∈ k[x] and v ∈ V .

(b) Show that if M is a k[x]-module, then M is a k-vector space and there exists T ∈ Endk(V ) so that for
p ∈ k[x] and v ∈ V we have pv = p(T )v.

(c) Conclude that modules over k[x] are parameterized by pairs (V, T ) where V is a k-vector space and T ∈
Endk(V ).

(96) Suppose that R is a commutative ring.
(a) Suppose p ⊂ R is a prime ideal and x ∈ R is nilpotent. Show that x ∈ p.
(b) Suppose y ∈ R and y ∈ p for all p ∈ Spec(R). Show that y is nilpotent. [Hint: Homework 78 may be useful.]
(c) Conclude that x ∈ R is nilpotent if and only if x belongs to every prime ideal in R. That is

Nil(R) =
⋂

p∈Spec(R)

p.

(97) Let R be a ring and M a free module over R. Let I be a set, and let (mi | i ∈ I) be a basis of M . Let N be an
R-module, and let (ni | i ∈ I) be a family of elements of N .
(a) Show that there is a unique f ∈ HomR(M,N) such that f(mi) = ni for all i ∈ I .
(b) Show that if (ni | i ∈ I) is a linearly independent spanning set for N , then f is an isomorphism.

(98) Suppose that R is a commutative ring. Suppose I ⊂ R is an ideal and M is an R-module.
(a) Show that IM is a submodule of M and M/IM is an R/I module.
(b) Show that if M is a finitely generated R-module, then M/IM is a finitely generated R/I-module. Is the

converse true?
(c) Show that for all n ∈ Z≥0 we have that InM/In+1M is an R/I module.

(99) Suppose that R is a commutative ring.
(a) Suppose I ⊂ R is an ideal and M is a free R-module with basis (si | i ∈ I). Show that M/IM is a R/I free

module and M/IM has basis (s̄i | i ∈ I) where s̄i denotes the image of si in the R/I- module Rsi/Isi
(b) Suppose that J and K are sets. Show that R⊕K is isomorphic to R⊕J if and only if K ' J as sets. [Hint,

quotient out by a maximal ideal.] This result is false if R is not commutative – see [DF04, Exercise 27 in
§10.3]. Does this failure in the noncommutative case contradict Exercise 97b?

Thanks to Prompt (123) and Homework (99), the following definition makes sense.

Definition. Suppose R is a commutative ring and M is a free R-module. The rank of the free R-module M is defined to
be the cardinality of I where M '

⊕
i∈I R.

(100) Show that any nonzero principal ideal in a domain R has free rank one.
(101) Suppose K is a field.

(a) Suppose f ∈ k[x]. Is k[x]/(f) a cyclic k-module? If not, can you formulate some conditions on f which will
guarantee that k[x]/(f) is cyclic?

(b) Suppose V is a k-vector space and T ∈ Homk(V, V ). Is V a cyclic k[T ] module for every nonzero v ∈ V ?
Is V always a cyclic k[x]-module? If not, can you formulate some conditions on T which will ensure V is a
cyclic k[T ]-module?

(102) Let R = {p ∈ Q[x] : p(0) ∈ Z}. Show that R is a ring. Let I = {p ∈ R : p(0) = 0}. Is I a finitely generated
R-module?

(103) Beyond EROs and ECOs: Smith Normal Form over a PID, R. Suppose that A is a nonzero n × m matrix with
entries in R. Since R is a PID, it is a UFD. Thus every nonzero element a ∈ R can be written as a unit times `(a)
primes. So, for example, `(p3) = 3 where p is a prime and `(u) = 0 when u ∈ R×. We call `(a) the length of a;
it will play the role of N in the footnote to Homework (82). Define δ(A) = min{`(aij) | aij 6= 0}.
(a) We begin with the case of a 2 × 2 nonzero matrix A with entries in R. After elementary operations, we

may assume that `(a11) = δ(A). If a11 | a12, then perform ECOs to make the (1, 2) entry zero. Otherwise,
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suppose a11 - a12. Thanks to Homework 84, if d = gcd(a11, a12), then we can find α, β ∈ R for which
αa11 + βa12 = d. Right multiply A by the invertible (why is it invertible?) matrix

G =

(
α a12/d
β −a11/d

)
.

Magic! Note that `(d) < `(a11), so δ(AG) < δ(A). Now do something similar to the first column. We arrive
at a diagonal matrix C for which δ(C) ≤ δ(A). If c11 | c22, we are done. Otherwise . . .

(b) Now suppose A is an n×m matrix with entries in R. Show that there exist an invertibe n× n matrix Q and
an invertible m×m matrix P so that

QAP =

(
D 0
0 0

)
where D is a diagonal (square) matrix with nonzero entries a1, a2, . . . , ak satisfying k ≤ min{m,n} and
a1 | a2 | · · · | ak. This is called the Smith Normal Form of A. As we shall see later, it is unique (up to units).

(104) Suppose R is a ring and M is a finitely generated R-module. Must submodules of M also be finitely generated?
[Hint: Let M = R = R[x1, x2, . . .]. Consider N = (x1, x2, . . .).]

(105) Suppose A is a Z-module and p ∈ N is prime. Let A(p) denote those x ∈ A for which some power of p annihilates
x. That is, A(p) =

⋃
m∈NApm . (Here we use the notation of Homework 86.)

(a) Is A(p) a subgroup of A?
(b) Describe (Q/Z)(p).
(c) If p and q are distinct primes in N, what is A(p) ∩A(q)?

(106) Suppose R is a ring and L, M , N , and P are R-modules. Suppose

0→M → N → P → 0

is an exact sequence of R-modules.
(a) (covariant) Show that the mapping from the category of R-modules to the category of abelian groups given by

X 7→ HomR(L,X) and α ∈ HomR(X,Y ) maps to α∗ : HomR(L,X)→ HomR(L, Y ) where α∗(f) = α◦f
is a functor. Then show it is a left exact functor; that is:

0→ HomR(L,M)→ HomR(L,N)→ HomR(L,P )

is an exact sequence of abelian groups.
(b) (contravariant) Show that the mapping from the category of R-modules to the cateogry of abelian groups

given by X 7→ HomR(X,L) and α ∈ HomR(X,Y ) maps to α∗ : HomR(Y,L) → HomRX,L) where
α∗(f) = f ◦ α is a contravariant functor. Then show it is a left exact contravariant functor; that is:

0→ HomR(P,L)→ HomR(N,L)→ HomR(M,L)

is an exact sequence of abelian groups.
(107) Suppose R is a commutative ring and L, M , and F are R-modules. Show that if F is a free module of finite rank,

then the short exact sequence

0 L M F 0α β

splits; that is there is an R-module isomorphism ϕ : M ' L⊕ F for which the following diagram commutes

0 L M F 0

0 L L⊕ F F 0

α

IdL

β

ϕ IdF

ι π

where ι is the natural injection and π is the natural projection. Bonus. Show that the condition that F be finite rank
is not needed. Bonus 2. Do we need to assume that R is commutative?

Math 593. Homework 4b (Due October 8)
(108) Suppose F is a field, V is a finite-dimensional F -vector space, and v = (v1, v2, . . . , vn) is a basis of V . Show that

the map Endk(V )→ Matn×n(k) given by T 7→v [T ]v is a k-algebra isomorphism.
(109) Recall that if A is an n× n matrix with entries in a field F , then tr(A) =

∑n
i=1Aii.

(a) Show that for all n× n matrices we have tr(AB) = tr(BA). Conclude that
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(i) if C is invertible, then tr(A) = tr(CAC−1), and
(ii) if C is nilpotent, then tr(C) = 0.

(b) Suppose V is a finite dimensional F -vector space and T ∈ HomF (V, V ). Show that tr(v[T ]v) is independent
of the choice of the basis v. We define tr(T ) = tr(v[T ]v).

(c) Suppose V and V ′ are finite dimensionalF -vector spaces. Choose T ∈ HomF (V, V ′) and T ′ ∈ HomF (V ′, V ).
Show that tr(T ◦ T ′) = tr(T ′ ◦ T ).

Something to Think About
Suppose R is a ring. Must every short exact sequence of R-modules of the form

0 L L⊕N N 0

split?
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Math 593. Homework 5a (Due October 12)

(110) (*) Suppose R is a domain, M is a torsion free R-module, and r ∈ R. Show that µr ∈ HomR(M,M) defined by
µr(m) = rm is injective.

(111) How many abelian groups have both of the following properties:
(a) any minimal generating set has 3 elements
(b) the exponent1 is 30.

(112) Suppose R is an integral domain and M is a finitely generated R-module. Prove that M is a torsion module if and
only if AnnR(M) 6= {0}.

(113) Suppose A is an n× n matrix. Do A and AT have the same
(a) minimal polynomial?
(b) characteristic polynomial?
(c) rational canonical form?

(114) Just as for rings (see Homework 59), there are many equivalent ways to think about Noetherian modules. Show the
following are equivalent for an R-module M .
(a) M is Noetherian.
(b) Every non-empty set S of submodules of M has a maximal element.
(c) Every submodule of M is finitely-generated.

(115) Suppose R is a ring, M is an R-module, and ϕ ∈ HomR(M,M). For all n ∈ N define ϕn = ϕ ◦ ϕ ◦ · · · ◦ ϕ ∈
HomR(M,M).
(a) Show that if ϕ is surjective, then ϕn is surjective.
(b) Let Mn = ker(ϕn). Show that Mn is a submodule and M1 ⊂M2 ⊂M3 ⊂ · · · .
(c) Suppose M is Noetherian. Show that if ϕ is surjective, then ϕ is injective.
(d) Bonus. From Homework 79c we know the converse to Homework 115c is false. However, if M satisfies the

descending chain condition (that is, M is Artinian2), then an injective map ϕ : M →M is surjective. Prove it.

Homework (14), Homework (44), and Homework (115) are variations on a very useful theme. You will probably encounter
many similar statements in your study of mathematics; my favorite such statement is the Ax-Grothendieck3 theorem4: if
f : Cn → Cn is an injective polynomial map, then f is surjective. Moreover, f−1 : Cn → Cn is also a polynomial map.

(116) Show that the invariant factor form of the Structure Theorem for Finitely Generated Modules over a PID together
with the Chinese Remainder Theorem implies the elementary divisor form of the structure theorem. [Hint: Use
Prompt 59.]

(117) Let R be a PID and suppose A is an n ×m matrix with entries in R. For 1 ≤ k ≤ max(n,m), a k × k minor of
A is the determinant of a k × k matrix obtained from A by deleting n − k rows and m − k columns. Let Ik(A)
denote the ideal of R generated by the k × k minors of A. So, for example, for the matrix

B =

(
3 4 12
8 6 18

)
∈ Mat2×3(Z)

we have I1(B) = Z and I2(B) = (14). Suppose n,m ∈ N and 1 ≤ k ≤ max(n,m).
(a) Show that if X ∈ Matn×m(R), then Ik(X) = Ik(X

T ).
(b) Show that if C ∈ Matn×m(R) and D ∈ Matm×m(R), then Ik(CD) ⊂ Ik(C).

[Hint: write C =

 | | |
C1 C2 · · · Cm
| | |

 , so CD =

 | | |∑m
i=1Di1Ci

∑m
i=1Di2Ci · · ·

∑m
i=1DimCi

| | |

 .]

(c) Show that if Q ∈ Matn×n(R)×, A ∈ Matn×m(R), and P ∈ Matm×m(R)×, then Ik(A) = Ik(QAP ).

1The exponent of a group is defined to be the least common multiple of the orders of all elements of the group.
2Named for Emil Artin. His family changed their surname from Artinian to Artin, otherwise we would have Artinianian rings. Also, every

Artinian ring is Noetherian: C. Hopkins, Rings with minimal condition for left ideals, Annals of Mathematics (2), vol. 40 (1939) no. 2, 712-730.
3James Ax and Alexander Grothendiek are well worth reading about.
4This is an easy-to-state consequence of the result; the full result is about varieties over algebraically closed fields.
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(d) Suppose A,A′ ∈ Matn×m(R). We say that A and A′ are equivalent1 matrices provided that A′ = QAP for
someQ ∈ Matn×n(R)× and P ∈ Matm×m(R)×. Show that every equivalence class of matrices has a unique
(up to units in R) element that is in Smith Normal Form.

(118) Suppose A is a Z-module. Recall that for a prime p we define the submodule A(p) =
⋃
m∈NApm where Apm =

{a ∈ A | pma = 0}.
(a) Suppose p1, p2, . . . , pn are distinct primes and xi ∈ A(pi). Show that if

∑
xi = 0, then x1 = x2 = · · · =

xn = 0.
(b) Show that the natural map

⊕
pA(p)→ A is injective.

(c) Conclude that if A is a torsion group, then⊕
p

A(p) ' A.

[Hint: Homeworks 86b and 68c may be useful.]
(119) SupposeR is a Noetherian integral domain. LetM be a finitely generatedR-module and supposeϕ ∈ HomR(R⊕n,M)

is surjective. Show that ker(ϕ) is finitely generated.
(120) Suppose k is a field and V is a k-vector space. Suppose S, T ∈ Homk(V, V ). Show that if the corresponding

k[x]-modules are isomorphic, then S is similar to T . The converse is true as well, see Prompt 184.
(121) Suppose R is a PID and F is a finitely generated free R-module. Suppose M ⊂ F is a submodule. Show M is

free. [Hint: You are not allowed to use the Structure Theorem for Finitely Generated Modules over a PID. Suppose
F ' Rk. Proceed by induction on k and use Prompt 129c and Homework 107.] (Bonus.) Show that the result is
true without the assumption that F is finitely generated.

Definition. Suppose R is a ring, M is an R-module, and m ∈M . The annihilator of m is

AnnR(m) := {r ∈ R | rm = 0}.
If no confusion is possible, we will write Ann(m) rather than AnnR(m).

(122) Suppose R is a commutative ring, M is an R-module, and I ⊂ R is an ideal. Show that M contains a copy of R/I
if and only if I = Ann(m) for some m ∈M .

(123) Suppose R is a commutative ring and

0 L M N 0α β

is a short-exact sequence of R-modules. Suppose N ' ⊕Nj where each Nj is a cyclic R-module (i.e., Nj = Rnj
for some nj ∈ Nj). Show: If there exists mj ∈M such that
• β(mj) = nj and
• AnnR(mj) = AnnR(nj),

then M ' L ⊕ N . [It is mathematical shorthand to write β(m2) = n2 when we really mean φ ◦ β(m2) =
(0, n2, 0, . . .) where φ : N ' ⊕Nj . Also, Homework 122 may be useful.]

(124) Suppose R is a PID, M is a finitely generated R-module, and (p) ⊂ R is a prime ideal. Define

M(p) = {m ∈M | pnm = 0 for some n ∈ Z≥0}.

(Why is M(p) well defined?) Show that if m ∈M(p) then there exists k ∈ Z≥0 for which AnnR(m) = (pk).
(125) (Bonus.) Suppose R is a commutative ring and M is an R-module. Set I = {Ann(m) |m ∈ M \ {0}}. Show

that a maximal element of I is a prime ideal of R. [This is the start of an important circle of ideas in commutative
algebra; see, for example, the Lasker-Noether theorem.]

1Check that this is an equivalence relation!
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Definition. Suppose C and D are categories and F is a functor from C to D. For every pair of objects C,C ′ ∈ C the
functor F defines a function

FC,C′ : HomC(C,C ′)→ HomD(F (C), F (C ′)).

The functor F is said to be faithful if FC,C′ is injective for every pair of objects C,C ′ ∈ C. The functor F is said to be
full if FC,C′ is surjective for every pair of objects C,C ′ ∈ C. A functor that is both faithful and full is said to be fully
faithful. The functor F is said to be essentially surjective provided that each object D of D is isomorphic to F (C) for
some object C of C. We say that C and D are equivalent if there is a fully faithful essentially surjective functor from C to
D.

(126) Suppose k is a field. Let D denote the category of k[x]-modules. Let C be as in Homework 31. Extend the result
of Homework 95 to show that C and D are equivalent.

Math 593. Homework 5b (Due October 15)
Fall Break – nothing due.
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Math 593. Homework 6a (Due October 17)
(That’s a Wednesday!)

Fall Break and Exam – light homework
(127) Suppose R is a PID. Let M be a finitely generated R-module and suppose f ∈ HomR(R`,M) is surjective.

Thanks to Homework (119), we know ker(f) is finitely generated. Thus, we can find a finite generating set
y = (y1, y2, . . . , yt) for ker(f). Suppose x = (x1, x2, . . . , x`) is a basis for R`. Write

yj =
∑
i

aijxi

for some aij ∈ R. The matrix

A =


a11 a12 a13 · · · a1t

a21 a22 a23 · · · a2t
...

...
...

. . .
...

a`1 a`2 a`3 · · · a`t


is called a presentation matrix. [The transpose of A is often called a relations matrix.]
(a) Show A(Rt) = ker(f); conclude that M ' R`/A(Rt).
(b) Show that for all invertible P ∈ Matt×t(R) we have AP (Rt) = ker(f).
(c) Show that for all invertible Q ∈ Mat`×`(R) we have M ' R`/A(Rt) ' R`/(QA(Rt)).
(d) Show that for all invertibleQ ∈ Mat`×`(R) and all invertibleP ∈ Matt×t(R) we haveM ' R`/(QAP (Rt)).
(e) Let 

a1 0 0 · · · 0
0 a2 0 · · · 0
0 0 a3 · · · 0
...

...
...

. . .
0 0 0

 with a1 | a2 | · · · | ak

be a Smith Normal Form of A. Use your work above and Homework 117 to conclude that

M ' R/(a1)⊕R/(a2)⊕ · · · ⊕R/(ak)⊕R`−k.

What does Homework (117d) tell us about the uniqueness of this decomposition? [Note, if aj is a unit in R,
then R/(aj) is zero.]

(128) The Cayley-Hamilton Theorem is a very powerful tool. For example, if R is a commutative ring, then the commu-
tative ring version of the Cayley-Hamilton Theorem can be used to prove that every surjective R-linear map from
a finitely generated R-module to itself is, in fact, an isomorphism (compare to Homework 115). Here we look at
matrix exponentiation and related constructions. Suppose f : C → C is an analytic function (like, for example,
sin or exp). Let V be a finite dimensional C-vector space, and fix T ∈ HomC(V, V ). Let p ∈ C[x] denote the
characteristic polynomial of T .
(a) Show that we can write f = pq + r where 0 ≤ deg(r) < deg(p). What sort of function is q?
(b) Show that f(T ) = r(T ) and for every eigenvalue λ of T we have f(λ) = r(λ).
(c) Write r(x) = r0 + r1x+ r2x

2 + · · ·+ rn−1xn−1. Suppose T has n-distinct eigenvalues λ1, λ2, . . . , λn. We
have n equations r(λi) = f(λi) in the n unknowns r0, r1, r2, . . . , rn−1. Show that we can always solve for
the rj , hence we have

f(T ) =
n−1∑
j=0

rjT
j

for known coefficients rj ∈ C.
(d) Find eAt and sin(At) for

A =

[
0 1
−1 0

]
, A =

[
−1 −4
5 0

]
, and A =

−8 −18 6
8 18 −5
4 12 −1

.
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(e) (Bonus.) Suppose the eigenvalues of T are not distinct. Let µ be an eigenvalue of T that occurs with multipliciy
m > 1. Note that p and its first (m− 1) derivatives are zero at µ. Show we have

f (j)(µ) = r(j)(µ)

where 0 ≤ j ≤ (m− 1). Conclude that we can still solve for the coefficients of r.
(129) Suppose that k is a field, V is finite dimensional k-vector space, and T ∈ Homk(V, V ). We assume that χT (x)

factors completely into linear factors. Let λ1, λ2, . . . , λm be the distinct eigenvalues for T , so χT (x) =
∏m
i=1(x−

λi)
ni . Warning: (x− λi)ni is not, in general, an invariant factor for T .

(a) Show that Vi = ker(T − λi)ni is T stable and V = ⊕mj=1Vj .
(b) Show that there exists f ∈ k[x] such that f(x) ∈ (x) and f(x) ≡ λi mod (x− λi)ni for 1 ≤ i ≤ m.
(c) Set g(x) = x − f(x). Let Ts = f(T ) and Tn = g(T ). Show that T = Ts + Tn, Tn is nilpotent, Ts is

semisimple, and Tn ◦ Ts = Ts ◦ Tn.
(d) Show that if T = S + N where S is semisimple, N is nilpotent, and S ◦ N = N ◦ S, then S = Ts and

N = Tn.
Math 593. Homework 6b (Due October 22)

(130) Suppose F is a field and V,W are F -vector spaces.
(a) Suppose V has dimension greater than zero. Suppose S ⊂ V is a list of vectors. Show that S is a basis of V

if and only if every nonzero vector in V can be written in a unique way as a linear combination of vectors in
S with nonzero coefficients.

(b) Suppose B is a basis for V and f : B → W is a function. There is a unique T ∈ HomF (V,W ) such that
T (b) = f(b) for all b ∈ B.

(c) Suppose B is a basis for V and T, S ∈ HomF (V,W ). If T (b) = S(b) for all b ∈ B, then T = S.
(d) If V is a finite dimensional F -vector space of dimension n, then V is isomorphic to Fn.

(131) Adjoints and all that. Suppose F is a field and V , W are finite dimensional F -vector spaces. Recall that V ∗ =
HomF (V, F ) is called the dual space of V . For T ∈ HomF (V,W ) define T ∗ ∈ HomF (W ∗, V ∗) by setting
T ∗(λ) = λ ◦ T for λ ∈W ∗. The linear map T ∗ is called the adjoint of T .
(a) Let v = (v1, v2, . . . , vn) be a basis for V . For 1 ≤ j ≤ n show there is a unique λj ∈ V ∗ satisfying

λj(vi) = δij . Show that the list v∗ = (λ1, λ2, . . . , λn) is a basis for V ∗. [It is called the dual basis of V ; note
that its definition relies on the choice of v.]

(b) If T ∈ HomF (V,W ), then v∗ [T
∗]w∗ =w[T ]tv.

(c) Suppose that T ∈ EndF (V ) := HomF (V, V ). Show that det(T ) = det(T ∗).
(d) Suppose V and W are finite dimensional real vector spaces equipped with inner products 〈, 〉V and 〈, 〉W

respectively. Show that the map v 7→ 〈−, v〉V identifies V with V ∗ and, similarly, w 7→ 〈−, w〉W identifies
W with W ∗.

(e) Recall that under the identifications introduced in problem (131d) we have that T ∗ becomes the unique map
from W to V which satisfies 〈w, T (v)〉W = 〈T ∗(w), v〉V for all v ∈ V and w ∈ W . Under what conditions
on v and w is it true that v[T ∗]w =w[T ]tv? [Hint: Many students have serious difficulties with this problem.]

(f) An element T ∈ End(V ) is called self-adjoint provided that under the identification introduced in problem
(131e) we have T = T ∗. If T is self-adjoint, then what can we say about v[T ]v?
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Math 593. Homework 7a (Due October 26)
(132) Use the Structure Theorem for Modules over a PID together with Homework 10 to show that if F is a finite field,

then F× is a cyclic group.
(133) Suppose R is a commutative ring and M is an R-module. Show that the following are equivalent.

• M is finitely presented.
• There is a short exact sequence

0→ K → F →M → 0

where F is a free R-module and both K and F are finitely generated R-modules.
• There is an exact sequence

F ′ → F →M → 0,

where both F ′ and F are finitely generated free R-modules.
(134) Suppose R is a commutative ring and I ⊂ R is an ideal. Show that if I is a free R-module, then I is a principal

ideal. Under what conditions on R does the converse hold?
(135) Suppose R is a commutative ring. Let I, J be ideals in R. Show that there is an exact sequence of R-modules

0 I ∩ J R R/I ×R/J R/(I + J) 0
β

where β(r) = (r + I, r + J). How is this related to the Chinese Remainder Theorem?
(136) (*) Suppose R is a commutative ring. When is {0} a prime ideal in R?
(137) Suppose R is a ring and M is an R-module. If N , P are submodules of M , then

• N + P is a submodule of M ,
• N ∩ P is a submodule of M , and
• (N + P )/N ' P/(N ∩ P ).

(Compare to Homework 63.)
(138) Suppose k is a field and V is a finite dimensional k-vector space. Fix B ∈ Bil(V × V, k).

(a) Define LB : V → V ∗ by LB(v)(v′) = B(v, v′). Show LB ∈ Homk(V, V
∗).

(b) Define RB : V → V ∗ by RB(v)(v′) = B(v′, v). Show RB ∈ Homk(V, V
∗).

(c) Show that under the natural identification of V ∗∗ with V we have L∗B = RB and R∗B = LB .
(d) Conclude that LB and RB have the same rank. (Recall that for k-vector spaces U,W and T ∈ Homk(U,W )

the rank of T is the dimension of im(T ).)
(139) Suppose R is a ring and M is an R-module. If N , P are submodules of M with N ≤ P , then (M/N)/(P/N) '

M/P . (Compare to Homework 94.)
(140) Suppose R is a ring, M and N are R-modules, and f ∈ HomR(M,N) is surjective. Show that M/ ker(f) ' N .
(141) Suppose k is a field, M ∈ Matn×n(k) with M = −MT , and Q ∈ Matn×n(k)×. Show that if all of the diagonal

entries of M are zero, then the same is true for QTMQ. What if we don’t assume that Q is invertible? [Nota Bene.
If the characteristic of k is not two, then M = −MT implies that the diagonal entries of M are all zero.]

(142) Suppose k is a field and V,W are finite dimensional k-vector spaces. Show that V ⊗k W ∗ ' Homk(W,V ).
(143) EROs and ECOs: Suppose k is a field. A matrix A ∈ Matn×n is symmetric provided that A = AT .

(a) Suppose n = 2 and A ∈ Mat2×2 is symmetric. Show that if the characteristic of k is not two, then we can
find Q ∈ Mat2×2(k)× for which QTAQ is diagonal.

(b) Let A ∈ Matn×n be symmetric. Show that if the characteristic of k is not two, then we can find Q ∈
Matn×n(k)× for which QTAQ is diagonal.

(c) Show that there is a Q ∈ Mat2×2(Q)× so that

QT
[
1 0
0 1

]
Q =

[
2 0
0 2

]
(d) Show that if the characteristic of k is two, then for A =

[
0 1
1 0

]
the matrix QTAQ is not diagonal for all

Q ∈ Mat2×2(k)×.
(144) Suppose R is a ring and

0 L M N 0α β
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is a short exact sequence of R-modules. Show that if there exists f ∈ HomR(N,M) for which β ◦ f = IdN , then
the sequence splits; that is, there is an isomorphism ϕ : M ' L⊕N for which the following diagram commutes

0 L M N 0

0 L L⊕N N 0

α

IdL

β

ϕ IdN

ι π

where ι is the natural injection and π is the natural surjection.
(145) Suppose R is a ring. Consider the following commutative diagram consisting of two (horizontal) exact sequences

of R-modules linked by (vertical) R-module homomorphisms.

A′ B′ C ′ 0

0 A B C

α′

f

β′

g h

α β

(a) Show that we have well-defined maps ᾱ : coker(f)→ coker(g) and β̄ : coker(g)→ coker(h).
(b) Show that the sequence

coker(f) coker(g) coker(h)ᾱ β̄

is exact.
(c) Show that if β is surjective, then β̄ is surjective.

Math 593. Homework 7b (Due October 29)

(146) Choosing wisely. In physics one typically develops theories that are coordinate-free. However, when it comes time
to actually solve a problem, one must choose an appropriate coordinate system. The story is similar in linear alge-
bra; and eigenvalues and eigenvectors sometimes give us a way to choose coordinates wisely (and thus use change
of coordinate matrices, etc.). Recall that the Fibonacci sequence begins 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .. The
nth Fibonacci number, Fn, is given by the rules: F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2.
(a) Define the linear transformation T : R2 → R2 by T (~e1) = ~e1 + ~e2 and T (~e2) = ~e1 where (~e1, ~e2) is the

standard basis for R2. Is T injective? surjective? invertible?
(b) Let A =e[T ]e be the matrix that represents T with respect to the standard basis e = (~e1, ~e2). Show that for

m ≥ 1 we have [
Fm+1

Fm

]
e

= A

[
Fm
Fm−1

]
e

= Am
[
1
0

]
e

.

(c) Thus, to compute the 43th Fibonacci number, we need only compute A42. Convince yourself that this is a bit
unreasonable to compute. (“He chose poorly.”)

(d) It would be awesome if we could find linearly independent vectors ~v1, ~v2 ∈ R2 and distinct λ1, λ2 ∈ R such
that T (~vi) = λi~vi. Supposing this is possible, write down the matrix B =v[T ]v that represents T with respect
to the basis v = (~v1, ~v2). Can you compute B43? Supposing ~v1 and ~v2 exist, how unique will they be?

(e) How to compute these ~v1, ~v2 ∈ R2 and λ1, λ2 ∈ R? Show that if Id denotes the identity map on R2, then ~vi is
in the kernel of the linear transformation (T − λi Id).

(f) We know that a linear transformation from R2 to R2 has a nontrivial kernel if and only if the determinant of
the associated matrix with respect to ~e1 and ~e2 is zero. Compute this determinant for (T − λi Id) to find the
values of λ1 and λ2.

(g) Now, how do we find ~v1 and ~v2? That’s right, we compute the kernel of (T − λi Id). Thankfully, we know
how to do this via Gauss-Jordan, so do it. If possible, normalize your vectors so that [~vi]e has a one in its
second entry. (That is, write ~vi as ??~e1 + ~e2).

(h) Write down B =v [T ]v, the matrix that represents T with respect to the basis v = (~v1, ~v2). (Hint: This is
meant to be easy, I just want you to remember what you are doing!)
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(i) Recall how to move between the (ordered) basis e = (~e1, ~e2) and the (ordered) basis v = (~v1, ~v2). (Wait,
how do we know that (~v1, ~v2) is a basis for R2?). Thankfully, this is pretty straightforward – we just need
to compute v[Id]e to move from the choice of coordinate system e to the choice of coordinate system v.
Similarly, we compute e[Id]v to move from v to e. Compute M =v [Id]e and N =e [Id]v. Show that
NM = MN = Id2 (Hint:

Id2 =e[Id]e =v[Id]v =v[Id ◦ Id]v =v[Id]e e[Id]v etc.)

(j) Using T = Id ◦T ◦ Id, show Am = M−1BmM .
(k) Compute the mth Fibonacci number.
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Math 593. Homework 8a (Due November 2)
(147) Suppose that k is a field not of characteristic two. Suppose that V is a k-vector space.

(a) Show that there is an involution f ∈ Homk(V ⊗kV, V ⊗kV ) for which f(v1⊗v2) = v2⊗v1 for all v1, v2 ∈ V .
(b) Show that the eigenvalues of f are ±1. [Note: we are not assuming finite dimensionality, so you cannot use

determinants.]
(c) Show that V ⊗k V = (V ⊗k V )(1)⊕ (V ⊗k V )(−1). If V is finite dimensional, what are the dimensions of

(V ⊗k V )(1) and (V ⊗k V )(−1)?
(d) How is this related to Prompt 294?

(148) If it makes sense, describe each of the following tensor products.
(a) Rn ⊗R C, Cn ⊗R C, Rn ⊗C C, and Cn ⊗C C.
(b) Q⊗Z Q and Q⊗Q Q. Does this suggest anything?

(149) Suppose R is a commutative ring and M , N are unital R-modules. Show that
∑n

i=1mi ⊗ ni =
∑`

j=1m
′
j ⊗ n′j in

M ⊗R N if and only if
∑n

i=1 ϕ(mi, ni) =
∑`

j=1 ϕ(m′j , n
′
j) for all bilinear ϕ : M ×N → P .

(150) Suppose R is a commutative ring. If M is an R-module and F is a free R-module with basis (fi : i ∈ I), then
every element of M ⊗R F has a unique representation as

∑
i∈I mi ⊗ fi with abfm mi = 0. [Hint: You may want

to use Prompt (228a).]
(151) Suppose a, b ∈ Z>1 and d = (a, b).

(a) Show that the map ϕ : Z/aZ× Z/bZ→ Z/dZ given by ϕ(x, y) = xy mod d is Z-bilinear.
(b) Show that ϕ̄ : Z/aZ⊗Z Z/bZ→ Z/dZ is surjective. [Hint: What is ϕ̄(1⊗ y)?]
(c) Show that |Z/aZ⊗Z Z/bZ| ≤ d. [Hint: 1 spans Z/aZ and 1 spans Z/bZ, so 1 ⊗ 1 spans Z/aZ ⊗Z Z/bZ

(why?). Show that the order of 1⊗ 1 divides d.]
(d) Conclude that Z/aZ⊗Z Z/bZ ' Z/dZ.

(152) (a) Suppose R is a commutative ring and M , N , and P are unital R-modules. Suppose f ∈ Hom(M ⊗R N,P ).
Does there exist a bilinear map B : M ×N → P such that B(m,n) = f(m⊗n) for every (m,n) ∈M ×N?
If so, how unique is B?

(b) Show that BilR(M ×N,P ) ' HomR(M,HomR(N,P )).
(c) (Tensor-hom adjunction) Show that HomR(M ⊗R N,P ) ' HomR(M,HomR(N,P )).
(d) Conclude that (M ⊗R N)∗ ' HomR(M,N∗).

(153) Here is a different (and important for base change) version of Homework 152c. Suppose R,S are commutative
rings. Suppose f ∈ Hom(R,S). We can think of an S-module B as an R module by setting r · b = f(r)b for
b ∈ B and r ∈ R. Suppose P is an R-module and M is an S-module. We have:

HomS(M,HomR(S, P )) ' HomR(M ⊗S S, P ) ' HomR(M,P )

as abelian groups. To say it in a more sophisticated way:

HomS(·,HomR(S, P )) ' HomR(· ⊗S S, P ) ' HomR(·, P )

as functors from the category of S-modules to the category of abelian groups. (Note: for µ ∈ HomR(S, P ) and
s′, s ∈ S we have (s′ · µ)(s) = µ(s′s).) [Hint: Suppose α ∈ HomS(M,HomR(S, P )). Define ϕ : M × S → P
by ϕ(m, s) = (α(m)(s)). Note that α(m) ∈ HomR(S, P ), so (α(m)((f(r)s) = r((α(m))(s)).]

(154) Suppose R is a commutative ring, I is an ideal in R, and M is an R-module.
(a) Show that R/I ⊗RM 'M/IM . How unique is this isomorphism?
(b) Conclude that R⊗RM 'M .
(c) Describe aZ⊗Z Z/bZ.
(d) Suppose P is an R module. Is there a bijective correspondence between the set of bilinear maps from R×M

to P and HomR(M,P )?
(155) Suppose k is a field and V and W are finite dimensional k-vector spaces.

(a) Show that the following chain of linear isomorphisms holds.

Homk(V,W ) 'W ⊗k V ∗ 'W ∗∗ ⊗k V ∗ ' V ∗ ⊗k W ∗∗ ' Homk(W
∗, V ∗).

Verify that the isomorphism from left to right is the familiar one that sends T ∈ Homk(V,W ) to T ∗ ∈
Homk(W

∗, V ∗) where T ∗(λ) = λ ◦ T for all λ ∈W ∗.
(b) Show that

V ∗ ⊗k W ∗ ' (V ⊗k W )∗.
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[Hint: If λ⊗ µ ∈ V ∗ ⊗k W ∗, then we have a map (v ⊗ w 7→ λ(v)µ(w)) . . . ]
(c) Show that the following chain of linear isomorphisms holds.

Homk(V,W )∗ ' (W ⊗k V ∗)∗ 'W ∗ ⊗k V ∗∗ 'W ∗ ⊗k V ' V ⊗k W ∗ ' Homk(W,V ).

Note that this chain identifies Homk(W,V ) and Homk(V,W ) as dual to each other, hence it produces a
nondegenerate pairing

τ : Homk(W,V )×Homk(V,W )→ k.

Show that τ(T, S) = tr(T ◦ S) = tr(S ◦ T ).
(156) Suppose R is a ring. Consider the following commutative diagram consisting of two (horizontal) exact sequences

of R-modules linked by (vertical) R-module homomorphisms.

A′ B′ C ′ 0

0 A B C

α′

f

β′

g h

α β

(a) Show that the sequence

ker(f) ker(g) ker(h)

makes sense and is exact.
(b) Show that if α′ is injective, then the map from ker(f) to ker(g) is also injective.

(157) Suppose R is a ring and

0 L M N 0α β

is a short exact sequence of R-modules. Show that if there exists g ∈ Hom(M,L) for which g ◦α = IdL, then the
sequence splits; that is, there is an isomorphism ϕ : M ' L⊕N for which the following diagram commutes

0 L M N 0

0 L L⊕N N 0

α

IdL

β

ϕ IdN

ι π

where ι is the natural inclusion and π is the natural surjection. Compare to Homework 144.

Suppose R is ring and 0 L M N 0 is an exact sequence of R-modules. If B is another
R-module, then for every f ∈ HomR(B,L) there is a (unique) map f̃ ∈ HomR(B,M) so that the following diagram
commutes

B

0 L M N 0

f
f̃

Indeed, this is basically the proof that X 7→ HomR(B,X) is left exact. (See Homework 106.) (Un)fortunately, the same
thing is not true if instead of looking at maps from B to L, we look at maps from L to B. That is, if g ∈ HomR(L,B),
then there need not exist ./ ∈ HomR(M,B) that makes the following diagram commute.

0 L M N 0

B

g
./

(158) Show that if R is a field, then for all g ∈ HomR(L,B) there exists ./ ∈ HomR(M,B) so that the above diagram
commutes.

(159) Show by example that the map ./ need not exist in the category of Z-modules. [Hint: Take L = M = B = Z.]
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Definition. Suppose R is a ring. An R-module Q is said to be injective provided that for every exact sequence
0 L M of R-modules and for every g ∈ HomR(L,Q) there exists g̃ ∈ HomR(M,Q) so that the

following diagram commutes
0 L M

Q

g
g̃

(160) Show that R cannot, in general, be injective in the category of R-modules. [Suppose r ∈ R is a non-zero-divisor
and consider the map µr ∈ HomR(R,R) given by µr(s) = rs. Look at 0 R R R/(r) 0.

µr

Take Q = R and g = IdR.]
Homework 160 shows that if Q is to be injective, then for all ideals I of R and all maps g ∈ HomR(I,Q), we need
to find a map g̃ ∈ HomR(R,Q) extending g (that is, resI g̃ = g). This suggests that we need something like: for all
non-zero-divisors r ∈ R we need rQ = Q. In the category of Z-modules, we know of two such modules:

(161) Show that Q and/or Q/Z are injective in the category of Z-modules. [Hint: Suppose L ≤ M are Z-modules and
g ∈ HomR(L,Q). Consider the set

S = {(g′,M ′) |L ≤M ′ ≤M and resL g
′ = g}.

For (g′,M ′), (g′′,M ′′) ∈ S we write (g′,M ′) ≤ (g′′,M ′′) provided that M ′ ≤ M ′′ and resM ′ g
′′ = g′. Show that

Zorn’s Lemma applies . . . ]
We will have more to say about injective modules later.

Math 593. Homework 8b (Due November 5)
(162) Suppose k is a field and V is a k-vector space. Suppose v, v′ ∈ V . Under what conditions do we have v⊗v′ = v′⊗v

in V ⊗k V ?
(163) Suppose that (V, 〈 , 〉) is a finite dimensional real inner product space. Suppose T ∈ Hom(V, V ). Show that the

following are equivalent:
(a) T preserves distances i.e., ||T (v)− T (w)|| = ||v − w|| for all v, w ∈ V .
(b) 〈T (v), T (w)〉 = 〈v, w〉 for all v, w ∈ V . (We say T preserves the inner product.)
(c) T ∗ ◦ T = T ◦ T ∗ = IdV .
(d) T maps any orthonormal basis of V to an orthonormal basis of V .
(e) For any orthonormal basis v of V , the columns of v[T ]v form an orthonormal basis of Rn with respect to the

standard inner product on Rn.
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Math 593. Homework 9a (Due November 9)
(164) Suppose k is a field and A,B ∈ Matn×n(k). We say that A is cogredient to B provided that there is a Q ∈

Matn×n(k)× for which QTAQ = B.
(a) Show that cogredient matrices have the same rank.
(b) Suppose A and B are cogredient. Show that det(A) 6= 0 if and only if det(B) 6= 0.

(165) Suppose k is a field and R = k[x, y]/(xy). Let M = R/(x) and N = R/(y).
(a) Show that λ : M → R which maps m ∈ M to the image of ym in R belongs to M∗. Show that the map

m 7→ ṁλ, where ṁ ∈ R is any representative for m, induces a well-defined isomorphism T : M →M∗.
(b) Show that M ⊗R N = R/(x, y) ' k.
(c) Conclude that M∗ ⊗R N∗ 'M ⊗R N ' k.
(d) Use tensor-hom adjunction to show (M ⊗R N)∗ = 0. Compare to Exercise 155b.
(e) Remark/Problem. Exercise 155b can fail to generalize for many reasons – here is another example that shows

why finitely generated is needed: Suppose R is a commutative ring and let P be a (unital) free module with
R-basis (pn)n∈N. Define B : P × P → R by B(pn, pm) = δm,n. Let µ ∈ (P ⊗R P )∗ be the (unique)
corresponding linear map. Show that µ is not in the image of the natural map P ∗ ⊗R P ∗ → (P ⊗R P )∗.

(166) Suppose k is a field and V , W are finite dimensional k-vector spaces. Suppose ϕ ∈ Homk(V, V ) and τ ∈
Homk(W,W ).
(a) Show tr(ϕ⊗ τ) = tr(ϕ) tr(τ).
(b) Show det(ϕ⊗ τ) = det(ϕ)dim(W ) det(τ)dim(V ). [HINT: ϕ⊗ τ = (IdV ⊗τ) ◦ (ϕ⊗ IdW ).]

(167) Suppose R is a ring. Show that if M , M ′, N , and N ′ are finitely generated free R-modules, then the map
S : HomR(M,M ′)⊗R HomR(N,N ′)→ HomR(M ⊗R N,M ′ ⊗R N ′) of Prompt (239) is an isomorphism.

(168) Put A = C ⊗R C. Since C is an R-algebra, thanks to Prompt (279) (c.f. [DF04, Proposition 21]), we know that
C⊗R C is an R-algebra where (

∑
ai⊗ bi)(

∑
ck ⊗ dk) =

∑
i,k(aick ⊗ bidk). Let (b1, b2, b3, b4) be the R-basis of

A given by b1 = 1⊗ 1, b2 = 1⊗ i, b3 = i⊗ 1, and b4 = i⊗ i.
(a) Show that (b4 − 1A)(b4 + 1A) = 0, so A is not an integral domain. [What is the identity of the ring A?]
(b) Show that as an R-module, the left (r·

∑
zi⊗wi =

∑
rzi⊗wi) and right actions ( (

∑
zi⊗wi)·r =

∑
zi⊗rwi)

of R on A are the same. However, as a C-module (via extension of scalars), the left and right actions of C on
A are not the same.

(c) Let e1 = 1/2(b1 + b4) and e2 = 1/2(b1 − b4). Show that e1e2 = e2e1 = 0, e1 + e2 = 1A, e2
1 = e1 and

e2
2 = e2. Conclude that A ' Ae1 ×Ae2. [Hint: Exercise 28 may be useful.]

(d) Prove that the map ϕ : C× C→ C× C that sends (z, w) to (zw, zw̄) is an R-bilinear map.
(e) Let Φ : A→ C× C denote the unique R-linear map obtained from ϕ. Show that Φ(e1) = (0, 1) and Φ(e2) =

(1, 0). Show that Φ is C-linear where the action on A is the left action and the action on C × C is given by
z(w1, w2) = (zw1, zw2). Deduce that Φ is surjective, and hence defines a C-algebra isomorphism of C⊗R C
with C× C.

(169) Suppose k is a field. Does a short exact sequence of vector spaces always split?

Suppose R is ring and 0 L M N 0 is an exact sequence of R-modules. If A is another
R-module, then for every f ∈ HomR(A,L) there is a (unique) map f̃ ∈ HomR(A,M) so that the following diagram
commutes

A

0 L M N 0

f
f̃

Indeed, this is basically the proof that X 7→ HomR(A,X) is left exact. (See Homework 106.) (Un)fortunately, the same
thing is not true at the right-hand of the sequence. That is, if g ∈ HomR(A,N), then there need not exist a projection ,
from A to M that makes the following diagram commute.

A

0 L M N 0

g,

(170) Show by example that the map , need not exist.
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(171) Show that if A is free, then the map , must exist. [Hint: Choose a basis.]

Definition. Suppose R is a ring. An R-module P is said to be projective provided that for every exact sequence
M N 0 of R-modules and for every g ∈ HomR(P,N) there exists g̃ ∈ HomR(P,M) so that the

following diagram commutes
P

M N 0

g
g̃

(172) Show that every free R-module is projective.
(173) Show that Z/2Z is a projective Z/6Z-module. [Hint: Use the Chinese Remainder Theorem.] Is Z/2Z a free

Z/6Z-module?
Toward the end of term, projective and injective modules will help us study the failure of exactness for various functors.

(174) Suppose R is ring.
(a) Show that an R-module is projective if and only if the functor X 7→ HomR(P,X) is exact.
(b) Show that an R-module is injective if and only if the functor X 7→ HomR(X,Q) is exact.

(175) Suppose R and S are commutative rings and let Q be an injective R module. Suppose f ∈ Hom(R,S). Show that
f !(Q) = HomR(S,Q) is an injective S-module. (s ∈ S acts on α ∈ HomR(S,Q) by (sα)(s′) = α(ss′), and for
r ∈ R we have α(f(r)s′) = r(α(s′)).) [Hint: Use tensor-hom adjunction (see Homework 153).]

(176) Suppose R is a commutative ring. Show that the category of R-modules admits non-trivial injective modules.
[Hint: You may wish to use Prompt 4, Homework 161, and Homework 175.]

Math 593. Homework 9b (Due November 12)
(177) Suppose that (V, 〈 , 〉) is a finite dimensional real inner product space. A linear transformation T ∈ Hom(V, V )

satisfying any of the equivalent conditions in (163) is said to be an orthogonal transformation of V with respect
to 〈 , 〉. Let O(V, 〈 , 〉) denote the set of orthogonal transformations on V . People usually write O(V ) rather than
O(V, 〈 , 〉) if there is no possibility for confusion.
(a) Show that T ∈ O(V ) if and only if T ∗ ∈ O(V ). Conclude that T is an orthogonal transformation if and only

if for any orthonormal basis v of V , the rows of v[T ]v form an orthonormal basis of Rn with respect to the
standard inner product on Rn.

(b) Show that if g ∈ O(V ), then det(g) ∈ {±1}.
(c) Show that if a, b ∈ O(V ), then ab = a ◦ b ∈ O(V ). That is, composition defines a binary operation on O(V ).
(d) Show that O(V ) is a group; it is called the orthogonal group (for (V, 〈 , 〉)). That is, show: (a) the binary

operation on O(V ) is associative; (b) there is an identity element e ∈ O(V ) such that ea = ae = a for all
a ∈ O(V ); and (c) for every x ∈ O(V ) there is an inverse y ∈ O(V ) such that xy = yx = e. [Note: we have
already proved that if e exists, it is unique. We have also proved that when inverses exist, they are unique. You
should review the proofs of those statements – do you need associativity?]

(e) We set SO(V ) = SO(V, 〈 , 〉) = {h ∈ O(V, 〈 , 〉) | det(h) = 1}. SO(V ) is called the special orthogonal
group (for (V, 〈 , 〉)). Show that SO(V ) is a subgroup of O(V ). That is, SO(V ) is a group and it is a subset
of O(V ). Show also that SO(V ) is a normal subgroup of O(V ), that is: for all g ∈ O(V ) and h ∈ SO(V ) we
have ghg−1 ∈ SO(V ).
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Math 593. Homework 10a (Due November 16)

(178) Suppose p ∈ Z is a prime number.
(a) Show that pZ ' Z as Z-modules.
(b) What is Z⊗Z (Z/pZ)?
(c) What is pZ⊗Z (Z/pZ)?
(d) Look at the inclusion ι : pZ → Z and consider the image of pZ ⊗Z Z/pZ in Z ⊗Z Z/pZ under ι ⊗ IdZ/pZ.

What is it?
(179) Suppose A is an abelian group. What is A⊗Z Z?
(180) Suppose k is a field. Suppose A ∈ Matn×n(k) and set BA(x, y) = xT (Ay).

(a) Show that BA ∈ Bil(kn × kn, k).
(b) Show that BA is symmetric if and only if A is symmetric (that is, A = AT ).
(c) Show that BA is alternating if and only if A is skew-symmetric (that is A = −AT ) and the diagonal entries of

A are zero.
(d) Show that BA is skew-symmetric if and only if A is skew-symmetric.

(181) Show: If M is a finitely generated R-module, then AltdR(M,P ) = 0 for all d >> 0. What can you say about
Symd

R(M,P )?

Suppose k is R or C and V is a k-vector space of dimension n. In physics, a (contravariant) tensor of rank ` is a quantity
with ` indices, e.g. Aµ1µ2···µ` , whose Cartesian components Ãµ1µ2···µ` in a new coordinate system are obtained from the
original ones by the rule

Ãµ1µ2···µ` =
∑

1≤ν1,ν2,...,µ`≤n
Aν1ν2···µ`aµ1ν1aµ2ν2 · · · aµ`ν`

where (aµν) is the matrix expressing the first coordinate system of V in terms of the second.

(182) If the notation in this problem is correct, it is a miracle. Suppose k is R or C and let V denote an n-dimensinal
k-vector space. Let e = (e1, e2, . . . , en) be a basis for V . An element T ∈ V ⊗` = V ⊗ V ⊗ · · · ⊗ V looks like
T =

∑
j v1j ⊗ v2j ⊗ · · · ⊗ v`j for (v1j , v2j , v3j , . . . , v`j) ∈ V ` = V × V × · · · × V .

(a) If we write vmj =
∑

i cmjiei, then T =
∑

1≤i1,i2,...,i`≤n T
i1i2···i`ei1 ⊗ ei2 ⊗ · · · ⊗ ei` where T i1i2···i` =∑

j

∏`
m=1 cmjim .

(b) Suppose that ẽ = (ẽ1, ẽ2, . . . , ẽn) is another basis for V and let (aij) =ẽ [IdV ]e denote the change of basis
matrix. Show that T =

∑
1≤i1,i2,...,i`≤n T̃

i1i2···i` ẽi1 ⊗ ẽi2 ⊗ · · · ⊗ ẽi` where

T̃ i1i2···i` =
∑

1≤j1,j2,...,j`≤n
T j1j2···j`ai1j1ai2j2 · · · ai`j` .

(c) Conclude that T is a “(contravariant) tensor of rank `”.

In differential geometry and general relativity a k-tensor on a finite dimensional real vector space V is an element of
Mult(V k,R), the vector space of multilinear functions from V × V × · · · × V to R.

(183) In this Prompt a connection between tensors in general relativity/differential geometry and tensors in Math 593 is
made.
(a) Show MultR(V k,R) ' (V ⊗k)∗. [Hint: This is supposed to be easy.]
(b) Show MultR(V k,R) is (canonically) isomorphic to (V ∗)⊗k. [Warning! This is not true if V is infinite

dimensional. Homework 155b may help.]
(c) Conclude that a tensor in general relativity/differential geometry is a tensor in Math 593.

(184) (Bonus.) If you hang out with the differential geometry/general relativity crowd, you will notice they speak of
(r, s)-tensors or “mixed tensors of type (r, s)”. These are multilinear maps with r vector and s dual vector inputs
which output a scalar. Show that such a map can naturally be identified with an element of

(V ⊗ V ⊗ · · · ⊗ V ⊗ V ∗ ⊗ V ∗ ⊗ · · · ⊗ V ∗)∗

where V occurs r times and V ∗ occurs s times. Show that this is, in turn, canonically isomorphic to V ∗ ⊗ V ∗ ⊗
· · · ⊗ V ∗ ⊗ V ⊗ V ⊗ · · · ⊗ V where V ∗ occurs r times and V occurs s times.
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(185) (Bonus.) A mixed tensor of type (r, s) can be encoded as a quantity with r + s indices, e.g. Aµ1µ2···µrν1ν2···νs , whose
Cartesian components Ãµ1µ2···µrν1ν2···νs in a new coordinate system are obtained from the original ones by the rule

Ãµ1µ2···µrν1ν2···νs =????

What is ???? ? If your answer doesn’t involve a transpose inverse somewhere, it is probably wrong.
(186) Suppose R is a commutative ring and M is a free R-module of free rank r. Show that

∧d
R(M) is a free R module

of free rank
(
r
d

)
.

(187) Show that for all R-modules Q and all f ∈ AltdR(M,Q) there exists a unique f̄ ∈ HomR(
∧d
R(M), Q) for which

the following diagram commutes.

Md
∧d
R(M)

Q

∧d

f
f̄

Every function f in Symd
R(M, ·) is a multilinear function that is characterized by the property that

f(m1,m2, . . . ,md)− f(mτ(1),mτ(2), . . . ,mτ(d)) = 0

for all involutions τ of Nd = {1, 2, . . . , d}. Thus, in creating a universal object that corresponds to Symd
R(M, ·) we should

consider the R-submodule

Y = 〈(m1⊗m2⊗· · ·⊗md)−(mτ(1)⊗mτ(2)⊗· · ·⊗mτ(d)) | for all m1 ⊗m2 ⊗ · · · ⊗md ∈M⊗d and all involutions τ of Nd〉

of M⊗d and our candidate universal object is the quotient module SdR(M) = M⊗d/Y , which is called the dth symmetric
power module. The induced map

·d : Md M⊗d SdR(M)
⊗d

is symmetric,1 and the image of (m1,m2, . . . ,md) ∈Md under this map is denoted m1 ·m2 · · · · ·md.
(188) Show that for all R-modules Q and all f ∈ Symd

R(M,Q) there exists a unique f̄ ∈ HomR(SdR(M), Q) for which
the following diagram commutes.

Md SdR(M)

Q

·d

f
f̄

(189) Suppose k is a field and V is an n-dimensional k-vector space.
(a) Show that the k-vector space S2(V ) has dimension

(
n+1

2

)
. Show that the k-vector space S2(V ∗) may be real-

ized as the k-vector space of homogeneous of degree two polynomials (in n variables) on V . [A homogeneous
of degree d polynomial in n variables has the property that f(ta1, ta2, ta3, . . . , tan) = tdf(a1, a2, . . . , an).
A polynomial p in n variables on V is function on V that for every basis β = (v1, v2, . . . , vn) has the property
that p(x1v1 + x2v2 + · · · + xnvn) is a polynomial in x1, x2, . . . , xn. If you’ve never checked before, you
should check that being homogeneous of degree d is independent of the choice of basis.]

(b) (Bonus.) Show that the k-vector space Sd(V ) has dimension
(
n+d−1

d

)
. Show that the k-vector space Sd(V ∗)

may be realized as the k-vector space of homogeneous of degree d polynomials in n-variables.
(190) Compute the rank and signature of the symmetric real matrix−15 −18 −23

−18 −21 −28
−23 −28 −35


(191) Let V be the R-vector space of all polynomials ax2 + bx+ c with a, b, c ∈ R. For p(x), q(x) ∈ V , define

〈p(x), q(x)〉 = p′(0)q(0) + p(0)q′(0).,

where p′(x) denotes the derivative of p(x).
(a) Verify that 〈 , 〉 is a symmetric bilinear form.

1Note that Y is the smallest submodule of M⊗d for which the induced map from Md to M⊗d/Y is symmetric.
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(b) Find an orthogonal basis of V with respect to 〈 , 〉.
(c) What is the signature of 〈 , 〉?

(192) Suppose m ∈ Z>1 and I ≤ Z/(m) is an ideal.
(a) Show that there exists k ∈ Z with k | m such that I = kZ/(m). Conclude that if d = m

k , then I =d Z/(m) =
{x ∈ Z/(m) | dx = 0}.

(b) Suppose f ∈ HomZ/(m)(I,Z/(m)). Show that there exists ` ∈ Z/(m) for which f(i) = `i for all i ∈ I .
Conclude that there exists f̃ ∈ HomZ/(m)(Z/(m),Z/(m)) for which resI f̃ = f .

(c) Show that Z/(m) is an injective Z/(m)-module. [Hint: Imitate the proof of Homework 161.]
(d) (Bonus.) More generally, if R is a PID and a ∈ R, show R/(a) is an injective R/(a)-module. [Hint: Copy

the proof of Homework 161.]
(193) Suppose that A is a Z-module.

(a) Show there is a surjective Z-module homomorphism Z⊕A → A; conclude that A ' Z⊕A/K for some Z-
module K ≤ Z⊕A.

(b) Show that Q⊕A/K is injective. [Hmmmm. Proving essentially the same thing thrice (see Homework 161 and
Homework 192); maybe there is a general result lurking here? It is called Baer’s criterion; however, you do
not need it to do this problem.]

(c) Conclude that every Z-module may be identified with a submodule of an injective Z-module.
Math 593. Homework 10b (Due November 19)

(194) Recall that in R2 the composition of two rotations is a rotation. Euler proved that the composition of two rotations
(about possibly different axes) in R3 is also a rotation (around some third line through the origin). Your turn.
(a) Suppose that R ∈ HomR(R2,R2). Show that R ∈ SO(R2, ·) if and only if R is a rotation about the origin.

(Hint: Suppose that v is an orthonormal basis for R2, compute v[R]v.)
(b) Let L be a rotation in R3 by an angle θ about a line ` passing through the origin. Show that L ∈ SO(R3, ·).

(Hint: find the matrix of L in a suitable basis.)
(c) Let L1 and L2 be two rotations in R3 about possibly different axes. Show that M = L1 ◦ L2 ∈ SO(R3, ·).
(d) Show that 1 is an eigenvalue of M . (Hint: show det(M − I) = det((M − I)∗) = −det(M − I) using the

fact that MM∗ = I .)
(e) Let v be an eigenvector of M for the eigenvalue 1. Let W be the plane (through the origin) orthogonal to v.

Show that M(W ) = W and that resW M ∈ O(W, ·).
(f) Show that resW M ∈ SO(W, ·).
(g) Conclude that M is a rotation in R3 about a line through the origin.
(h) Is every element of SO(R3, ·) given by rotation about a line through the origin? What do elements of O(R3, ·)

look like?
(i) Let L1 be rotation about the x-axis by an angle of 90◦ which sends the y-axis to the z-axis and L2 a rotation

about the y-axis by an angle of 90◦ which sends the z-axis to the x-axis. Let M = L1 ◦ L2. Then M is a
rotation about what line? By what angle?

(j) Bonus: Now do the same problem with the angles 90◦ replaced by 45◦.
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Math 593. Homework 11a (Due November 23)
Thanksgiving – no homework

Math 593. Homework 11b (Due November 26)
(195) Recall how to compute (that is, remember what matrices are for). Let V denote the subspace of C∞(R) spanned

by sin(t), t sin(t), cos(t), and t cos(t).
(a) Show that B = (sin(t), t sin(t), cos(t), t cos(t)) is a basis for V .
(b) Show that if f ∈ V , then f ′ ∈ V . Thus, we can define D ∈ HomR(V, V ) by D(f) = f ′ for f ∈ V .
(c) Let A ∈ R4×4 denote the B-matrix of D; that is, A =B[D]B. Compute A. For the rest of this problem, you

are not allowed to compute any derivatives or integrals.
(d) Show that A4 + 2A2 + I4 = 0. Conclude that A is invertible and compute A−1.
(e) Use A−1 to compute an antiderivative of 17 sin(x)− 4x cos(x) + 9x sin(x). Explain, without computing any

integrals or derivatives, how you know your answer is correct.
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Math 593. Homework 12a (Due November 30)
(196) Suppose k is R or C, V is a k-vector space, and 〈 , 〉 is an inner product on V . For v ∈ V define the norm of v,

denoted ||v||, by ||v|| =
√
〈v, v〉. One should think of ||v|| as the length of v. Show

(a) For all v, w ∈ V we have

||v ± w||2 = ||v||2 ± 2 Re(〈v, w〉) + ||w||2.

(b) (polarization identity over R) If k = R, then for all u, v ∈ V we have

〈u, v〉 =
1

4
||u+ v||2 − 1

4
||u− v||2.

(c) (polarization identity over C) if k = C, then for all u, v ∈ V we have

〈u, v〉 =
1

4

4∑
m=k

im||u+ imv||2 =
1

4
||u+ v||2 − 1

4
||u− v||2 +

i

4
||u+ iv||2 − i

4
||u− iv||2.

(d) (Cauchy-Bunyakovsky-Schwarz inequality) Suppose k is R or C. show that for all u, v ∈ V we have

|〈u, v〉| ≤ ||u||||v||.

[Hint: Draw a picture of the situation in R2 with the standard inner product. Show that we can reduce to the
case when ||u|| = 1 and look at the vector w = v − 〈v, u〉u. Square everything.]

(e) (triangle inequality) Suppose k is R or C. show that for all u, v ∈ V we have

||u+ v|| ≤ ||u||+ ||v||.

[Hint: Square everything.]
(197) (Bessel’s inequality) Suppose k is R or C, V is a k-vector space, and 〈 , 〉 is an inner product on V .

(a) Suppose (u1, u2, . . . , uk) is an orthogonal set of non-zero vectors in V . If v is any vector in V , then

k∑
m=1

|〈v, um〉|2

||um||2
≤ ||v||2

with equality if and only if

v =

k∑
m=1

〈v, um〉
||um||2

um.

(b) Show ∫ 1

0

∣∣∣∣∣
k∑

n=−k
cne

2πint

∣∣∣∣∣
2

dt =
k∑

n=−k
|cn|2 .

(c) Show that for all f ∈ C0([0, 1],C) we have

k∑
n=−k

∣∣∣∣∫ 1

0
f(t)e−2πint dt

∣∣∣∣2 ≤ ∫ 1

0
|f(t)|2 dt.

(198) Suppose k is R or C, V is a finite dimensional k-vector space, and 〈 , 〉 is an inner product on V . Let W be a
subspace of V . Show that V = W +W⊥ and W ∩W⊥ = {0}.

(199) Suppose k is a field, V is a finite dimensional k-vector space, and B ∈ Bil(V 2, k) is alternating. Show that
there exists a basis v for V such that the matrix M = M(B,v) of B with respect to v is of the form M =

diag(S, S, S, . . . , S, 0, 0, . . . , 0) where S =

[
0 1
−1 0

]
(200) Suppose k is a field, V is a finite dimensional k-vector space, and B ∈ Bil(V 2, k) is alternating. Show that the

rank of B is even and its determinant is a square. [Hint: Homework 199.]
(201) Suppose k is a field and V is a finite dimensional k-vector space. Suppose B,B′ ∈ Bil(V 2, k) are alternating.

Show that B and B′ are cogredient if and only if they have the same rank. [Hint: Homework 199.]
(202) Show that the sequence that occurs prior to Prompt 317 is exact at ker(h).
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Definition. Suppose R is a ring. A cochain complex of R-modules is a sequence of R-modules and R-module homo-
morphisms

· · · M i−1 M i M i+1 · · ·di−2 di−1 di di+1

such that di ◦ di−1 = 0 for all i. The cochain complex is often denoted M• or (M•, d•).

(203) Show that by setting Mj = M−j and dj = d−j every cochain complex may be viewed as a chain complex. Is the
converse true?

Definition. Suppose M• is a cochain complex of R-modules. The ith cohomology of M• is the R-module Hi(M•) :=
ker(di)/ im(di−1).

(204) Show that Hj(M•) = H−j(M−•).

Definition. Suppose R is a ring and N is an R-module. A (left) resolution of N an exact sequence

· · · Q−n Q1−n · · · · · · Q−1 Q0 N 0

where each Qm is an R-module. A resolution is said to be finite provided that only finitely many of the modules Qm are
nonzero.

We should call this a coresolution, but almost nobody does.

(205) Suppose R is a ring and N is an R-module. Show that

· · · 0 0 · · · · · · 0 N N 0

is a resolution of N . The goal is to use resolutions to learn something about N , so we usually require the elements
Qj of our cochain to be special in some way (e.g., they are all free, or projective, or injective, or ...). Typically, N
will not be required to be special.

We often abuse language and say that the cochain complex Q• given by

· · · Q−n Q1−n · · · · · · Q−1 Q0 0

is a resolution ofN . The only change is at the tail: the sequence Q0 N 0 has been changed to Q0 0.

Note that this is still a complex, sometimes called a deleted complex, it just is no longer exact.

(206) Show

Hj(Q•) '

{
0 j 6= 0

N j = 0.

(207) Suppose R is a commutative ring and M is an R-module. From Homework 193 we know that there is an injective
Z-module Q so that M is a Z-submodule of Q. Show that

M ' HomR(R,M) ↪→ HomZ(R,M) ↪→ HomZ(R,Q).

Conclude that M may be identified with a submodule of an injective R-module. [Hint: Use Homework 175.]
(208) Suppose that R is a ring. Suppose M is an R-module. Show that the following are equivalent.

(a) M is projective
(b) M is a direct summand of a free R-module. That is, there exists a free R-module F that contains M and a

submodule K of F so that F = K ⊕M .
(209) Suppose R is a PID and M is an R-module. Show that M is projective if and only if M is free. [Hint: Use

Homework 208 and Homework 121. For a proof of Homework 121 see [Lan02, pp. 880–881].]

Math 593. Homework 12b (Due December 3)

(210) Spectral Theorem over R. Suppose that (V, 〈 , 〉) is a nonzero finite dimensional real inner product space.
(a) Suppose T ∈ End(V ). If there is an orthonormal basis of V which consists of eigenvectors of T , then T is

self-adjoint.
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(b) The converse to (210a) is also true, and it is called the spectral theorem for self-adjoint operators. The rest
of this problem develops a ‘geometric’ proof of this result. For the rest of this problem, we suppose that
T ∈ Hom(V, V ) is self-adjoint. Show that if v, w ∈ V are eigenvectors for T with distinct eigenvalues, then
〈v, w〉 = 0.

(c) Suppose that v ∈ V is an eigenvector for T . Show that if W = v⊥ := {v′ ∈ V | 〈v′, v〉 = 0}, then resW T ,
the restriction of T to W , belongs to HomR(W,W ) and is self-adjoint.

(d) Show that if every self-adjoint operator S on an inner product space (V ′, 〈 , 〉′) has an eigenvector, then the
spectral theorem is true for T .

(e) Show that the map from V to R sending v ∈ V to ||v|| is continuous.
(f) Let S = {v ∈ V | ||v|| = 1}. Show that S is compact in V .
(g) Show that QT : S → R defined by QT (v) = 〈T (v), v〉 is (uniformly) continuous. (Hint, you may want to

show that there is a constant cT ∈ R such that ||T (v)|| ≤ cT ||v|| for all v ∈ V .)
(h) Show there is a v0 ∈ S such that QT (v0) ≥ QT (v) for all v ∈ S. Set λT := QT (v0).
(i) We now show that T (v0) = λT (v0); that is T does have an eigenvector, and so the spectral theorem is true!

Suppose T (v0) 6= λT (v0).
(i) Since w = T (v0)− λT v0 is not zero we may define v1 = w/||w|| . Show that v1 is perpendicular to v0.

(ii) Let W = span(v0, v1). Show that T (v0) ∈W .
(iii) Show that for every t ∈ R we have cos(2πt)v0 + sin(2πt)v1 ∈ S ∩W .
(iv) Define f : R → R by f(t) = QT (vt). Use elementary calculus to show that v1 is perpendicular to

T (v0).
(v) Conclude that we must have T (v0) = λT (v0).
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Math 593. Homework 13a (Due December 7)
(211) Suppose m ∈ Z>1 and N is a Z-module. Compute TorZi (N,Z/(m)). Compare your answer with your response

to Prompt 328.
(212) Suppose R is a commutative ring. Show that every projective R-module is flat.
(213) SupposeR is a commutative ring,D ⊂ R is multiplicatively closed, andM is anR-module. For (d,m), (d′,m′) ∈

D ×M we write (d,m) ∼ (d′,m′) provided that

r(dm′ − d′m) = 0 for some r ∈ D.
This is an equivalence relation, and the resulting set of equivalence classes is denoted D−1M . We call D−1M the
localization of M at D.
(a) Verify that D−1M is a D−1R-module. Formulate a universal property for it.
(b) Show that D−1M ' D−1R⊗RM .
(c) Prove that localization commutes with tensor products. That is, show that for all R-modules L and N there

is a unique isomorphism of D−1R-modules ϕ : D−1L⊗D−1R D
−1N ' D−1(L⊗R N) with ϕ(`/d⊗ n/d′)

given by `⊗ n/dd′.
(214) Suppose R is a ring. Show that the following conditions on an R-module M are equivalent.

• M is projective.
• Ext1

R(M,N) = 0 for all R-modules N .
• ExtnR(M,N) = 0 for all n and all R-modules N .

[Hint: Use Prompt 331.]
(215) Suppose that R is a ring and 0 L M N 0 is a short exact sequence of R-modules.

Let 0 L I0 I1 · · · and 0 M J0 J1 · · · be injective
resolutions of L and N , respectively.
(a) Show that for each n we have In ⊕ Jn is an injective R-module. Warning: In general, the direct product

of injectives modules is injective, but the direct sum of injectives need not be injective. Thankfully, in the
category of R-modules, finite direct sums and finite direct products coincide.

(b) Show that 0 M I0 ⊕ J0 I1 ⊕ J1 · · · is an injective resolution of M such that
the following diagram has exact columns, exact rows, and commutes.

...
...

...

0 I2 I2 ⊕ J2 J2 0

0 I1 I1 ⊕ J1 J1 0

0 I0 I0 ⊕ J0 J0 0

0 L M N 0

0 0 0

(c) Conclude that if F is an additive left-exact functor from the category of R-modules to the category of Z-
modules, then we have a long exact sequence

· · · RjF (N) Rj+1F (L) Rj+1F (M) Rj+1F (N) Rj+2F (L) · · ·δj δj+1

that begins with

0 F (L) F (M) F (N) R1F (L) · · ·δ0
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(216) Suppose ` ∈ Z>0.
(a) For k ∈ Z consider µk ∈ HomZ(Z/(`),Z/(`)) where µk(x) = kx. Show that the image of µk is 〈(k, `)〉 and

the kernel of µk has (k, `) elements.

(b) Use the left exactness of Y 7→ HomZ(Y,Z/(`)) and the exactness of Z Z Z/(k) 0
µk to

show that HomZ(Z/(k),Z/(`)) ' Z/(k, `)Z.
(217) Suppose R a commutative ring and r ∈ R a non-zero-divisor. For an R-module N , let rN denote the R-module of

r-torsion elements of N , that is, rN = {n ∈ N | rn = 0}. Show that TorR1 (N,R/(r)) ' rN . Does this contradict
your findings in Prompt 344?

(218) Suppose R = Z[x]/(xk) is a commutative ring and I = (x`) is a principal ideal in R. Show

TorRi (I,M) =


x`M/xk−`M if i 6= 0 is even

xk−`M/x`M if i is odd
M/xk−`M if i = 0

for an R-module M . Here x`M = {m ∈M |x`m = 0}.
(219) Suppose R is a ring and M and N are R-modules. Let E(M,N) denote the set of extensions of M by N and

recall that given Ẽi = 0 N Ei M 0 ∈ E(M,N) for i ∈ {1, 2} we say that Ẽ1 is

equivalent to Ẽ2 (and we write Ẽ1 ∼ Ẽ2) provided that there is a commutative diagram

0 N E1 M 0

0 N E2 M 0

IdN IdM

Let F be a free module with π ∈ HomR(F,M) a surjection. Set K = ker(π) and let ι ∈ HomR(K,F )
denote the natural inclusion of K in F . Fix κ ∈ Ext1

R(M,N) ' coker(ι∗). [Why can we write Ext1
R(M,N) '

coker(ι∗)?] Choose k ∈ HomR(K,N) so that the image of k in Ext1
R(M,N) is κ.

(a) LetE denote the cokernel of the injective homomorphism (ι, k) ∈ HomR(K,F⊕N). Show that the surjection
(π, 0) ∈ HomR(F ⊕N,M) factors through E giving us a surjective homomorphism π̄ ∈ HomR(E,M).

(b) Show that the natural injective homomorphism N ' {0} ⊕ N ↪→ F ⊕ N given by n 7→ (0,−n) defines an
injective homomophism ϕ ∈ HomR(N,E). Show that im(ϕ) = ker(π̄).

(c) Set e(κ) = E ∈ E(M,N). Show that e(κ) is independent of all of the choices above in the sense that different
choices lead to equivalent extensions.

(d) Recall the map ν̄ : E(M,N)→ Ext1
R(M,N) that was defined in Prompt 361.

(i) Show that κ = ν̄(e(κ))

(ii) Show that for Ẽ ∈ E(M,N) we have e(ν̄(Ẽ)) ∼ Ẽ.
(e) Conclude that Ext1

R(M,N) measures the extensions of M by N up to natural equivalence.
(f) Consider the Z/(18)-modules Z/(6) and Z/(3) ⊕ Z/(9) ⊕ Z/(9). Up to equivalence, how many extensions

of Z/(6) by Z/(3)⊕ Z/(9)⊕ Z/(9) are there?
(220) EROs and ECOs: Bruhat Decomposition. Suppose k is a field. Let B denote the subgroup of GLn(k) consisting

of matrices which are upper triangular (that is, if A ∈ B, then Aij = 0 whenever i > j). The set B is actually
a group, called a Borel subgroup of GLn(k). It might be helpful to work out the following for n = 1, 2, 3 before
trying to write down a general proof. LetW ⊂ GLn(k) denote the set of permutation matrices (A ∈W if and only
if each entry of A is either zero or one and each column and each row contains exactly one nonzero entry). Note
that W has n! elements and, in fact, is a group that is isomorphic to Sn.1

(a) Establish the Bruhat decomposition: GLn(k) = tw∈WBwB. [Hint: Many of the elementary row and column
operations belong to B. Also, we have an equivalence relation on GLn(R) defined by x ∼ y provided that
there exist b, b′ ∈ B such that bx = yb′; the equivalence class of z ∈ GLn(R) is the B-double coset BzB.
The set of B-double cosets is denoted B\GLn(k)/B.]

1The natural isomorphism takes σ ∈ Sn to the unique element w ∈ W for which
∏
wiσ(i) 6= 0. What is the determinant of this w? Make sure

you understand this.
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(b) For which w ∈W is  9 5 7
−9 −6 9
−3 −2 −1


in BwB?

(c) Is every element of GLn(k) the product of elementary matrices?
(d) Bonus. Let G = GLn(k). The group G acts on G/B × G/B by g · (xB, yB) = (gxB, gyB) for x, y ∈ G.

Show that
G/B ×G/B =

⊔
w∈W

G · (B,wB).

(221) Suppose R is a ring and M is an R-module. Suppose r ∈ R is not zero and not a zero divisor. Show that
Tor1(M,R/(r)) is isomorphic to the r-torsion of M , that is, the submodule of elements of m ∈ M for which
rm = 0. [This is why Tor is called Tor.] Does this contradict your findings in Prompt 344?

(222) Suppose that I and J are ideals in a commutative ring R. In Prompt 27 we decided that if I and J are comaximal,
then IJ = I ∩ J . However, we also noticed that the converse is not true. Show that IJ = I ∩ J if and only if
Tor1(R/I,R/J) = 0. [Hint: Start with the exact sequence 0→ I → R→ R/I → 0.]

(223) Show that the sequence that occurs prior to Prompt 317 is exact at coker(f).
(224) Suppose R is a commutative ring. Show that the ring of Laurent polynomials on R, denoted R[x, x−1], is the

localization of the polynomial ring R[x] at D = {x, x2, x3, . . .}. [This is R[x]x in the notation of Prompt 38.]
Math 593. Homework 13b (Due December 10)

(225) Exactly one of the following two-by-two matrices with entries in R is diagonalizable over R, call it A.[
−22 484
−1 22

] [
22 21
−21 22

] [
22 −21
−21 22

]
(a) Find an eigenbasis for A.
(b) Produce a diagonal matrix D and a change of coordinates matrix M so that A = MDM−1.


