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Abstract

We study behaviour of the smallest singular value of a rectangu-
lar random matrix, i.e., matrix whose entries are independent random
variables satisfying some additional conditions. We prove a deviation
inequality and show that such a matrix is a “good” isomorphism on
its image. Then we obtain asymptotically sharp estimates for volumes
and other geometric parameters of random polytopes (absolutely con-
vex hulls of rows of random matrices). All our results hold with high
probability, that is, with probability exponentially (in dimension) close
to 1.

1 Introduction

In this paper we consider rectangular N × n random matrices, whose entries
are independent and satisfy some moment conditions, and the whole matrix
satisfies an additional boundedness conditions. We are interested in singu-
lar values of such matrices and in geometric parameters of polytopes they
determine.

Assume that N ≥ n and denote such a matrix by Γ = [ξij]1≤i≤N,1≤j≤n.
Let us briefly recall known results on singular values of Γ. Assume that the
variance is 1, and that N is proportional to n, say n/N = c (where c is
considered fixed). From the universality result of Marchenko-Pastur [MP],
the empirical measure associated to the spectrum of the sample covariance
matrix Γ∗Γ/N has a deterministic limit distribution supported by the interval
[(1−

√
c)2, (1+

√
c)2]. More precisely, by results from [Si] in the Gaussian case,

and from [BY] in the general case (assuming the finite fourth moment), we
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get that the smallest eigenvalue converges a.e. to (1−
√
c)2. Let sn = sn(Γ)

be the smallest singular value of Γ. Then the above statement says, after
a renormalization, that sn/

√
N → 1 −

√
c a.e., as N → ∞. However, the

concentration of this random variable around 1−
√
c is in general unknown.

In this paper we give an estimate of the probability that sn/
√
N is not

too large. Denoting by ‖ · ‖ the operator norm of an operator acting on
a Hilbert space, and considering Γ as acting onto its image, we show (in
Theorem 3.1) that for any 0 < c < 1 there is a function φ(c) such that the
embedding Γ satisfies ‖Γ‖ ‖Γ−1‖ ≤ φ(c), for any N and n such that n/N ≤ c,
with probability larger than 1−exp(−c2N). To the contrary to the approach
discussed above, when the ratio c = n/N is considered fixed (independent
of n and N), here we consider n and N to be independent parameters, in
particular, allowing c to depend on n. This result can be interpreted that if
n/N ≤ c then, with the high probability, Γ is a “good” isomorphic embedding
of `n2 into `N2 . (Let us also mention that in a forthcoming paper [LPRTV] a
similar result will be proved for embeddings of `n2 into a large class of spaces
which, for example, includes `N1 .)

Theorem 3.1 is then applied to study geometry of random polytopes gen-
erated by Γ, that is, the absolute convex hull of N rows of Γ. Such random
polytopes have been extensively studied in the Gaussian case, as well as
the Bernoulli case. The former case, when N proportional to n, has many
applications in the asymptotic theory of normed spaces (see e.g., [G1] and
[Sz1], and the survey [MT]). In the Bernoulli case, random polytopes of this
form have been investigated in [GH], as well as in a combinatorial setting of
so-called 0-1 polytopes (see for instance [DFM], [BP], and the survey [Z]).

When speaking of random matrices, we identify a large class that contains
the most important cases studied in the literature, such as the case when the
entries are Gaussian or Bernoulli random variables.

Let us now briefly describe the organization of the paper. In Section 2 we
introduce the class of matrices to be considered and we prove some basic facts
about them. In Section 3 we show, in Theorem 3.1, that if n is arbitrary and
N = (1 + δ)n (where δ ≥ 1/ lnn), and if Γ belongs to a certain class M then
with probability larger than 1−exp(−c2N), sn(Γ)/

√
N ≥ c1, where c1, c2 > 0

are universal constants. In Section 4 we study some geometric parameters of
the symmetric convex hull KN of rows of Γ, such as the Euclidean inradius,
the mean width and the volume.
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2 Preliminaries and some basic facts

By | · | and 〈·, ·〉 we denote the canonical Euclidean norm and the canonical
inner product on Rm. By ‖ · ‖p, 1 ≤ p ≤ ∞, we denote the `p-norm, i.e.

‖a‖p =

(∑
i≥1

|ai|p
)1/p

for p <∞ and ‖a‖∞ = sup
i≥1

|ai|.

As usual, `mp = (Rm, ‖ · ‖p), and the unit ball of `mp is denoted by Bm
p . The

unit sphere of `m2 is denoted by Sm−1. The canonical basis of `m2 we denote
by e1, . . . , em.

Given points x1, . . . , xk in Rm we denote their convex hull by conv {xi}i≤k
and their absolute convex hull by abs conv {xi}i≤k = conv {±xi}i≤k.

Given a finite set A we denote its cardinality by |A|.
Given a set L ⊂ Rm, a convex body K ⊂ Rm and ε > 0 we say that a set

A is an ε-net of L with respect to K if

A ⊂ L ⊂ ∪x∈A (x+K).

It is well known that if K = L is a centrally symmetric body (or if K is the
boundary of a centrally symmetric body L) then for every ε > 0 there exists
an ε-net A of K with respect to L with cardinality |A| ≤ (1+2/ε)m (see e.g.
[MS], [P], [T]).

Given σ ⊂ {1, 2, . . . ,m} by Pσ we denote the coordinate projection onto
Rσ. Sometimes we consider Pσ as an operator Rm → Rm and sometimes as
an operator Rm → Rσ.

Given a number a we denote the largest integer not exceeding a by [a]
and the smallest integer larger than or equal to a by dae.

By g, gi, i ≥ 1, we denote independent N(0, 1) standard Gaussian random
variables. By P(·) we denote the probability of an event, and E denotes the
expectation.

In this paper, we are interested in rectangular N×n matrices Γ, with N ≥
n, where the entries are real-valued random variables on some probability
space (Ω,A,P). We consider these matrices as operators acting from the
Euclidean space `n2 to `N2 and we denote by ‖Γ‖ the norm of Γ in L(`n2 , `

N
2 ).

If entries of Γ are independent N(0, 1) standard Gaussian matrix we say
that Γ is the Gaussian random matrix. If entries of Γ are independent ±1
Bernoulli random variables we say that Γ is the ±1 random matrix.
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We denote by ψ the Orlicz function ψ(x) = ex
2 − 1 and by Lψ, the Orlicz

space of real-valued random variables on (Ω,A,P), equipped with the norm

‖ξ‖ψ = inf{t > 0 |Eψ(ξ/t) ≤ 1}.

For µ ≥ 1, we define B(µ) to be the set of real-valued symmetric random
variables on (Ω,A,P), satisfying the following properties:

1 ≤ ‖ξ‖L2 and ‖ξ‖L3 ≤ µ. (1)

Similarly, for µ ≥ 1, we define Bψ(µ) to be the set of real-valued symmet-
ric random variables on (Ω,A,P), satisfying:

1 ≤ ‖ξ‖L2 and ‖ξ‖ψ ≤ µ. (2)

A direct computation shows that for every µ ≥ 1, one has

Bψ(µ) ⊂ B(µ). (3)

Note also that if ξ ∈ Bψ(µ) then

P(ξ ≥ u) ≤ exp
(
−u2/µ2

)
for any u ≥ 0. (4)

Indeed, ξ is symmetric and E exp(ξ2/µ2) ≤ 2, hence, by Chebyshev inequality

P(ξ ≥ u) = (1/2)P(|ξ| ≥ u) ≤ E exp(ξ2/µ2)

2 exp(u2/µ2)
≤ exp(−u2/µ2). (5)

Let µ ≥ 1 and a1, a2 > 0. We define M(N, n, µ, a1, a2) to be the set of
N × n matrices with real-valued independent symmetric random variables
entries (ξij)1≤i≤N,1≤j≤n on (Ω,A,P), satisfying:

Γ = (ξij)1≤i≤N,1≤j≤n ∈ M(N, n, µ, a1, a2) if

ξij ∈ B(µ) for every 1 ≤ i ≤ N, 1 ≤ j ≤ n (6)

and P
(
‖Γ‖ ≥ a1

√
N
)
≤ e−a2N . (7)

For µ ≥ 1, we define Mψ(N, n, µ) to be the set of N × n matrices with
real-valued independent symmetric random variables entries (ξij)1≤i≤N,1≤j≤n
on (Ω,A,P), satisfying:

Γ = (ξij)1≤i≤N,1≤j≤n ∈ M(N, n, µ) if

ξij ∈ Bψ(µ) for every 1 ≤ i ≤ N, 1 ≤ j ≤ n. (8)
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It is well known that Lψ is in some sense, the set of subgaussian random
variables. We recall more precisely some facts that we will need. Let b > 0.
A real-valued random variable ξ on (Ω,A,P) is called b-subgaussian if for all
t > 0, one has:

E etξ ≤ eb
2t2/2. (9)

Let ξ be b-subgaussian, then it is classical to check by (9), Chebyshev
inequality, and an easy optimization argument that

P(ξ ≥ u) ≤ exp

(
− u2

2b2

)
for any u ≥ 0. (10)

It can be also shown by direct computations that if ξ ∈ Bψ(µ) then

ξ is µ
√

2-subgaussian. (11)

Fact 2.1 Let µi ≥ 1 and ξi ∈ Bψ(µi), i = 1, . . . , k, be independent random
variables, then for any x1, x2, . . . , xk ∈ R,

k∑
i=1

ξixi is subgaussian with parameter
√

2

(
k∑
i=1

µ2
ix

2
i

)1/2

. (12)

Proof: If ξi, i = 1, . . . , k is a family of independent bi-subgaussian random
variables, then it is clear from (9) that

∑
1≤i≤k ξi is subgaussian with param-

eter
(∑

1≤i≤k b
2
i

)1/2
. We conclude using (11). 2

Fact 2.2 Let µ ≥ 1 and ξi ∈ Bψ(µ), i = 1, . . . , n, be independent random
variables. Then random vector x = (ξ1, ξ2, . . . , ξn) ∈ Rn satisfies

P(|x| ≥ u
√
n) ≤ exp(n(ln 2− u2/µ2)), for any u ≥ 0. (13)

Proof: Indeed,

P

(
n∑
j=1

ξ2
j ≥ u2n

)
≤ E exp

(
1

µ2

(
n∑
j=1

ξ2
j − u2n

))

≤ exp

(
−u

2n

µ2

) n∏
j=1

E exp

(
ξ2
j

µ2

)
≤ exp

(
−u

2n

µ2

)
· 2n,

which implies the desired result. 2

Applying this fact with u =
√

3µ we obtain
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Fact 2.3 Let n ≤ N ≤ 2n, µ ≥ 1 and Γ ∈ Mψ(N, n, µ). For i ≤ N let
xi = Γ∗ei. Then

P
(
∃i : |xi| ≥ µ

√
3n
)
≤ Ne−2n ≤ e−n.

Fact 2.4 For every µ ≥ 1, a2 > 0 and all integers N ≥ n ≥ 1, one has

Mψ(N, n, µ) ⊂ M(N, n, µ, a1, a2) (14)

with a1 = µ
√

36(a2 + 4).

Proof: Let Λ(N) (resp. Λ(n)) be a (1/3)-net of the unit sphere of `N2 (resp.
`n2 ) with respect to BN

2 (resp. Bn
2 ) and with cardinality less than 7N (resp.

7n). An approximation argument shows that for any operator Γ ∈ L(`n2 , `
N
2 )

we have
‖Γ‖ ≤ 3 max{〈y,Γx〉 |x ∈ Λ(n), y ∈ Λ(N)}.

Let µ ≥ 1 and Γ be an N×n matrix with real-valued independent symmetric
random variables entries (ξij)1≤i≤N,1≤j≤n in Bψ(µ). It follows from (12) that
for any x and y, respectively in the unit sphere of `n2 and `N2 respectively,
〈x,Γy〉 is µ

√
2-subgaussian. Thus, using Property (10), we get that for any

t > 0, we have
P (‖Γ‖ ≥ t ) ≤ 7n+Ne−t

2/36µ2

.

Therefore

P
(
‖Γ‖ ≥ t

√
N
)
≤ 7n+Ne−Nt

2/36µ2 ≤ e(−t
2/36µ2+4)N .

Use (3) to conclude the proof of (14). 2

The following fact is proved by routine calculations. For the sake of
completeness we provide the proof.

Fact 2.5 Let µ ≥ 1, ξi ∈ Bψ(µ), ξ̄i ∈ B(µ), i = 1, . . . , k, be independent
random variables. Then

P

(
k∑
i=1

ξ2
i ≤ k/4

)
≤ exp

(
− k

32µ4 ln2(2µ)

)
(15)

and

P

(
k∑
i=1

(ξ̄i)
2 ≤ k/4

)
≤ exp

(
− k

211µ12

)
. (16)
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Proof: Let ξ be a random variable such that Eξ2 ≥ 1. Then for every A > 0
we have

1 ≤ Eξ2 =

∫ ∞

0

P
(
ξ2 > t

)
dt =

∫ ∞

0

2s P (|ξ| > s) ds =

∫ A

0

2s P (|ξ| > s) ds+

∫ ∞

A

2s P (|ξ| > s) ds.

Choose A such that the second integral does not exceed 1/2. Then

1/2 ≤
∫ A

0

2s P (|ξ| > s) ds.

Consider the random variable h defined by h = min{ξ2, A2}. Then ‖h‖∞ ≤
A2 and Eh ≥ 1/2.

We will use the following Hoeffding’s tail inequality ([Ho], see also [L].
(1.23)): let hi, i ≤ k, be independent random variables such that ai ≤ hi ≤ bi,
and let B =

∑k
i=1 Ehi, M =

∑k
i=1(bi − ai)

2 then

P

(
k∑
i=1

hi −B ≤ −t

)
≤ exp

(
−2t2/M

)
.

Taking t = B/2 it implies

P

(
k∑
i=1

hi ≤ B/2

)
≤ exp

(
−B2/(2M)

)
.

Applying this inequality to independent random variables hi, i ≤ k, with
Ehi ≥ 1/2 and 0 ≤ hi ≤ A2 we obtain

P

(
k∑
i=1

hi ≤ k/4

)
≤ exp

(
−k/(8A4)

)
. (17)

Now we estimate the value A for ξi’s and ξ̄i’s.

Case 1. Since every ξi ∈ Bψ(µ), by (5), we get for every i∫ ∞

A

2s P (|ξi| > s) ds ≤
∫ ∞

A

4s e−s
2/µ2

ds = 2µ2e−A
2/µ2 ≤ 1/2
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for A = µ
√

2 ln(2µ). Applying (17) with hi = min{ξ2
i , A

2} we obtain the
desired result.

Case 2. Since every ξ̄i ∈ B(µ), by Chebyshev inequality we have

P(|ξ| ≥ u) ≤ E|ξ|3/u3 ≤ µ3/u3.

for every i ≤ k. Therefore for every i∫ ∞

A

2s P
(
|ξ̄i| > s

)
ds ≤

∫ ∞

A

2µ3/s2ds = 2µ3/A ≤ 1/2

for A = 4µ3. Applying (17) with hi = min{ξ̄2
i , A

2} we obtain the desired
result. 2

3 Smallest singular values of matrices with

independent entries

In this section we establish deviation inequalities for the smallest singular
value of random matrices from the class M(N, n, µ, a1, a2). We show that
with high probability Γ is a “good isomorphism” onto its image. Our results
in this direction can be summarized in the following theorem.

Theorem 3.1 Let n ≥ 1 and N = (1+δ)n for some δ > 0. Let Γ be an N×n
random matrix from M(N, n, µ, a1, a2), for some µ ≥ 1 and a1, a2 > 0. There
exists c̃1, c̃2 > 0 (depending on a1, µ only) such that whenever δ ≥ c̃1/ ln(c̃2n)
then

P
(
sn(Γ) ≤ c1

√
N
)
≤ exp (−c2N) ,

where c1 > 0 depends on δ and µ, a1, and c2 > 0 depend on µ, a2.

Remark 1. Our proof below gives that c1 can be taken c1 = c4c
1/δ
5 , where

c4, c5 are positive constants depending only on µ and a1. Then the desired
probability can be made less than exp(−N)+exp(−c′′N/(2µ6))+exp(−a2N),
where c′′ is an absolute positive constant.

Remark 2. We do not know if this Theorem holds for 0 ≤ δ ≤ 1/ lnn.
Note that in this case the sentences “a constant depends only on δ” and “a
constant depends only on n” are equivalent. Also note that one can estimate
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the smallest singular value of Γ by considering the case δ = 0 only (otherwise
remove an appropriate number of columns to get a square matrix with smaller
singular values). Therefore, if Γ is a Gaussian random matrix then the result
(for δ = 0) follows from results of Szarek ([Sz2], cf. also Theorem II.4 in
[DS]). If Γ is a ±1 random matrix then the result (for δ = 0) follows from
results of Kahn, Komlós, Szemerédi ([KKS]).

Remark 3. It is noteworthy that, as can be seen from the proof below,
the case when δ ≥ δ0, where δ0 > 0 is a certain absolute constant, is much
simpler than the case of a general (small) δ. Indeed, this former case follows
directly from Proposition 3.4, without use of Proposition 3.2.

Remark 4. Let us note that for any N × n matrix Γ and any a > 0 the
statement sn(Γ) ≤ a is equivalent to: there exists x ∈ Rn such that |Γx| ≤
a|x|. Therefore in the theorem above we shall estimate the probabilities of
sets of the form (∃x s.t. |Γx| ≤ a|x|).

The proof of the theorem is based on two key propositions. The first result
will be used to estimate a single coordinate (hence ‖ · ‖∞), of the vector Γx,
for a fixed x ∈ Rn. We state it here in a more general form, as we believe it
is of an independent interest,

Proposition 3.2 Let (ξi)
n
i=1 be a sequence of symmetric independent random

variables with 1 ≤ ‖ξi‖L2 ≤ ‖ξi‖L3 ≤ µ for all i = 1, . . . , n. For any subset
σ ⊂ {1, . . . , n} by Pσ denote the coordinate projection in Rn. Then for any
x = (xi) ∈ Rn and any σ ⊂ {1, . . . , n} we have, for all t > 0,

P
(∣∣ n∑

i=1

ξixi
∣∣ < t

)
≤
√

2/π
t

|Pσx|
+ c
(‖Pσx‖3

|Pσx|
µ
)3

,

where c > 0 is a universal constant.

This proposition depends on the well-known Berry-Esséen theorem. (cf.,
e.g., [St]).

Lemma 3.3 Let (ζi)
n
i=1 be a sequence of symmetric independent random

variables with finite third moments, and let A2 :=
∑n

i=1 E|ζi|2. Then for
every τ ∈ R one has∣∣∣P( n∑

i=1

ζi < τA
)
− P (g < τ)

∣∣∣ ≤ (c/A3)
n∑
i=1

E|ζi|3,
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where g is a Gaussian random variable with N(0, 1) distribution and c ≥ 1
is a universal constant.

Proof of Proposition 3.2: First we show a stronger estimate for σ =
{1, . . . , n}. Namely, for any a < b,

P
( n∑
i=1

ξixi ∈ [a, b)
)
≤
√

1/2π
b− a

|x|
+ c
(‖x‖3

|x|
µ
)3

, (18)

where c > 0 is a universal constant.
Indeed, let ζi = ξixi. Then A2 :=

∑
i Eζ2

i =
∑

i x
2
iEξ2

i ≥ |x|2 and
E
∑

i |ζi|3 ≤ µ3‖x‖3
3. By Lemma 3.3 we get

P
(
a ≤

n∑
i=1

ζi < b
)

≤ P
(
a/A ≤ g < b/A

)
+ c
(‖x‖3

A
µ
)3

≤ b− a

A
√

2π
+ c
(‖x‖3

A
µ
)3

≤
√

1/2π
b− a

|x|
+ c
(‖x‖3

|x|
µ
)3

,

as required.
Now, if σ is arbitrary, denote the sequence (ξi)i∈σ by (ξ′i) and the sequence

(ξi)i6∈σ by (ξ′′i ), and by P′ (resp., P′′) and E′ (resp., E′′) the corresponding
probabilities and expectations. The independence and Fubini theorem imply

P

(∣∣∣∣∣
n∑
i=1

ξixi

∣∣∣∣∣ < t

)
= P

(
−t−

n∑
i=1

ξ′′i xi <
n∑
i=1

ξ′ixi < t−
n∑
i=1

ξ′′i xi

)
= E′′P′

(
−t−

n∑
i=1

ξ′′i xi <
n∑
i=1

ξ′ixi < t−
n∑
i=1

ξ′′i xi

)
≤

√
1/2π

2t

|Pσx|
+ c
(‖Pσx‖3

|Pσx|
µ
)3

.

The latter inequality follows from (18), the fact that the vector appearing
in the sum

∑
i ξ

′
ixi is exactly Pσx, and by the independence of (ξi)i∈σ and

(ξi)i/∈σ. 2

Our second proposition is a general estimate for the norm |Γx| for a fixed
vector x.
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Proposition 3.4 Let 1 ≤ n < N be positive integers. Let Γ be an N × n
random matrix from M(N, n, µ, a1, a2), for some µ ≥ 1 and a1, a2 > 0. Then
for every x ∈ Rn we have

P
(
|Γx| ≤ c′µ−3

√
N |x|

)
≤ exp

(
−c′′N/µ6

)
,

where 1 > c′, c′′ > 0 are absolute constants.

The proof of this proposition will be using the following simple estimate
which is a general form of the Paley-Zygmund inequality.

Lemma 3.5 Let p ∈ (1,∞), q = p/(p− 1). Let f ≥ 0 be a random variable
with Ef 2p <∞. Then for every 0 ≤ λ ≤

√
Ef 2 we have

P (f > λ) ≥ (Ef 2 − λ2)q

(Ef 2p)q/p
.

Proof: We have

Ef 2 = Ef 2 χ(f>λ) + Ef 2 χ(f≤λ)

≤
(
Ef 2p

)1/p (E χ(f>λ)

)1/q
+ λ2

=
(
Ef 2p

)1/p
(P (f > λ))1/q + λ2.

This implies

P (f > λ) ≥ (Ef 2 − λ2)
q

(Ef 2p)q/p
,

as required. 2

Corollary 3.6 Let µ ≥ 1 and (ξi)i≥1 be a sequence of independent symmetric
random variables such that 1 ≤ E|ξi|2 ≤ E|ξi|3 ≤ µ3 for every i ≥ 1. Let
x = (xi)i≥1 ∈ `2 be such that |x| = 1 and f = |

∑
i≥1 xiξi|. Then for every

0 ≤ λ ≤ 1 one has

P (f > λ) ≥
(

1− λ2

2µ2

)3
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Proof: By symmetry of the ξi’s and Khinchine’s inequality ([H]),

Ef 3 = EξEε

∣∣∣∣∣∑
i≥1

εiξixi

∣∣∣∣∣
3

≤
√

8 Eξ

(∑
i≥1

ξ2
i x

2
i

)3/2

,

where εi’s are independent Bernoulli ±1 random variables. (In the inequality
above we used the estimate for the Khinchine’s constantB3 =

√
2π−1/6 ≤

√
2,

while the standard proof gives B3 ≤ 2.) Consider the function ϕ(s) defined
on the set

E :=

{
s = (si)i≥1 ∈ `1 | si ≥ 0 for every i and

∑
i≥1

si = 1

}

by

ϕ(s) = Eξ

(∑
i≥1

ξ2
i si

)3/2

.

Clearly ϕ is convex, since a power larger than 1 of a linear function is convex.
Thus to estimate the supremum of ϕ it is enough to estimate the supremum
of values ϕ(ei) for the standard unit vectors ei ∈ `1. Therefore

sup
E
ϕ(s) = sup

i≥1
ϕ(ei) = sup

i≥1
Eξ

(
ξ2
i

)3/2 ≤ µ3,

which implies
Ef 3 ≤

√
8µ3.

Next, by our normalization,

Ef 2 = E
∑
i≥1

ξ2
i |xi|2 ≥ 1.

Applying Lemma 3.5 with p = 3/2 we obtain the desired result. 2

Proof of Proposition 3.4 Let x = (xi)i ∈ Rn with |x| = 1. Let Γ =
(ξji)j≤N,i≤n where ξji are independent random variables with 1 ≤ ‖ξji‖L2 ≤
‖ξji‖L3 ≤ µ, for every j ≤ N and every i ≤ n. Let fj = |

∑n
i=1 ξjixi|. Note
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that f1, . . . , fN are independent. For any t, τ > 0 we have

P
(
|Γx|2 ≤ t2N

)
= P

(
N∑
j=1

f 2
j ≤ t2N

)
= P

(
N − 1

t2

N∑
j=1

f 2
j ≥ 0

)

≤ E exp

(
τN − τ

t2

N∑
j=1

f 2
j

)
= eτN

N∏
j=1

E exp
(
−τf 2

j /t
2
)
.

To estimate the latter expectation first observe that by Corollary 3.6

P (fj > λ) ≥ (1− λ2)3

8µ6
=: β

for every j. Therefore, by the distribution function formula,

E exp
(
−τf 2

j /t
2
)

=

∫ ∞

0

P
(
exp

(
−τf 2

j /t
2
)
> s
)
ds

=

∫ 1

0

P
(
1/s > eτf

2
j /t

2
)
ds

≤
∫ e−τλ2/t2

0

ds+

∫ 1

e−τλ2/t2
(1− β)ds

= e−τλ
2/t2 + (1− β)

(
1− e−τλ

2/t2
)

= 1− β
(
1− e−τλ

2/t2
)
.

Set τ = αt2/λ2, for some α > 0. Then for any t > 0 we get, for arbitrary
α > 0 and λ > 0 (and obviously, only λ < 1 is of interest),

P
(
|Γx|2 ≤ t2N

)
≤
(
eαt

2/λ2 (
1− β(1− e−α)

))N
. (19)

For example, letting λ = 1/2 we get β = (3/(8µ2))3, and using 1−s < e−s

for s > 0, the left hand side expression in (19) is less than

exp
((

4αt2 − β(1− e−α)
)
N
)
.

Thus letting α = ln 2 and t =
√
β/4 we conclude the required estimates with

c′ = (27/213)1/2 and c′′ = 27/211. 2

13



We are now ready for

Proof of Theorem 3.1: Let Γ ∈ M(N, n, µ, a1, a2) be a random matrix

and denote Ω =
{
ω : ‖Γ‖ ≤ a1

√
N
}

. We have N = (1 + δ)n, and for the

time being we assume only that δ > 0. (Conditions for δ necessary for the
method to work will appear at the end of the proof.) Fix parameters t and
b > 0 to be determined later, depending on µ, a1, and δ. Set a := t/a1 and
assume that

2a ≤ b ≤ 1/4. (20)

Given x = (xi)i ∈ Rn, let σ = σx := {i : |xi| ≤ a}, and set z = Pσx. Now
consider two subsets of Ω.

Ωt(a, b) = Ω ∩
(
∃x ∈ Sn−1 s.t. |Γx| ≤ t

√
N and |z| ≤ b

)
, (21)

Ω′
t(a, b) = Ω ∩

(
∃x ∈ Sn−1 s.t. |Γx| ≤ t

√
N and |z| > b

)
. (22)

We shall estimate the probabilities of these sets separately. In both cases
the idea of the proof is the same. We shall estimate the probability that
|Γx| ≤ t

√
N for a single vector x and then use the ε-net argument and

approximation. However, the balance between the probabilistic estimate and
the cardinality of an ε-net will be different in each case. If x ∈ Ω′

t(a, b), we
have a good control of the `∞-norm of the vector z, which allows us to apply
the powerful estimate of Proposition 3.2. In this case the standard estimate
(3/ε)n of the cardinality of an ε-net on the sphere Sn−1 will be sufficient. In
case when x ∈ Ωt(a, b), to bound the probability for a fixed x, we shall use
a weaker, but more general estimate from Proposition 3.4. However, since
in this case |z| ≤ b, a vector x ∈ Ωt(a, b) can be approximated by another
vector having a small support. This observation yields a much better bound
for the cardinality of an ε-net for Ωt(a, b).

Case I: Probability of Ω′
t(a, b). Let N ⊂ Sn−1 be an ε-net in Sn−1 of

cardinality |N | ≤ (3/ε)n. Setting ε := a = t/a1 a standard approximation
argument shows that if there exists x ∈ Sn−1 such that |Γx| ≤ t

√
N and

|z| = |Pσx| > b then there exist v ∈ N and σ ⊂ {1, . . . , n} such that

|Γv| ≤ (t+ εa1)
√
N = 2t

√
N, ‖Pσv‖∞ ≤ a+ ε = 2a, |Pσv| ≥ b− ε ≥ b/2.

Denote by A the set of all v ∈ N for which there exists σ = σ(v) ⊂ {1, . . . , n}
such that

‖Pσv‖∞ ≤ 2a, |Pσv| ≥ b/2.

14



Then |A| ≤ |N | ≤ (3/ε)n and

P (Ω′
t(a, b)) ≤ P

(
∃v ∈ A : |Γv| ≤ 2t

√
N
)
. (23)

Now, fix v = (vi)i ∈ A. For every j = 1, . . . , N , set

fj(λ) = P
(∣∣∣ n∑

i=1

ξijvi

∣∣∣ < λ
)
,

and let f(λ) = supj fj(λ). Since ‖ · ‖3
3 ≤ ‖ · ‖∞| · |2, by Proposition 3.2 we get

f(λ) ≤ c
(
λ+ ‖Pσv‖∞µ3

)
/|Pσv|

≤ 2c
(
λ+ 2aµ3

)
/b ≤ (4c/b) max

{
λ, 2aµ3

}
, (24)

where σ = σ(v) and c ≥
√

2/π is an absolute constant.
Now we have

P
(
|Γv|2 ≤ 4t2N

)
= P

( N∑
j=1

|
n∑
i=1

ξjivi|2 ≤ 4t2N
)

= P
(
N −

N∑
j=1

|
n∑
i=1

ξjivi|2/4t2 ≥ 0
)

≤ E exp
(
N −

N∑
j=1

|
n∑
i=1

ξjivi|2/4t2
)

= E
N∏
j=1

exp
(
1− |

n∑
i=1

ξjivi|2/4t2
)

= eN
N∏
j=1

E exp
(
−|

n∑
i=1

ξjivi|2/4t2
)
.

15



We estimate the expectations by passing to the integral formula. Denote
A :=

√
2aµ3/t. Then

E exp
(
−|

n∑
i=1

ξjivi|2/4t2
)

=

∫ 1

0

P
(
exp
(
−|

n∑
i=1

ξjivi|2/4t2
)
> s
)
ds

=

∫ ∞

0

ue−u
2/2 P

(
|

n∑
i=1

ξjivi| <
√

2tu
)
du

=

∫ ∞

0

ue−u
2/2fj(

√
2tu)du

≤ (4c/b)

(
2

∫ A

0

uaµ3 du+

∫ ∞

A

√
2tu2e−u

2/2 du

)
≤ (4c/b)

(
aµ3A2 + t

√
π
)

= (4c/b)
(
2a3µ9/t2 + t

√
π
)

= (4ct/b)
(
2µ9/a3

1 +
√
π
)

= c3t/b,

where c3 := 4c (2µ9/a3
1 +

√
π). So

P
(
|Γv|2 ≤ 4t2N

)
≤ (c3e t/b)

N .

Finally, since ε = a = t/a1, we get by (23),

P
(
Ω′
t(a, b)

)
≤ |A| (c3e t/b)

N ≤
(
3a1/t

)n
(c3e t/b)

N ≤ e−N , (25)

for any t satisfying

t ≤ b

e2c3

(
b

3e2c3a1

)1/δ

:= c4c
1/δ
5 . (26)

Case II: Probability of Ωt(a, b). Given x ∈ Sn−1 recall that σ = {i :
|xi| ≤ a}, and set σ′ = {1, . . . , n} \ σ. By the definition of σ, clearly,
|σ′| ≤ [1/a2] =: m. Let y = Pσ′x. If now x is a vector appearing in the
definition (21) of Ωt(a, b) then |Γy| ≤ (t + a1b)

√
N , |y| ≥ (1 − b2)1/2 and

| supp (y)| ≤ m.
Of course we want m ≤ n, which will be satisfied whenever a ≥ 1/

√
n, or

equivalently,
t ≥ a1/

√
n. (27)
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Let ε = b and let N ⊂ Bn
2 such that for every y′ with |y′| ≤ 1 and the

support ≤ m there exists v ∈ N such that |y′ − v| ≤ ε. We can chose N
with cardinality |N | ≤

(
n
m

)
(3/ε)m ≤ (e n/m)m(3/ε)m. Thus choosing v for y

as above we get v ∈ N such that |v| ≥ |y| − ε ≥ 1− 2b ≥ 1/2 and

|Γv| ≤ (t+ 2 a1b)
√
N ≤ (5/2)a1b

√
N ≤ 5a1b

√
N |v|.

(We used the fact that t = a1a ≤ a1b/2, by our conditions.) Thus, by
Proposition 3.4, we get that if

b := min
{
1/4, c′/(5a1µ

3)
}
, (28)

then

P
(
Ωt(a, b)

)
≤ (e n/m)m(3/b)m exp

(
−c′′N/µ6

)
≤ exp

(
−c′′N/(2µ6)

)
(29)

if

m ln

(
3en

bm

)
≤
(
c′′N/(2µ6)

)
. (30)

Since m = [1/a2] ≤ n, the last inequality is satisfied if

(1/a2) ln

(
3ena2

b

)
≤
(
c′′n/(2µ6)

)
, (31)

which holds for

1/a2 = (a1/t)
2 ≤ c′′n

4µ6 ln ((6eµ6) / (c′′b))
. (32)

Now, to satisfy inequality (26), we choose t = c4c
1/δ
5 and note that (32),

which implies also t ≥ a1/
√
n, holds for every

δ ≥ c6/ ln(c7n).

Here constants c4, c5, c6 and c7 depend only on a1, µ. Note also that due to
form of c5 and since c3 ≥ max {1, µ9/a3

1} we have t < a1b/2 for every a1 ≥ 1.

Finally, to conclude the proof of the Theorem 3.1 observe that the set we
are interested in, (

∃x ∈ Sn−1 s.t. |Γx| ≤ t
√
N
)
,

17



is the union of Ωt(a, b), Ω′
t(a, b) and complement of Ω. Moreover, by the defi-

nition of the class M(N, n, µ, a1, a2) we also have that P(Ω) ≥ 1−exp(−a2N).
Putting the three estimates together and letting c1 = t we get

P
(
sn(Γ) ≤ c1

√
N
)
≤ e−N + e−c

′′N/(2µ6) + e−a2N ,

which concludes the proof. 2

4 Geometry of Random Polytopes

In this section we study some classical geometric parameters of random poly-
topes of the form KN := Γ∗BN

1 , where Γ is a random matrix either from
M(N, n, µ, a1, a2) or from Mψ(N, n, µ). In other words, KN is the absolute
convex hull of the rows of Γ, and as already mentioned before, this setting
contains the Gaussian case as well as the case when the entries are indepen-
dent Bernoulli ±1 random variables.

Saying that a random polytope has a certain property, means that the
probability of the polytopes satisfying this property is close to one. Since
KN is the absolute convex hull of N independent rows of Γ, from usual
concentration phenomena, one would expect this probability to be larger than
1− exp(−cN) for some absolute constant c > 0. This level of concentration
is not always true, though, and the concentration may be of the form 1 −
exp(−cnβN1−β) for some 0 < β < 1. However, when speaking in this context
of high probability we always require that this probability is larger than
1− exp(−cn) for some absolute constant c > 0.

We improve the estimates from [GH] on the asymptotic behaviour of some
parameters, such as the inradius, the volume, or the mean widths of KN and
its polar. Moreover, the techniques introduced in this paper allow to obtain
much stronger estimates for probabilities involved.

4.1 Additional definitions and basic facts

Given a convex bodyK ⊂ Rn we denote its volume by |K|, its gauge by ‖x‖K ,
its supporting functional by hK , that is hK(u) = max{〈u, y〉 | y ∈ K}. The
polar of K is

K0 = {x ∈ Rn | 〈x, y〉 ≤ 1 for every y ∈ K} .

18



Note that hK(·) = ‖ · ‖K0 . We use also the following standard notation

MK = M(K) =

∫
Sn−1

‖x‖K dν,

where ν is normalized Lebesgue measure on Sn−1. M(K0) we denote by
M∗

K = M∗(K). It is well known that there exists constant cn > 1 such that
cn −→ 1 as n −→∞ and

MK =
cn√
n

E‖
n∑
i=1

eigi‖K .

We recall the following inequalities, which hold for every convex body K,

M∗
K ≥ (|K|/|Bn

2 |)
1/n ≥ 1/MK . (33)

The right hand side of the inequality is Urysohn inequality (see e.g. [P]).
The left hand side is obtained by integration and Hölder inequality. We
recall also that by Santaló inequality and Bourgain-Milman ([BM]) inverse
Santaló inequality there exists an absolute positive constant c such that for
every convex symmetric body K one has

cn|Bn
2 |2 ≤ |K||K0| ≤ |Bn

2 |2. (34)

4.2 Inclusion Theorem

In this section we develop further analytic tools to show that KN = Γ∗BN
1 ,

Γ ∈ M(N, n, µ, a1, a2), contains a large body with high probability.
We first study the inradius of random polytopes. Note that tBn

2 ⊂ KN if
and only if t|x| ≤ ‖Γx‖∞ for every x ∈ Rn. Thus if t

√
N |x| ≤ |Γx| for every

x ∈ Rn then tBn
2 ⊂ KN . Theorem 3.1 (see also Remark 4 after it) has the

following consequence.

Corollary 4.1 Let n ≥ 1 and N = (1 + δ)n for some δ > 0. There exists
c̃1, c̃2 > 0 (depending on a1, µ only) such that whenever δ ≥ c̃1/ ln(c̃2n) then

P (KN ⊃ c1B
n
2 ) ≥ 1− exp (−c2N) ,

where c1 > 0 depends only on δ, µ, a1, and c2 > 0 depends only on µ and a2.
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Remark 1. In fact, by Remark 1 after Theorem 3.1, c1 = c3c
1/δ
4 , where c3,

c4 are positive constants depending only on µ and a1.

Remark 2. It is proved in [GH] that for all N > cn ln(α−1), one has P(KN ⊃
c′Bn

2 ) ≥ 1 − α where c and c′ are absolute positive constants. Note that
the constraint on N and n does not allow to take α ∼ exp(−c2N); and if
α ∼ exp(−c2n), which is the minimum required to get a statement with high
probability, then N & n2. Therefore the statement from [GH] give very weak
estimates for probability when N is proportional to n.

When N/n is large, we have more information and we estimate the inra-
dius with respect to a body bigger than the Euclidean unit ball.

Theorem 4.2 There exists a constant c2 > 1 such that for every β ∈ (0, 1)
and every n, N satisfying

2n ≥ N ≥ nmax
{

exp(Cµ/β),
(
c2 max

{
ln a1, 1/(1− β)2

})1/(1−β)
}
,

where Cµ = 12 ln(eµ), one has

P
(
KN ⊃ 1

8
(Bn

∞ ∩RBn
2 )

)
≥ 1− exp

(
−nβN1−β/5

)
− exp (−a2N)

with R =
√
β ln(N/n)/Cµ.

Remark. For the Gaussian random matrix we do not need to take the
intersection with the cube. Namely, for such a matrix we have

P
(
KN ⊃ C

√
β ln(N/n) Bn

2

)
≥ 1− exp

(
−cnβN1−β) ,

where C, c are absolute positive constants [G2]. Moreover, the probability
estimate can not be improved. Indeed, the Gaussian random matrix and
β ∈ (0, c′′) we have

P
(
KN ⊃ C ′

√
β ln(N/n)Bn

2

)
≤ 1− exp

(
−c′nβN1−β) ,

where C ′, c′ > 0 and 0 < c′′ ≤ 1 are absolute constants.

To prove Theorem 4.2 we need the following lemma modelled on the
Theorem from [M], where it was proved for Bernoulli ±1 random variables.
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Lemma 4.3 Let α ≥ 1 and L = (1/2)(Bn
∞ ∩αBn

2 ). Let µ ≥ 1 and ξi, i ≤ n,
be independent symmetric random variables such that 1 ≤ Eξ2 ≤ E|ξ|3 ≤ µ3.
Then for every z ∈ Rn, z 6= 0, one has

P

(
n∑
i=1

ξizi > hL(z)

)
> exp

(
−Cµα2

)
,

where Cµ = 12 ln(eµ).

We postpone the proof of this lemma until the end of this section.

Corollary 4.4 Let α ≥ 1 and L = (1/2)(Bn
∞ ∩ αBn

2 ). Let Γ be from
M(N, n, µ, a1, a2). Then for every u ∈ Rn and every σ ⊂ {1, . . . , N} one
has

P (‖PσΓu‖∞ < hL(u)) < exp
(
−|σ| exp(−Cµα2)

)
,

where Pσ : RN → Rσ and Cµ = 12 ln(eµ).

Proof: Let Γ = (ξji)j≤N,i≤n be from M(N, n, µ, a1, a2). Then PσΓ =
(ξji)j∈σ,i≤n be from M(|σ|, n, µ, a1, a2) (strictly speaking to use such nota-
tion we should ask |σ| ≥ n, however we do not need such condition in this
proof). By Lemma 4.3 we have for every u = {ui}ni=1 ∈ Rn, every j ∈ σ

P

(
n∑
i=1

uiξji < hL(u)

)
≤ 1− exp(−Cµα2).

Since 1− s < e−s for s > 0, we obtain that for every u ∈ Rn, every j ∈ σ

P

(
n∑
i=1

uiξji < hL(u)

)
< exp

(
− exp(−Cµα2)

)
.

Thus

P (‖PσΓu‖∞ < hL(u)) = P

(
sup
j∈σ

∣∣∣∣∣
n∑
i=1

uiξji

∣∣∣∣∣ < hL(u)

)

=
∏
j∈σ

P

(∣∣∣∣∣
n∑
i=1

uiξji

∣∣∣∣∣ < hL(u)

)
< exp

(
−|σ| exp(−Cµα2)

)
.
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2

Proof of Theorem 4.2: Let Γ = (ξji)j≤N,i≤n be from M(N, n, µ, a1, a2).
Let us denote xj = (ξji)i≤n ∈ Rn, j ≤ N , K = KN = abs conv{xj}j≤N ,
L = L(α) = (1/2) (Bn

∞ ∩ αBn
2 ). Note that

hK(u) = sup
j≤N

| 〈u, xj〉 | = ‖Γu‖∞

for every u ∈ Rn.
The proof of Theorem 4.2 is again based on a combination of a probability

estimate for a fixed vector u and an ε-net argument. To make this scheme
work we replace ‖ · ‖∞ with a new norm ||| · ||| ≤ ‖ · ‖∞ having a smaller
Lipschitz constant with respect to the Euclidean metric. This results in a
larger value of δ in the approximation, and thus in a smaller size of a δ-net.

Let m = 8d(N/n)βe (if the latter number is greater than N/4 we take
m = N) and k = [N/m]. Below we assume m < N (then k ≥ 4, hence
km > 4N/5); the proof in the case m = N , k = 1 repeats the same lines
with simpler calculations. Let σ1, . . . , σk be a partition of {1, 2, 3, . . . , N}
such that m ≤ |σi| for every i ≤ k. Define ||| · ||| on RN by

|||z||| = 1

k

k∑
i=1

‖Piz‖∞

for every z ∈ RN , where Pi = Pσi
: RN → Rσi is the coordinate projection.

Clearly, ||| · ||| ≤ ‖ · ‖∞.
Note that if for some u ∈ Rn we have |||Γu||| < hL(u)/2 then there is

I ⊂ {1, . . . , k} of cardinality at least k/2 such that for every i ∈ I one
has ‖PiΓu‖∞ < hL(u). Therefore, by Corollary 4.4, we obtain for every
u = {ui}ni=1 ∈ Rn and every α ≥ 1

22



P (|||Γu||| < hL(u)/2)

≤
∑

|I|=[(k+1)/2]

P (‖PiΓu‖∞ < hL(u) for every i ∈ I)

≤
∑

|I|=[(k+1)/2]

∏
i∈I

P (‖PiΓu‖∞ < hL(u))

≤
∑

|I|=[(k+1)/2]

∏
i∈I

exp
(
−|σi| exp(−Cµα2)

)
≤

(
k

[k/2]

)
exp

(
−(km/2) exp(−Cµα2)

)
≤ exp

(
k ln 2− (km/2) exp(−Cµα2)

)
,

where Cµ = 12 ln(eµ). By our choice of k and m we have (km/2)(n/N)β ≥
4k. Thus the last expression is bounded by

exp
(
−(3km/8) exp

(
−Cµα2

))
.

Take

α2 =
β ln(N/n)

Cµ

(α ≥ 1, by the condition on n and N). Since km > 4N/5 we obtain

P (|||Γu||| < hL(u)/2) ≤ exp
(
−0.3 N1−βnβ

)
.

Let S be the boundary of L0 and 1 ≥ δ > 0 will be chosen later. By the
standard volume estimates there exists an δ-net A in S with respect to L0 of
cardinality not exceeding (3/δ)n. Therefore

P (∃u ∈ A : |||Γu||| < 1/2)

≤
∑
u∈A

P (|||Γu||| < 1/2)

≤ exp
(
n ln(3/δ)− 0.3 N1−βnβ

)
Let Ω =

{
ω : ‖Γ‖ ≤ a1

√
N
}

. Since (1/2)Bn
2 ⊂ L (for α ≥ 1) and |||z||| ≤

(1/
√
k)|z| for every z ∈ RN , we obtain that for every u ∈ Rn and every ω ∈ Ω

one has
|||Γ(u)||| ≤ a1

√
N/k |u| ≤ 2a1

√
N/k hL(u).

23



For every u ∈ S there exists v ∈ A such that hL(u − v) ≤ δ, which implies
for every ω ∈ Ω

|||Γ(v)||| ≤ |||Γ(u)|||+ |||Γ(u− v)||| ≤ |||Γ(u)|||+ 2a1

√
N/k δ.

Setting δ = min{1,
√
k/N/(8a1)} we obtain

P
({
ω ∈ Ω : ∃u ∈ Rn : |||Γu||| < hL(u)/4

})
= P

({
ω ∈ Ω : ∃u ∈ S : |||Γu||| < 1/4

})
≤ P

({
ω ∈ Ω : ∃v ∈ A : |||Γv||| < 1/2

})
≤ exp

(
n ln(3/δ)− 0.3 N1−βnβ

)
≤ exp

(
−N1−βnβ/5

)
for an appropriate choice of the absolute constant c2 in

N/n ≥
(
c2 max

{
ln a1, 1/(1− β)2

})1/(1−β)
.

The desired result follows since hK(u) ≥ |||Γu||| for every u ∈ Rn and since,
by the assumption on Γ, we get

P
(
Ω̄
)
≤ exp(−a2N).

This completes the proof 2

Proof of Lemma 4.3: The proof mimics Montgomery-Smith’s proof.
Assume first that α2 is an integer, which we denote by m. Define the

following norm on Rn

‖z‖ = sup
m∑
i=1

(∑
k∈Bi

|zk|2
)1/2

, (35)

where the supremum is taken over all partitions B1, . . . , Bm of {1, 2, . . . , n}.
It is known (see e.g. [M] for the proof) that

‖z‖ ≤ 2hL(z) ≤
√

2‖z‖

for every z ∈ Rn.
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Given z ∈ Rn, let m′ ≤ m and B1, . . . , Bm′ be a partition of {1, 2, . . . , n}
such that

‖z‖ =
m′∑
i=1

(∑
k∈Bi

|zk|2
)1/2

.

and
∑

k∈Bi
|zk|2 6= 0 for every i ≤ m′.

Then

P := P

(
n∑
i=1

ξizi > hL(z)

)
≥ P

(
n∑
i=1

ξizi > ‖z‖/
√

2

)

= P

 m′∑
i=1

∑
k∈Bi

ξkzk > (1/
√

2)
m′∑
i=1

(∑
k∈Bi

|zk|2
)1/2

 .

Since ξi’s are independent we obtain

P ≥
m′∏
i=1

P

∑
k∈Bi

ξkzk > (1/
√

2)

(∑
k∈Bi

|zk|2
)1/2

 .

For i ≤ m′ set

fi =

(∑
k∈Bi

ξkzk

)
·

(∑
k∈Bi

|zk|2
)−1/2

.

Since ξi’s are symmetric, by Corollary 3.6 we get

P
(
fi > 1/

√
2
)

=
1

2
P
(
|fi| > 1/

√
2
)

≥ 1

2

(
1− 1/2

2µ2

)3

=
1

27µ6
.

Since µ ≥ 1, we obtain

P ≥
(

1

27µ6

)m′
≥
(

1

27µ6

)m
,

which implies the desired result for the case when α2 is an integer. To
complete the proof note that for every α ≥ 1 one has

Bn
∞ ∩ αBn

2 ⊂ Bn
∞ ∩

√
mBn

2 and m < 2α2,
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where m = dα2e. 2

It is of an interest to note that the radius of Bn
∞ inside KN obtained in

Theorem 4.2 can be made as close to 1 as we wish. Indeed, we have the
following sharper version of this theorem.

Theorem 4.5 There exists an absolute constant c2 > 1 such that for every
β, δ ∈ (0, 1), and ε ∈ (0, 1/4) and every

2n ≥ N ≥ nmax
{

exp(Cµ,δ/β),
(
(c2/ε) max

{
ln(a1/ε), 1/(1− β)2

})1/(1−β)
}
,

where Cµ,δ = 9 ln(eµ2/δ), one has

P (KN ⊃ (1− ε)(1− δ) (Bn
∞ ∩RBn

2 )) ≥ 1−exp
(
−nβN1−β/5

)
−exp (−a2N) ,

with R =
√
β ln(N/n)/Cµ,δ.

The proof of this Theorem follows the same line as before. In particular,
the only modifications needed in the actual proof of Theorem 4.2 is a more
careful discussion of |||Γu||| and the cardinality of the corresponding sets, and
a more precise approximation argument. We shall also need a more precise
formulation of Lemma 4.3. Namely, given δ ∈ (0, 1), Lemma 4.3 holds for
L = (1− δ)(Bn

∞ ∩αBn
2 ) with Cµ = 9 ln(eµ2/δ). To show this we consider the

norm ‖ · ‖′ defined by the same formula as in (35), but with m = 2α2. Then
for any z ∈ Rn we have hBn

∞∩αBn
2
(z) ≤ ‖z‖′, and the rest of the argument is

the same.

4.3 Geometric parameters of KN

In this section we apply the main results of the previous section to obtain
asymptotically sharp estimates for volumes of KN , K0

N and the mean di-
ameters M(KN), M(K0

N) of KN and K0
N , where KN = Γ∗BN

1 for Γ ∈
Mψ(N, n, µ). Recall that by Fact 2.4 for every a2 > 0 one has Mψ(N, n, µ) ⊂
M(N, n, µ, a1, a2) with a1 = µ

√
36(a2 + 4).

First we note that combining Corollary 4.1 and Theorem 4.2 we have the
following result.
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Theorem 4.6 Let n, N be integers such that n < N ≤ 2n and let α =
α(N, n) = n/(N − n). Let KN = Γ∗BN

1 , where Γ ∈ M(N, n, µ, a1, a2). Then
for every 0 < β ≤ 1/2 one has

P
(
KN ⊃ C(α)

(
Bn
∞ ∩

√
β ln(2N/n)Bn

2

))
≥ p(N, n, β),

where
p(N, n, β) = 1− exp

(
−cnβN1−β) and C(α) = c1c

α
2 ,

c1, c2 are positive constants depending only on a1, µ; c is a positive constant
depending only on a2, µ.

Since Bn
∞ ⊂

√
nBn

2 we obtain

Corollary 4.7 Under the assumptions of Theorem 4.6, for every 0 < β ≤
1/2 one has

P

(
KN ⊃ C(α)

√
β ln(2N/n)

n
Bn
∞

)
≥ p(N, n, β),

where C(α) and p(N, n, β) were introduced in Theorem 4.6.

Now we estimate the volumes of KN and K0
N and obtain asymptotically

sharp results. For the technical reasons we separate upper and lower esti-
mates (depending on the class M or Mψ).

Corollary 4.7 and (34) immediately imply the following volume estimates
for KN and K0

N (cf. [GH]).

Theorem 4.8 Let n < N ≤ 2n. Let KN = Γ∗BN
1 , where Γ ∈ M(N, n, µ, a1, a2).

There exist an absolute positive constant C such that for every β ∈ (0, 1/2)
one has

|KN |1/n ≥ 2C(α)

√
β ln(2N/n)

n
and |K0

N |1/n ≤ CC−1(α)/
√
βn ln(2N/n),

with probability larger than or equal to p(N, n, β), where C(α) and p(N, n, β)
were introduced in Theorem 4.6.
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The following theorem is a consequence of a well known estimate ([BF],
[CP], [G2]): let zi ∈ Sn−1, n ≤ k ≤ en, then

| abs conv{zi}i≤k|1/n ≤ c
√

ln(2k/n)/n, (36)

where C is an absolute positive constant. This estimate, Fact 2.3, and (34)
imply

Theorem 4.9 Let n < N ≤ 2n. Let KN = Γ∗BN
1 , where Γ ∈ Mψ(N, n, µ).

There exist absolute positive constants c and C such that for every β ∈
(0, 1/2) one has

|KN |1/n ≤ Cµ

√
ln(2N/n)

n
and |K0

N |1/n ≥ c/(µ
√
n ln(2N/n))

with probability larger than or equal to 1− e−n.

Now we calculate the mean diameters M(KN) and M(K0
N) improving

and extending results of [GH].

Theorem 4.10 Let n < N ≤ 2n. Let KN = Γ∗BN
1 , where Γ ∈ Mψ(N, n, µ).

There exists an absolute positive constant c such that

M(KN) ≥ c/
√

ln(2N/n)

with probability larger than or equal to 1− e−n.
Furthermore, there exists an absolute positive constant C such that for

every β ∈ (0, 1/2) and every Γ ∈ M(N, n, µ, a1, a2) one has

M(KN) ≤ CC−1(α)
(
1/
√
β ln(2N/n) +

√
(ln(2n))/n

)
with probability larger than or equal to p(N, n, β), where C(α) and p(N, n, β)
were introduced in Theorem 4.6.

Proof: By (33) and Theorem 4.9 there exists an absolute positive constant
c1 such that

M(KN) ≥ (|Bn
2 |/|KN |)1/n ≥ c1/(µ

√
ln(2N/n)),

with probability larger than or equal to 1− e−n.
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To prove the upper estimate we use Theorem 4.6:

M(KN) ≤ M
(
C(α)

(
Bn
∞ ∩

√
β ln(2N/n)Bn

2

))
≤ C−1(α)

(
M (Bn

∞) +M
(√

β ln(2N/n)Bn
2

))
,

which implies the required result. 2

Remark. Thus for N ≤ exp(n/ ln(2n)) we have

M(KN) ≈ 1/
√

ln(2N/n).

If N ≥ exp(n/ ln(2n)) there is a gap between lower and upper estimates.
Both estimates could be asymptotically sharp. Indeed, as it follows from
remark after Theorem 4.2, the lower estimate is sharp for the case of Gaussian
random matrix. The upper estimate is sharp for the case of ±1 random
matrix (see Section 4.4 below).

Theorem 4.11 Let n < N ≤ 2n. Let KN = Γ∗BN
1 , where Γ ∈ Mψ(N, n, µ).

There exists an absolute positive constant C such that

M(K0
N) ≤ Cµ

√
ln(2N)

with probability larger than or equal to 1− e−n.
Furthermore, there exists an absolute positive constant c such that for

every β ∈ (0, 1/2) and every Γ ∈ M(N, n, µ, a1, a2) one has

(i) for N ≤ n2 (note that in this case lnN ≤ 2 lnn)

M(K0
N) ≥ c

√
ln(2 + n/a2

1)

with probability larger than or equal to

1− exp (−a2N)− exp (−nN/(32µ4 ln2(2µ)));

(ii) for N > n2

M(K0
N) ≥ c0

√
β ln(2N)

with probability larger than or equal to p(N, n, β), where p(N, n, β) was
introduced in Theorem 4.6, and c0 is a constant depending only on a1,
a2 and µ.
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Proof: Let G =
∑n

i=1 giei. Recall that KN is the absolute convex hull of N
vertices xi = Γ∗ei. Thus we have

M(K0
N) ≤ c1√

n
E‖G‖K0

N
=

c1√
n

E max
i≤N

〈G, xi〉 ,

where c1 is an absolute constant. By Fact 2.3 we obtain that with probability
larger than or equal to 1 − e−n one has |xi| ≤ µ

√
3n for every i ≤ N .

Using standard estimate for the expectation of maximum of Gaussian random
variables (see e.g. [P]), we obtain that there is an absolute constant c2 such
that

M(K0
N) ≤ c2µ

√
ln(2N),

with probability larger than or equal to 1− e−n.
The second estimate follows from the Bourgain-Tzafriri theorem ([BT]).

However, the application of Vershynin’s extension ([V]) of results from [BT]
is easier and leads to slightly better probability estimates. Let ‖ · ‖hs de-
note Hilbert-Schmidt norm and denote A = ‖Γ∗‖hs, B = ‖Γ∗‖. Vershynin’s
theorem implies that there exists σ ⊂ {1, . . . , N} of cardinality larger than
A2/(2B2) such that for all i ∈ σ one has |Γ∗ei| ≥ c3A/

√
N , where c3 is an

absolute positive constant, and vectors Γ∗ei, i ∈ σ, are almost (up to an
absolute positive constant) orthogonal. Recall that with probability greater
than 1− exp (−a2N) the norm B ≤ a1

√
N . By Fact 2.5, A ≥

√
nN/2 with

probability greater than 1 − exp (−nN/(32µ4 ln2(2µ))). Thus, with proba-
bility greater than 1 − exp (−a2N) − exp (−nN/(32µ4 ln2(2µ))) there exists
σ ⊂ {1, . . . , n} of cardinality larger than n/(8a2

1) such that |Γ∗ei| ≥ c3
√
n/2

for i ∈ σ and {Γ∗ei}i∈σ are almost orthogonal. Now,

M(K0
N) ≥ 1√

n
E‖G‖K0

N
=

1√
n

E max
i≤N

〈G,Γ∗ei〉 ≥
1√
n

E max
i∈σ

〈G,Γ∗ei〉 .

Since {Γ∗ei}i∈σ are well separated, by Sudakov inequality (see e.g. [P]), the
last expectation is greater than c4

√
ln(2 + n/a2

1), where c4 is an absolute
constant. This proves the second estimate.

To prove the third estimate we use again (33):

M(K0
N) ≥

(
|Bn

2 |/|K0
N |
)1/n

.

The result follows by Theorem 4.8, since α ≤ 1 and ln(2N/n) ≥ (1/2) ln(2N)
in the case N > n2. 2
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4.4 The case of ±1 random matrix

Here we briefly discuss improvements and simplifications that can be done
in the case of ±1 random matrix.

1. If Γ is the ±1 random matrix, then KN = abs conv {xi}i≤N , where
xi’s are vertices of the cube. Thus we have |xi| =

√
n for all i ≤ N and we

do not need to use Fact 2.3. Therefore, in this case, the estimate 1 − e−n

for the probability in Theorems 4.9, 4.10, 4.11 should be substituted with 1.
Moreover, since KN ⊂ Bn

∞, we obtain

M(KN) ≥M(Bn
∞) ≥ c

√
(lnn)/n

improving the result of Theorem 4.10 to the best possible one.

2. We would also like to mention that in this case (i.e., the case of ±1
random matrix), using Sauer-Shelah lemma, one can prove that

M∗(KN) ≥ C(γ)
√

lnN

with probability larger than 1 − exp (−c1N) for N ≥ 2γn, where γ ∈ (0, 1),
C(γ) = c2

√
γ/ ln(e/γ), and c1, c2 are absolute constants.

3. Recall that by (36) we have that if LN ⊂ Rn is the absolute convex hull
of N ≤ en points with Euclidean norm

√
n then

|LN |1/n ≤ c

√
ln(N/n)

n
,

where C is an absolute positive constant. Thus Theorem 4.8 says that ran-
dom polytope KN has the largest possible volume. A concrete example of an
n-dimensional polytope LN with N vertices, all of them of Euclidean norm√
n, and satisfying

|LN |1/n ≥ c

√
ln(N/n)

n

for some absolute positive constant c, was constructed in [CP] and [G2]. This
polytope is not a 0-1 polytope. We show here that such a 0-1 polytope does
exist. Let us come back to our setting and consider vertices of the hypercube
{−1, 1}n.

Let q be a power of 2 and W = (wjk)1≤j≤q,1≤k≤q be a fixed ±1 Hadamard
q × q matrix. Let p ≥ 1 and define the set S of p by q matrices by
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(εiwjk)1≤i≤p,1≤j≤q where (εi) runs over the 2p choices of signs and k = 1, . . . , q.
The cardinality of S is q2p. Let P be the convex hull of these N = q2p points
in Rn where n = pq. Then P is a ±1 polytope. Because of the property of
the Hadamard matrix, Rn admits an orthogonal decomposition by q linear
spaces Ei of dimension p and P is the convex hull of q hypercubes lying re-
spectively in Ei, 1 ≤ i ≤ q and with length of size 2

√
q. An easy computation

shows that

|P | = (2
√
q)n

(p!)q

n!
·

Therefore

|P |1/n ≥ 2
√
q
p

en
=

2

e
√
q
·

Since N/n = 2p/p ≤ 2p, one has

log(N/n)

n
≤ p log 2

n
=

log 2

q
.

Therefore

|P |1/n ≥ 2

e
√
q
≥ 2

e
√

log 2

√
ln(N/n)

n
·

4. Let P be ±1 polytope in Rn with N = n2 vertices and such that

(1/λ)Bn
∞ ⊂ P ⊂ Bn

∞,

with λ = O(
√
n/ lnn). Such a polytope exists by Corollary 4.7. Following

the language and the method of [BGKKLS], if C is a convex body given
by a strong separation oracle, one can construct an algorithm that gives in
a polynomial time and with any given accuracy the inradius m̃ of C with
respect to P (the best number such that m̃P ⊂ C. From this one gets
estimates (1/λ)m̃ ≤ m ≤ m̃ of the inradius m of C with respect to Bn

∞.
Therefore there exists a polynomial time algorithm that gives estimates of m
with accuracy λ = O(

√
n/ lnn). As is proved in [BGKKLS], this is the best

possible order. Unfortunately, we do not know any explicit construction of
such a polytope P .
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[BP] I. Bárány and A. Pór, On 0-1 Polytopes with many facets, Adv.
Math. 161 (2001), 209-228.

[BM] J. Bourgain and V. D. Milman, New volume ratio properties for sym-
metric bodies in Rn, Invent. Math. 88 (1987), no 2, 319–340.

[BT] J. Bourgain and L. Tzafriri, Invertibility of ”large” submatrices with
applications to the geometry of Banach spaces and harmonic analysis,
Israel J. Math. 57 (1987), 137–224.

[BGKKLS] A. Brieden, P. Gritzmann, R. Kannan, V. Klee, L. Lovász and
M. Simonovits, Deterministic and randomized polynomial-time ap-
proximation of radii, Mathematika 48 (2001), No.1-2, 63-105.

[CP] B. Carl and A. Pajor, Gelfand numbers of operators with values in a
Hilbert space, Invent. Math. 94 (1988), 479–504.

[DS] K.R. Davidson and S.J. Szarek, Local operator Theory, Random Ma-
trices and Banach spaces, In:”Handbook in Banach Spaces” Vol I,
ed. W. B. Johnson, J. Lindenstrauss, Amsterdam: Elsevier (2001),
317–366.
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