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1. Introduction

The classical random matrix theory is concerned with asymptotic of various
spectral characteristics of families of random matrices, when the dimensions of
the matrices tend to infinity. There are many examples when these character-
istics, which are random variables themselves, converge to certain limit laws.
This includes the celebrated Wigner semicircle law for the empirical measures
of eigenvalues of random symmetric matrices, Marchenko–Pastur law, which is
the limit of empirical measures of sample covariance matrices, Tracy–Widom
distribution describing the limit of the first singular values of a sequence of
random matrices, etc. [1]. These limits are of paramount importance, yet in
applications one usually needs information about the behavior of such charac-
teristics for large, but fixed n. For instance in problems in convex geometry
one constructs a random section of an N -dimensional convex body by taking
the kernel or the range of a certain random matrix. Random matrices arise
also in analysis of rates of convergence of computer science algorithms. In
both cases, the dimension of the ambient space remains fixed, and one seeks
explicit estimates of probabilities in terms of the dimension. For such problems
knowing the limit behavior is of little help.

The problems involving estimates for a fixed finite dimension arise in the
classical random matrix theory as well. One of the main approaches in deriving
the limit laws is based on analysis of the Stieltjes transform of measures [1].
To derive the convergence of Stieltjes transforms, one frequently has to provide
explicit bounds on the smallest singular value of a random matrix of a fixed
size, which holds with high probability. This need arises, e.g., in derivation of
the circular law and the single ring theorem.

These questions led to development of non-asymptotic theory of random
matrices, which provides probabilistic bounds for eigenvalues, singular values,
etc. for random matrices of a large fixed size. The situation is roughly parallel
to that arising for the sums of i.i.d. random variables, where the asymptotic
and non-asymptotic results go hand in hand. The asymptotic behavior of the
averages of n i.i.d. random variables is governed by the Strong Law of Large
Numbers establishing the almost sure convergence to the expectation. Yet, to
assert that the average of a large number of random variables is close to the
expectation, we need a non-asymptotic version, e.g. Hoeffding inequality. This
inequality yields a subgaussian bound for the large deviations (see the details
below). Such behavior suggests that the limit distribution of the deviation
should be normal, which leads to an asymptotic result, the Central Limit
Theorem (CLT). To use the CLT in evaluation of probabilities for random
sums, we need its non-asymptotic version, namely the Berry–Esseen Theorem.
This theorem provides in turn a crucial step in deriving another fundamental
asymptotic result, the Law of Iterated Logarithm.
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These notes discuss the methods of the non-asymptotic approach to the
random matrix theory. We do not attempt to provide an exhaustive list of
references (a reader can check the surveys [5], [27], and [40]). Instead we con-
centrate on three essentially different examples, with the aim of presenting
the methods and results in a maximally self-contained form. This approach
inevitably leaves out several important recent developments, such as invertibil-
ity of random symmetric matrices [42, 19], applications to the Circular Law
[9, 37, 38], and concentration for random determinants [39, 20]. Yet, by re-
stricting ourselves to a few results, we will be able to give a relatively complete
picture of the ideas and methods involved in their proofs. We start with in-
troduction to subgaussian random variables in Section 3. In Sections 5-7 we
obtain quantitative bounds for invertibility of random matrices with i.i.d. en-
tries. As will be shown in Section 6, the arithmetic structures play a crucial
role here. Section 8 studies a question arising in geometric functional analysis.
Here the ambient space is Banach, and the approach combines the methods
of the previous sections with the functional-analytic considerations. We will
also touch upon majorising measures, which are a powerful tool for estimating
suprema of random processes. Section 9 contains another quantitative invert-
ibility result. Here we discuss a random unitary or orthogonal perturbation
of a fixed matrix. Unlike in the first example, the arithmetic structure plays
no role in this problem. The main difficulty is the dependence between the
entries of a random matrix, and the method is based on the introduction of
perturbations with independent entries.

Acknowledgement. These notes are based in part on the material presented
at the workshop “Etats de la Recherche: Probability and geometry in inter-
action” at Paul Sabatier University in Toulouse, the mini-course given at the
Warsaw University, and the Informal Analysis Seminar at Kent State Univer-
sity. The author is grateful to Franck Barthe, Michel Ledoux, Rafal Latala,
Krzystof Oleszkiewicz, Michal Wojchehowski, Fedor Nazarov, Dmitry Ryabo-
gin, and Artem Zvavitch for their hospitality. The author also grateful to
Fedor Nazarov for careful reading of the manuscript and many suggestions,
which led to improvement of the presentation.

2. notation and basic definitions

We shall consider random matrices of high order with independent entries.
For simplicity, we shall assume that the entries are centered (Eaj,k = 0) and
identically distributed (both conditions may be relaxed).
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Throughout these notes ‖·‖p denotes the `p norm

‖x‖p =

(
n∑
j=1

|xj|p
)1/p

, 1 ≤ p <∞,

and Bn
p stands for the unit ball of this norm. The norm of an operator or a

matrix will be denoted by ‖·‖. We use Sn−1 for the unit Euclidean sphere. If
F is a finite set, then |F | denotes the cardinality of F . Letters C,C ′, c etc.
denote absolute constants.

If N ≥ n then an N × n matrix A can be viewed as a mapping of Rn into
RN . Thus, a random matrix defines a random n-dimensional section of RN .
For geometric applications we need to know that this matrix would not distort
the metric too much. Let us formulate it more precisely:

Definition 2.1. Let N ≥ n and let A be an N × n matrix. The condition
number of the matrix A is

σ(A) =
maxx∈Sn−1 ‖Ax‖2

minx∈Sn−1 ‖Ax‖2

.

If minx∈Sn−1 ‖Ax‖2 = 0, we set σ(A) =∞.

The condition number of a matrix can be rewritten in terms of its singular
values.

Definition 2.2. Let N ≥ n and let A be an N × n matrix. The singular
values of A are the eigenvalues of (A∗A)1/2, arranged in the decreasing order:
s1(A) ≥ s2(A) ≥ . . . ≥ sn(A).

The singular values of A are the lengths of the semi-axes of the ellipsoid
ABn

2 . The first and the last singular values have a clear functional-analytic
meaning:

s1(A) =
∥∥A : Rn → RN

∥∥ ,
and

sn(A) = min
x∈Sn−1

‖Ax‖ = 1/
∥∥A−1 : ARn → Rn

∥∥ ,
whenever A has the full rank. In this notation σ(A) = s1(A)/sn(A).

Therefore, to bound the condition number, we have to estimate the first
singular value from above, and the last one from below. For matrices with
i.i.d. random entries the first singular value is the most robust. It can be
estimated using a simple ε-net argument, as will be shown in Proposition 4.4.
The last singular value presents a bigger challenge. We will obtain its bounds
for “tall” rectangular matrices in Section 4, and for square matrices in Sections
5-7.
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3. Subgaussian random variables

In this section we introduce an important class of random variables with
strong tail decay properties. This class contains the normal variables, as well
as all bounded random variables.

Definition 3.1. Let ξ be a random variable and let v > 0. We shall call ξ
v-subgaussian if there exist constants C and v such that for any t > 0

P(|ξ| > t) ≤ Ce−vt
2

.

A random variable ξ is called centered if Eξ = 0.

If the parameter v is an absolute constant, we call a v-subgaussian random
variable subgaussian. We shall assume that the random variable ξ is non-
degenerate, i.e. Var(ξ) > 0.

The subgaussian condition can be formulated in a number of different ways.

Theorem 3.2. Let X be a random variable. The following conditions are
equivalent:

(1) X is subgaussian;

(2) ∃a > 0 EeaX2
< +∞ (ψ2-condition);

(3) ∃B, b > 0 ∀λ ∈ R EeλX ≤ Beλ
2b (Laplace transform condition);

(4) ∃K > 0 ∀p ≥ 1 (E|X|p)1/p ≤ K
√
p (moment condition).

Moreover, if X is a centered random variable, (3) can be rewritten as

(3)′ ∃b′ > 0 ∀λ ∈ R EeλX ≤ eλ
2b′.

Proof. The proof is a series of elementary calculations.
(1)⇒ (2) Let a < v. By the integral distribution formula,

EeaX2

= 1 +

∫ ∞
0

2ateat
2 · P(|X| > t) dt ≤ 1 +

∫ ∞
0

2at · Ce−(v−a)t2 dt < +∞.

(2)⇒ (3) Let λ be any real number. Then

EeλX = EeλX−aX2

eaX
2 ≤ sup

t∈R
eλt−at

2 · EeaX2 ≤ Beλ
2/4a.

(3)⇒ (4) Set λ =
√
p. Replacing, as before, the the function by its supremum,

we get

E|X|p ≤ sup
t>0

tpe−
√
p t · Ee

√
p|X| ≤

(√
p

e

)p
· Cepb.

(4)⇒ (1) Assume first t ≥ eK. Choose p so that
K
√
p

t
= e−1.

P(|X| > t) ≤ E|X|p
tp

≤
(
K
√
p

t

)p
= e−p = e−vt

2

,

where v = e−2K−2. This proves (1) for t ≥ eK. Setting C = e automatically
guaranties that (1) holds for 0 < t < eK as well.
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(3)′ We will assume that (3) holds with B > 1 since otherwise the statement is
trivial. Assume first that X is symmetric. For large values of λ, we can derive
(3) with constant B = 1 by changing the parameter b. Indeed, set λ0 =

√
2a

and choose b̄ > 0 so that Beλ
2
0b ≤ eλ

2
0b̄. This guarantees that (3) holds for all

λ such that |λ| ≥ λ0 with B = 1 and b replaced by b̄.
If λ2 ≤ 2a, then by the ψ2-condition and Holder’s inequality,

EeλX = E
1

2
(eλX + e−λX) ≤ Eeλ2X2/2 ≤

(
EeaX2

)λ2/2a
≤ exp

(
c
λ2

2a

)
.

Finally, we set b′ = max(c/2a, b̄).
If X is merely centered, we use a simple symmetrization. Let X ′ be an

independent copy of X. Then by Jensen’s inequality,

EeλX = Eeλ(X−EX′) ≤ Eeλ(X−X′),

where X −X ′ is a symmetric subgaussian random variable. �

Remark. The ψ2-condition turns the set of centered subgaussian random vari-
ables into a normed space. Define the function ψ2 : R → R by ψ2(t) =
exp(t2)− 1. Then for a non-zero random variable set

‖X‖ψ2
= inf{s > 0 | Eψ2(X/s) ≤ 1}.

The subgaussian random variables equipped with this norm form an Orlicz
space (see [17] for the details).

To estimate the first singular value, we have to prove a large deviation in-
equality for a linear combination of independent subgaussian random variables.
Note that a linear combination of independent Gaussian random variables is
Gaussian. We prove below that a linear combination of independent subgaus-
sian random variables is subgaussian.

Theorem 3.3. Let X1, . . . , Xn be independent centered subgaussian random
variables. Then for any a1, . . . , an ∈ R

P

(∣∣∣∣∣
n∑
j=1

ajXj

∣∣∣∣∣ > t

)
≤ 2 exp

(
− ct2∑n

j=1 a
2
j

)
.

Proof. Set vj = aj/
(∑n

j=1 a
2
j

)1/2

. We have to show that the random variable

Y =
∑n

j=1 vjXj is subgaussian. Let us check the Laplace transform condition
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(3)′. For any λ ∈ R

E exp

(
λ

n∑
j=1

vjXj

)
=

n∏
j=1

E exp(λvjXj)

≤
n∏
j=1

exp(λ2v2
j b) = exp

(
λ2b

n∑
j=1

v2
j

)
= eλ

2b.

The inequality here follows from (3)′. Note that the fact that the constant in
front of the exponent in (3)′ is 1 plays the crucial role here. �

Theorem 3.3 can be used to give a very short proof of a classical inequality
due to Khinchin.

Theorem 3.4 (Khinchin). Let X1, . . . , Xn be independent centered subgaus-
sian random variables. For any p ≥ 1 there exist Ap, Bp > 0 such that the
inequality

Ap

(
n∑
j=1

a2
j

)1/2

≤
(
E

∣∣∣∣∣
n∑
j=1

ajXj

∣∣∣∣∣
p)1/p

≤ Bp

(
n∑
j=1

a2
j

)1/2

holds for all a1, . . . , an ∈ R.

Proof. Without loss of generality, assume that
(∑n

j=1 a
2
j

)1/2

= 1.

Let p ≥ 2. Then by Hölder’s inequality(
n∑
j=1

a2
j

)1/2

=

E

∣∣∣∣∣
n∑
j=1

ajXj

∣∣∣∣∣
2
1/2

≤
(∣∣∣∣∣E

n∑
j=1

ajXj

∣∣∣∣∣
p)1/p

,

so Ap = 1. By Theorem 3.3, Y =
∑n

j=1 ajXj is a subgaussian random variable.
Hence,

(E|Y |p)1/p ≤ C
√
p =: Bp.

This is the right asymptotic as p→∞.
In the case 1 ≤ p ≤ 2 it is enough to prove the inequality for p = 1. As

before, by Hölder’s inequality, we can choose Bp = 1. Applying Khinchin’s
inequality with p = 3, we get

E|Y |2 = E|Y |1/2 · |Y |3/2 ≤ (E|Y |)1/2 ·
(
E|Y |3

)1/2 ≤ (E|Y |)1/2 ·B3/2
3

(
E|Y |2

)3/4
.

Hence,

B−3
3

(
E|Y |2

)1/2 ≤ E|Y |. �
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4. Invertibility of a rectangular random matrix

We introduce the ε-net argument, which will enable us to bound the condi-
tion number for a random N × n matrix with independent entries in the case
when N � n. To simplify the proofs we assume from now on that the entries
of the matrix are centered, subgaussian random variables.

Recall the definition of an ε-net.

Definition 4.1. Let (T, d) be a metric space. Let K ⊂ T . A set N ⊂ T is
called an ε-net for K if

∀x ∈ K∃y ∈ N d(x, y) < ε.

A set S ⊂ K is called ε-separated if

∀x, y ∈ S d(x, y) ≥ ε.

These two notions are closely related. Namely, we have the following ele-
mentary Lemma.

Lemma 4.2. Let K be a subset of a metric space (T, d), and let N ⊂ T be an
ε-net for K. Then

(1) there exists a 2ε-net N ′ ⊂ K such that |N ′| ≤ |N |;
(2) any 2ε-separated set S ⊂ K satisfies |S| ≤ |N |.
(3) From the other side, any maximal ε-separated set S ′ ⊂ K is an ε-net

for K.

We leave the proof of this lemma for a reader as an exercise.

Lemma 4.3 (Volumetric estimate). For any ε < 1 there exists an ε-net N ⊂
Sn−1 such that

|N | ≤
(

3

ε

)n
.

Proof. Let N be a maximal ε-separated subset of Sn−1. Then for any distinct
points x, y ∈ N (

x+
ε

2
Bn

2

)
∩
(
y +

ε

2
Bn

2

)
= ∅.

Hence,

|N | · vol
(ε

2
Bn

2

)
= vol

(⋃
x∈N

(
x+

ε

2
Bn

2

))
≤ vol

((
1 +

ε

2

)
Bn

2

)
,

which implies

|N | ≤
(

1 +
2

ε

)n
≤
(

3

ε

)n
. �

Using ε-nets, we prove a basic bound on the first singular value of a random
subgaussian matrix:
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Proposition 4.4 (First singular value). Let A be an N × n random matrix,
N ≥ n, whose entries are independent copies of a subgaussian random variable.
Then

P
(
s1(A) > t

√
N
)
≤ e−c0t

2N for t ≥ C0.

Proof. Let N be a (1/2)-net in SN−1 and M be a (1/2)-net in Sn−1. For any
u ∈ Sn−1, we can choose a x ∈ N such that ‖x− u‖2 < 1/2. Then

‖Au‖2 ≤ ‖Ax‖2 + ‖A‖ · ‖x− u‖2 ≤ ‖Ax‖2 +
1

2
‖A‖ .

This shows that ‖A‖ ≤ 2 supx∈N ‖Ax‖2 = 2 supx∈N supv∈SN−1〈Ax, u〉. Ap-
proximating v in a similar way by an element of M, we obtain

‖A‖ ≤ 4 max
x∈N , y∈M

|〈x, y〉|.

By Lemma 4.3, we can choose these nets so that

|N | ≤ 6N , |M| ≤ 6n.

By Theorem 3.3, for every x ∈ N and y ∈ M, the random variable 〈Ax, y〉 =∑N
j=1

∑n
k=1 aj,kyjxk is subgaussian, i.e.,

P
(
|〈Ax, y〉| > t

√
N
)
≤ C1e

−c1t2N for t > 0.

Taking the union bound, we get

P
(
‖A‖ > t

√
N
)
≤ |N ||M| max

x∈N, y∈M
P
(
|〈Ax, y〉| > t

√
N/4

)
≤ 6N · 6N · C1e

−c2t2N ≤ C1e
−c0t2N ,

provided that t ≥ C0 for an appropriately chosen constant C0 > 0. This
completes the proof. �

Proposition 4.4 means that for any N ≥ n the first singular value is O(
√
N)

with probability close to 1. Thus, the bound for the condition number reduces
to a lower estimate of the last singular value.

To obtain it, we prove an easy estimate for a small ball probability of a sum
of independent random variables.

Lemma 4.5. Let ξ1, . . . , ξn be independent copies of a centered subgaussian
random variable with variance 1. Then there exists µ ∈ (0, 1) such that for ev-
ery coefficient vector a = (a1, . . . , an) ∈ Sn−1 the random sum S =

∑n
k=1 akξk

satisfies

P(|S| < 1/2) ≤ µ.

Proof. Let 0 < λ < (ES2)1/2 = 1. By the Cauchy–Schwarz inequality,

ES2 = ES21[λ,λ](S) + ES21R\[λ,λ](S) ≤ λ2 +
(
ES4

)1/2 P(|S| > λ)1/2.
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This leads to the Paley–Zygmund inequality:

P(|S| > λ) ≥ (ES2 − λ2)2

ES4
=

(1− λ2)2

ES4
.

By Theorem 3.3, the random variable S is subgaussian, so by (4), Theorem3.2,
ES4 ≤ C. To finish the proof, set λ = 1/2. �

Lemma 4.5 implies the following invertibility estimate for a fixed vector.

Corollary 4.6. Let A be a matrix as in Proposition 4.4. Then there exist
constants η, ν ∈ (0, 1) such that for every x ∈ Sn−1,

P(‖Ax‖2 < ηN1/2) ≤ νN .

Proof. The coordinates of the vector Ax are independent linear combinations
of i.i.d. subgaussian random variables with coefficients (x1, . . . , xn) ∈ Sn−1.
Hence, by Lemma 4.5, P(|(Ax)j| < 1/2) ≤ µ for all j = 1, . . . , N .

Assume that ‖Ax‖2 < η
√
N . Then |(Ax)j| < 1/2 for at least (1− 4η2)N >

N/2 coordinates. If η is small enough, then the number M of subsets of
{1, . . . , N} with at least (1 − 4η2)N elements is less than µ−N/4. Then the
union bound implies

P(‖Ax‖2 < ηN1/2) ≤M · µN/2 ≤ µN/4. �

Combining this with the ε-net argument, we obtain the estimate for the
smallest singular value of a random matrix, whose dimensions are significantly
different.

Proposition 4.7 (Smallest singular value of rectangular matrices). Let A be
an N×n matrix whose entries are i.i.d. centered subgaussian random variables
with variance 1. There exist c1, c2 > 0 and δ0 ∈ (0, 1) such that if n < δ0N ,
then

(4.1) P
(

min
x∈Sn−1

‖Ax‖2 ≤ c1N
1/2
)
≤ e−c2N .

Proof. Let ε > 0 to be chosen later. Let N be an ε-net in Sn−1 of cardinality
|N | ≤ (3/ε)n. Let η and ν be the numbers in Corollary 4.6. Then by the
union bound,

(4.2) P
(
∃y ∈ N : ‖Ay‖2 < ηN1/2

)
≤ (3/ε)n · νN .

Let V be the event that ‖A‖ ≤ C0N
1/2 and ‖Ay‖2 ≥ ηN1/2 for all points

y ∈ N .
Assume that V occurs, and let x ∈ Sn−1 be any point. Choose y ∈ N such

that ‖y − x‖2 < ε. Then

‖Ax‖2 ≥ ‖Ay‖2 − ‖A‖ · ‖x− y‖2 ≥ ηN1/2 − C0N
1/2 · ε =

ηN1/2

2
,
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if we set ε = η/(2C0). By (4.2) and Proposition 4.4,

P(V c) ≤
(
ν · (3/ε)n/N

)N
+ e−c

′N ≤ e−c2N ,

if we assume that n/N ≤ δ0 for an appropriately chosen δ0 < 1. This completes
the proof. �

5. Invertibility of a square matrix:
absolutely continuous entries

Until recently, much less has been known about the behavior of the smallest
singular value of a square matrix. In the classic work on numerical inversion
of large matrices, von Neumann and his associates used random matrices to
test their algorithms, and they speculated that

(5.1) sn(A) ∼ n−1/2 with high probability

(see [43], pp. 14, 477, 555). In a more precise form, this estimate was conjec-
tured by Smale [29] and proved by Edelman [6] and Szarek [31] for random
Gaussian matrices A, i.e., those with i.i.d. standard normal entries. Edelman’s
theorem states that for every ε ∈ (0, 1),

(5.2) P
(
sn(A) ≤ εn−1/2

)
∼ ε.

Conjecture (5.1) for general random matrices was an open problem, unknown
even for the random sign matrices A, i.e., those whose entries are±1 symmetric
random variables. The first polynomial bound for the smallest singular value
of a random matrix with i.i.d. subgaussian, in particular, ±1 entries was
obtained in [23]. It was proved that for such matrix sn(A) ≥ Cn−3/2 with
high probability. Following that, Tao and Vu proved that if A is a ±1 random
matrix, then for any α > 0 there exists β > 0 such that sn(A) ≥ n−β with
probability at least 1 − n−α. In [24] the conjecture (5.1) is proved in full
generality under the fourth moment assumption.

Theorem 5.1 (Invertibility: fourth moment). Let A be an n×n matrix whose
entries are independent centered real random variables with variances at least
1 and fourth moments bounded by B. Then, for every δ > 0 there exist ε > 0
and n0 which depend (polynomially) only on δ and B, such that

P
(
sn(A) ≤ εn−1/2

)
≤ δ for all n ≥ n0.

This shows in particular that the median of sn(A) is at least of order n−1/2.
To show that sn(A) ∼ n−1/2 with high probability, one has to prove a matching
lower bound. This was done in [26] for matrices with subgaussian entries and
extended in [41] to matrices, whose entries have the finite fourth moment.
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Under stronger moment assumptions, more is known about the distribution
of the largest singular value, and similarly one hopes to know more about the
smallest singular value.

One might then expect that the estimate (5.2) for the distribution of the
smallest singular value of Gaussian matrices should hold for all subgaussian
matrices. Note however that (5.2) fails for the random sign matrices, since they
are singular with positive probability. Estimating the singularity probability
for random sign matrices is a longstanding open problem. Even proving that
it converges to 0 as n → ∞ is a nontrivial result due to Komlós [16]. Later
Kahn, Komlós and Szemerédi [15] showed that it is exponentially small:

(5.3) P
(
random sign matrix A is singular

)
< cn

for some universal constant c ∈ (0, 1). The often conjectured optimal value of
c is 1/2 + o(1) [15], and the best known value 1/

√
2 + o(1) is due to Bourgain,

Vu, and Wood [4], (see [33, 35] for earlier results).
Spielman and Teng [30] conjectured that (5.2) should hold for the random

sign matrices up to an exponentially small term that accounts for their singu-
larity probability:

P
(
sn(A) ≤ εn−1/2

)
≤ ε+ cn.

We prove Spielman-Teng’s conjecture up to a coefficient in front of ε. More-
over, we show that this type of behavior is common for all matrices with
subgaussian i.i.d. entries. For a bound for random matrices with general i.i.d.
entries see [24].

Theorem 5.2 (Invertibility: subgaussian). Let A be an n × n matrix whose
entries are independent copies of a centered subgaussian real random variable.
Then for every ε ≥ 0, one has

(5.4) P
(
sn(A) ≤ εn−1/2

)
≤ Cε+ cn,

where C > 0 and c ∈ (0, 1).

Note that setting ε = 0 we recover the result of Kahn, Komlós and Sze-
merédi. Also, note that the question whether (5.4) holds for random sign
matrices with coefficient C = 1 remains open.

We shall start with an attempt to apply the ε-net argument. Let us consider
an n× n Gaussian matrix, i.e., a matrix with independent N(0, 1) entries. In
this case, for any x ∈ Sn−1, the vector Ax has independent N(0, 1) coordinates,
so it is distributed like the standard Gaussian vector in Rn. Hence, for any
t > 0,

P(‖Ax‖2 ≤ t
√
n) = (2π)−n/2

∫
t
√
n·Bn

2

e−‖x‖
2
2/2 dx ≤ (2π)−n/2vol(t

√
n ·Bn

2 )

≤ (C1t)
n.
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Fix ε > 0. Let N be an ε-net in Sn−1 of cardinality |N | ≤ (3/ε)n. Then by
the union bound,

P
(
∃x ∈ N : ‖Ax‖2 < tn1/2

)
≤ (3/ε)n · (C1t)

n.

To obtain a meaningful estimate we have to require

(5.5) (3/ε) · (C1t) < 1.

As in Proposition 4.7, we may assume that ‖A‖ ≤ C0

√
n, since the complement

of this event has an exponentially small probability. Assume that for any
y ∈ N , ‖Ay‖2 ≥ t

√
n. Given x ∈ Sn−1, find y ∈ N satisfying ‖x− y‖2 < ε.

Then
‖Ax‖2 ≥ ‖Ay‖2 − ‖A‖ · ‖x− y‖2 ≥ tn1/2 − C0n

1/2 · ε.
To obtain a non-trivial lower bound, we have to assume that

(5.6) t > C0ε.

Unfortunately, the system of inequalities (5.5) and (5.6) turns out to be in-
consistent, and the ε-net argument fails for the square matrix. Nevertheless,
a part of this idea can be salvaged. Namely, if the cardinality of the ε-net
satisfies a better estimate

(5.7) |N | ≤ (α/ε)n

for a small constant α > 0, then (5.5) is replaced by (α/ε) · (C1t) < 1, and the
system (5.5), (5.6) becomes consistent. While the estimate (5.7) is impossible
for the whole sphere, it can be obtained for a small part of it. This becomes
the first ingredient of our strategy: small parts of the sphere will be handled
by the ε-net argument. However, the “bulk” of the sphere has to be handled
differently.

The proof of Theorem 5.2 for random matrices with i.i.d. subgaussian entries
having a bounded density is presented below.

5.1. Conditional argument. To handle the “bulk”, we have to produce an
estimate which holds for all vectors in it simultaneously, without taking the
union bound. Let x ∈ Sn−1 be a vector such that |x1| ≥ n−1/2. Denote the
columns of the matrix A by X1, . . . , Xn, and let

Hj := span(Xk | k 6= j).

Then Ax =
∑n

k=1 xkXk, so

(5.8) ‖Ax‖2 ≥ dist(Ax,H1) = dist(x1X1, H1) ≥ n−1/2dist(X1, H1).

Note that the right hand side is independent of x. Therefore it provides a
uniform lower bound for all x such that |x1| ≥ n−1/2. Since any vector x ∈
Sn−1 has a coordinate with absolute value greater than n−1/2, we can try to
extend this bound to the whole sphere. This approach immediately runs into
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a problem: we don’t know a priori which of the coordinates of x is big. To
modify this approach we shall pick a random coordinate. To this end we have
to know that the random coordinate is big with relatively high probability.
This is true for vectors, which look like the vertices of a discrete cube, but is
obviously false for vectors with small support, i.e. a small number of non-zero
coordinates. This observation leads us to the first decomposition of the sphere:

Definition 5.3 (Compressible and incompressible vectors). Fix δ, ρ ∈ (0, 1).
A vector x ∈ Rn is called sparse if |supp(x)| ≤ δn. A vector x ∈ Sn−1 is called
compressible if x is within Euclidean distance ρ from the set of all sparse
vectors. A vector x ∈ Sn−1 is called incompressible if it is not compressible.
The sets of sparse, compressible and incompressible vectors will be denoted by
Sparse, Comp and Incomp respectively.

Using the decomposition of the sphere Sn−1 = Comp ∪ Incomp, we break
the invertibility problem into two subproblems, for compressible and incom-
pressible vectors:

(5.9) P
(
sn(A) ≤ εn−1/2

)
≤ P

(
inf

x∈Comp
‖Ax‖2 ≤ εn−1/2

)
+ P

(
inf

x∈Incomp
‖Ax‖2 ≤ εn−1/2

)
.

On the set of compressible vectors, we obtain an inequality, which is much
stronger than we need.

Lemma 5.4 (Invertibility for compressible vectors). Let A be a random matrix
as in Theorem 5.2, Then there exist δ, ρ, c1, c2 > 0 such that

P
(

inf
x∈Comp

‖Ax‖2 ≤ c1n
1/2
)
≤ e−c2n.

Sketch of the proof. Any compressible vectors is close to a coordinate subspace
of a small dimension δn. The restriction of our random matrix A onto such
a subspace is a random rectangular n × δn matrix. Such matrices are well
invertible outside of an event of exponentially small probability, provided that
δ is small enough (see Proposition 4.7). By taking the union bound over all
coordinate subspaces, we deduce the invertibility of the random matrix on the
set of compressible vectors. �

We shall fix δ and ρ as in Lemma 5.4 for the rest of the proof.
The incompressible vectors are well spread in the sense that they have many

coordinates of the order n−1/2. This observation will allow us to realize the
scheme described at the beginning of this section.
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Lemma 5.5 (Incompressible vectors are spread). Let x ∈ Incomp. Then there
exists a set σ(x) ⊆ {1, . . . , n} of cardinality |σ(x)| ≥ ν1n and such that

ν2√
n
≤ |xk| ≤

ν3√
n

for all k ∈ σ.

Here ν1, ν2 < 1 and ν3 > 1 are constants depending only on the parameters
δ, ρ.

We leave the proof of this lemma to the reader.
The main difficulty in implementing the distance bound like (5.8) is to avoid

taking the union bound. We achieve this in the proof of the next lemma by a
random choice of a coordinate.

Lemma 5.6 (Invertibility via distance). Let A be a random matrix with i.i.d.
entries. Let X1, . . . , Xn denote the column vectors of A, and let Hk denote the
span of all column vectors except the k-th. Then for every ε > 0, one has

(5.10) P
(

inf
x∈Incomp

‖Ax‖2 < εν2n
−1/2

)
≤ 1

ν1

· P
(
dist(Xn, Hn) < ε

)
.

Proof. Denote

p := P
(
dist(Xk, Hk) < ε

)
.

Note that since the entries of the matrix A are i.i.d., this probability does not
depend on k. Then

E
∣∣{k : dist(Xk, Hk) < ε}

∣∣ = np.

Denote by U the event that the set σ1 := {k : dist(Xk, Hk) ≥ ε} contains
more than (1− ν1)n elements. Then by Chebychev’s inequality,

P(U c) ≤ p

ν1

.

Assume that the event U occurs. Fix any incompressible vector x and let σ(x)
be the set from Lemma 5.5. Then |σ1|+ |σ(x)| > (1− ν1)n+ ν1n = n, so the
sets σ1 and σ(x) have nonempty intersection. Let k ∈ σ1 ∩ σ(x), so

|xk| ≥ ν2n
−1/2 and dist(Xk, Hk) ≥ ε.

Writing Ax =
∑n

j=1 xjXj, we get

‖Ax‖2 ≥ dist(Ax,Hk) = dist(xkXk, Hk) = |xk| dist(Xk, Hk)

≥ ν2n
−1/2 · ε.

Summarizing, we have shown that

P
(

inf
x∈Incomp

‖Ax‖2 < εν2n
−1/2

)
≤ P(U c) ≤ p

ν1

.

This completes the proof. �
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Lemma 5.6 reduces the invertibility problem to a lower bound on the distance
between a random vector and a random subspace. Now we reduce bounding
the distance to a small ball probability estimate.

Let X1, . . . , Xn be the column vectors of A. Let X∗ be any unit vector
orthogonal to X1, . . . , Xn−1. We call it a random normal. We can choose
X∗ so that it is a random vector that depends only on X1, . . . , Xn−1 and is
independent of Xn.

We clearly have

(5.11) dist(Xn, Hn) ≥ |〈X∗, Xn〉|.
The vectors X∗ =: (a1, . . . , an) and Xn =: (ξ1, . . . , ξn) are independent. Condi-
tion on the vectors X1, . . . , Xn−1. Then the vector X∗ can be viewed as fixed,
and the problem reduces to the small ball probability estimate for a linear
combination of independent random variables

〈X∗, Xn〉 =
n∑
k=1

akξk.

Assume for a moment that the distribution of a random variable ξ is abso-
lutely continuous with bounded density. Then

(5.12) P(|ξ| < t) ≤ C ′t for any t > 0.

This estimate can be extended to a linear combination of independent copies
of ξ. Therefore,

P(|〈X∗, Xn〉| < t | X∗) ≤ Ct.

Integrating over X1, . . . , Xn−1, we obtain

P(|〈X∗, Xn〉| < t) ≤ Ct.

Thus, combining this estimate with Lemma 5.6, we prove that

P
(

inf
x∈Incomp

‖Ax‖2 < εν2n
−1/2

)
≤ Cε.

Then (5.9) and Lemma 5.4 imply Theorem 5.2 in this case.

6. Arithmetic structure and the small ball probability

To prove Theorem 5.2 in the previous section, we used the small ball prob-
ability estimate (5.12). However, this estimate does not hold for a general
subgaussian random variable, and in particular for any random variable hav-
ing an atom at 0.

Despite this, a linear combination
∑n

k=1 akξk of independent copies of a
subgaussian random variable ξ obeys an estimate similar to (5.12) for a typical
vector a = (a1, . . . , an). It is easy to see that such estimate is impossible for



NON-ASYMPTOTIC THEORY 17

all vectors a ∈ Sn−1. Indeed, assume that ξ is the random ±1 variable. Then
for

a(1) =

(
1√
2
,

1√
2
, 0, . . . , 0

)
, P

(
n∑
k=1

akξk = 0

)
=

1

2
.

This singular behavior is due to the fact that the vector a(1) is sparse. If we
choose the vector a, which is far from the sparse ones, i.e. an incompressible
vector, the small ball probability may be significantly improved. Consider for
example, the vector

a(2) =

(
1√
n
,

1√
n
, . . . ,

1√
n

)
.

Then by the Berry–Esséen Theorem,

P

(∣∣∣∣∣
n∑
k=1

1√
n
ξk

∣∣∣∣∣ ≤ t

)
≤ C

(
t+

1√
n

)
This estimate cannot be improved, since for an even n,

P

(
n∑
k=1

1√
n
ξk = 0

)
≥ c√

n
.

The coordinates of the vector a(2) are the same, which results in a lot of
cancelations in the random sum

∑n
k=1 akξk. If the arithmetic structure of

the coordinates of the vector a is less rigid, the small ball probability can be
improved even further. For example, for the (not normalized) vector

a(3) =

(
1 + 1/n√

n
,
1 + 2/n√

n
, . . . ,

1 + n/n√
n

)
, P

(
n∑
k=1

akξk = 0

)
∼ n−3/2.

Determining the influence of the arithmetic structure of the coordinates of
a vector a on the small ball probability for the random sum

∑n
k=1 akξk became

known as the Littlewood–Offord Problem. It was investigated by Littlewood
and Offord, Erdös, Sárcözy and Szeméredi, etc. Recently Tao and Vu [36] put
forward the inverse Littlewood–Offord theorems, stating that the large value
of the small ball probability implies a rigid arithmetic structure. The inverse
Littlewood–Offord theorems are extensively discussed in [34], see also [21] for
current results in this direction. We will need a result of this type for the
conditional argument to compensate for the lack of the bound (5.12).

The additive structure of a sequence a = (a1, . . . , an) of real numbers ak can
be described in terms of the shortest arithmetic progression into which it em-
beds. This length is conveniently expressed as the least common denominator
of a, defined as follows:

lcd(a) := inf
{
θ > 0 : θa ∈ Zn \ {0}

}
.
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For the vector a(2),

lcd(a(2)) =
√
n ∼ 1

/
P

(
n∑
k=1

akξk = 0

)
.

A similar phenomenon occurs for the vector a(3):

lcd(a(3)) = n3/2 ∼ 1
/
P

(
n∑
k=1

akξk = 0

)
.

This suggests that the least common denominator of the sequence controls the
small ball probability. However, in the case when t > 0, or when the random
variable ξ is not purely discrete, the precise inclusion θa ∈ Zn \ {0} loses its
meaning. It should be relaxed to measure the closeness of the vector θa to the
integer lattice. This leads us to the definition of the essential least common
denominator.

Fix a parameter γ ∈ (0, 1). For α > 0 define

LCDα(a) := inf
{
θ > 0 : dist(θa,Zn) < min(γ‖θa‖2, α)

}
.

The requirement that the distance is smaller than γ‖θa‖2 forces us to consider
only non-trivial integer points as approximations of θa – only those in a small
aperture cone around the direction of a (see the picture below).

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

�
�
�
�

E

One typically uses this definition with γ a small constant, and for α = c
√
n

with a small constant c > 0. The inequality dist(θa,Zn) < α then yields that
most coordinates of θa are within a small constant distance from integers. This
choice would allow us to conclude that the least common denominator of any
incompressible vector is of order at least

√
n. Let us formulate this statement

precisely.
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Lemma 6.1. There exist constants γ > 0 and λ > 0 depending only on the
compressibility parameters δ, ρ such that any incompressible vector a satisfies
LCDα(a) ≥ λ

√
n.

Proof. Assume that a is an incompressible vector, and let σ(a) be the set
defined in Lemma 5.5. If LCDα(a) < λ

√
n, then

‖θa− z‖2 < γθ < γλ
√
n for some θ ∈ (0, λ

√
n), z ∈ Zn.

Let I(a) be the set of all j ∈ {1, . . . , n} such that

|θaj − zj| <
2γλ

ν1

.

The previous inequality implies that |I(a)| > (1 − ν1/2)n. Therefore, for the
set J(a) = I(a) ∩ σ(a), we have

|J(a)| > ν1

2
n.

For any j ∈ J(a), we have

|zj| < θ|aj|+
2γλ

ν1

< λ
√
n · ν3√

n
+

2γλ

ν1

< 1,

provided that λ is chosen so that λ
(
ν3 + 2γ

ν2

)
< 1. Since z ∈ Z, this means

that zj = 0. Finally, this implies

‖θa− z‖2 ≥

 ∑
j∈J(a)

θ2a2
j

1/2

> θν2

√
ν1

2
> γθ

for γ < ν2

√
ν1/2. This contradicts the assumption that LCDα(a) < λ

√
n. �

We fix γ satisfying Lemma 6.1 for the rest of the proof.
The following theorem gives a bound on the small ball probability for a

random sum in terms of the additive structure of a. The less structure a has,
the bigger its least common denominator is, and the smaller the small ball
probability is.

Theorem 6.2 (Small ball probability). Let ξ1, . . . , ξn be independent copies of
a centered subgaussian random variable ξ of unit variance. Consider a sequence
a = (a1, . . . , an) ∈ Sn−1. Then, for every α > 0, and for

ε ≥ (4/π)

LCDα(a)
,

we have

P

(∣∣∣∣∣
n∑
k=1

akξk

∣∣∣∣∣ ≤ ε

)
≤ Cε+ Ce−cα

2

.



20 MARK RUDELSON

We shall prove more than is claimed in the Theorem. Instead of the small
ball probability we shall bound a parameter, which controls the concentration
of a random variable around any fixed point.

Definition 6.3. The Lévy concentration function of a random variable S is
defined for ε > 0 as

L(S, ε) = sup
v∈R

P(|S − v| ≤ ε).

The proof of the Theorem uses the Fourier-analytic approach developed by
Halász [14], [13].

We start with the classical Lemma of Esséen, which estimate the Lévy con-
centration function in terms of the characteristic function of a random variable.

Lemma 6.4. Let Y be a real-valued random variable. Then

sup
v∈R

P(|Y − v| ≤ 1) ≤ C

∫ 2

−2

|φY (θ)| dθ,

where φY (θ) = E exp(iθY ) is the characteristic function of Y .

Proof. Let ψ = χ[−1,1] ∗ χ[−1,1] and let f = ψ̂:

f(t) =

(
2 sin t

t

)2

.

Then both f ∈ L1(R) and ψ ∈ L1(R), so f satisfies the Fourier inversion
formula. Note also, that f(t) ≥ c whenever |t| ≤ 1. Therefore,

P(|X − v| ≤ 1) = Eχ[−1,1](X − v) ≤ 1

c
Ef(X − v)

=
1

c
E
(

1

2π

∫
R
ψ(θ)eiθ(X−v) dθ

)
≤ 1

2πc

∫
R
ψ(θ)|Eeiθ(X−v)| dθ

≤ 1

πc

∫ 2

−2

|EeiθX | dθ.

The last inequality follows from supp(ψ) = [−2, 2] and ψ(x) ≤ 2. �

Proof of Theorem 6.2. To make the proof more transparent, we shall assume
that ξ is the random ±1 variable. The general case is considered in [24].

Let S =
∑n

j=1 ajξj. Applying Esséen’s Lemma to the random variable

Y = S/ε, we obtain

(6.1) L(S, ε) ≤ C

∫ 2

−2

|φS(θ/ε)| dθ = C

∫ 2

−2

n∏
j=1

|φj(θ/ε)| dθ,

where
φj(t) = E exp(iajξjt) = cos(ajt).
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The last equality in (6.1) follows from the independence of ξj, j = 1, . . . , n.
The inequality |x| ≤ exp(−1

2
(1− x2)), which is valid for all x ∈ R, implies

|φj(t)| ≤ exp

(
−1

2
sin2(ajt)

)
≤ exp

(
−1

2
min
q∈Z
| 2
π
ajt− q|2

)
.

In the last inequality we estimated the absolute value of the sinus by a piecewise
linear function, see the picture below.

−π −1
2
π 0 1

2
π π 3

2
π 2π

Combining the previous inequalities, we get

L(S, ε) ≤ C

∫ 2

−2

exp

(
−1

2

n∑
j=1

min
q∈Z

∣∣∣∣ 2πaj · θε − q
∣∣∣∣2
)
dθ(6.2)

= C

∫ 2

−2

exp(−h2(θ)/2) dθ,

where

h(θ) = min
p∈Zn

∥∥∥∥ 2

πε
· θa− p

∥∥∥∥
2

.

Since by the assumption, 4/(πε) ≤ LCDα(a), the definition of the least
common denominator implies that for any θ ∈ [−2, 2],

h(θ) ≥ min(γ
2θ

πε
‖a‖2 , α).

Recall that ‖a‖2 = 1. Then the previous inequality implies

exp(−h2(θ)/2) ≤ exp

(
−
(

2γ

πε
θ

)2/
2

)
+ exp(−α2/2).

Substituting this into (6.2) we complete the proof. �

To apply the previous result for random matrices we shall combine it with
the following Tensorization Lemma.

Lemma 6.5 (Tensorization). Let ζ1, . . . , ζm be independent real random vari-
ables, and let K, ε0 ≥ 0. Assume that for each k

P(|ζk| < ε) ≤ Kε for all ε ≥ ε0.
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Then

P
( m∑
k=1

ζ2
k < ε2m

)
≤ (CKε)m for all ε ≥ ε0,

where C is an absolute constant.

Proof. Let ε ≥ ε0. We have

P
( m∑
k=1

ζ2
k < ε2m

)
= P

(
m− 1

ε2

m∑
k=1

ζ2
k > 0

)
≤ E exp

(
m− 1

ε2

m∑
k=1

ζ2
k

)
= em

m∏
k=1

E exp(−ζ2
k/ε

2).(6.3)

By Fubini’s theorem,

E exp(−ζ2
k/ε

2) = E
∫ exp(−ζ2k/ε

2)

0

ds =

∫ 1

0

P
(

exp(−ζ2
k/ε

2) > s
)
ds

=

∫ ∞
0

2ue−u
2 P(ζk < εu) du.

For u ∈ (0, 1), we have P(|ζk| < εu) ≤ P(|ζk| < ε) ≤ Kε. This and the
assumption of the lemma yields

E exp(−ζ2
k/ε

2) ≤
∫ 1

0

2ue−u
2

Kε du+

∫ ∞
1

2ue−u
2

Kεu du ≤ CKε.

Putting this into (6.3) yields

P
( m∑
k=1

ζ2
k < ε2m

)
≤ em(CKε)m.

This completes the proof. �

Combining Theorem 6.2 and Lemma 6.5 yields the multidimensional small
ball probability estimate similar to the one we had for absolutely continuous
random variable.

Lemma 6.6 (Invertibility on a single vector). Let A′ be an m × n random
matrix, whose entries are independent copies of a centered subgaussian random
variable ξ. Then for any α > 0, for every vector x ∈ Sn−1, and for every t ≥ 0,
satisfying

t ≥ max

(
(4/π)

LCDα(x)
, e−cα

2

)
,

one has

P
(
‖A′x‖ < tn1/2

)
≤ (Ct)m.
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7. Putting all ingredients together

Now we have developed all necessary tools to prove the central result.

Theorem. 5.2. (Invertibility: subgaussian) Let A be an n× n matrix whose
entries are independent copies of a centered subgaussian real random variable.
Then for every ε ≥ 0 one has

P
(
sn(A) ≤ εn−1/2

)
≤ Cε+ cn,

where C > 0 and c ∈ (0, 1).

Recall that we have divided the unit sphere into compressible and incom-
pressible vectors (see Definition 5.3 and inequality (5.9)), and proved that the
first term in (5.9) is exponentially small. Applying Lemma 5.6 and (5.11), we
reduced the estimate for the second term to the bound for

p(ε) := P
(
|〈X∗, Xn〉| ≤ ε

)
,

whereXn is the n-th column of the matrixA, andX∗ is a unit vector orthogonal
to the first n− 1 columns. To complete the proof, we have to show that

(7.1) p(ε) ≤ Cε,

whenever ε ≥ e−cn. Here 〈X∗, Xn〉 =
∑n

j=1X
∗
j ξj, where X∗ = (X∗1 , . . . , X

∗
n).

Throughout the rest of the proof set

(7.2) α = β
√
n,

where β > 0 is a small absolute constant, which will be chosen at the end of the
proof. If LCDα(X∗) ≥ ecn, then (7.1) follows from Theorem 6.2. Therefore,
our problem has been further reduced to

Theorem 7.1 (Random normal). Let X1, . . . , Xn−1 be random vectors whose
coordinates are independent copies of a centered subgaussian random variable
ξ. Consider a unit vector X∗ orthogonal to all these vectors. There exist
constants c, c′ > 0 such that

P
(

LCDα(X∗) < ecn
)
≤ e−c

′n.

Intuitively, the components of a random vector should be arithmetically
incommensurate to the extent that their essential LCD is exponential in n.
This is rather obvious for a random vector uniformly distributed over the
sphere. However, the distribution of the random normal X∗ is more involved,
and it requires some work to confirm this intuition.

Proof. Let A′ be the (n − 1) × n matrix with rows XT
1 , . . . , X

T
n−1. Then

X∗ ∈ Ker(A′). The matrix A′ has i.i.d. entries. We start with using the
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decomposition similar to (5.9):

P
(
∃X∗ ∈ Sn−2 LCDα(X∗) < ecn and A′X∗ = 0

)
≤ P

(
∃X∗ ∈ Comp A′X∗ = 0

)
+ P

(
∃X∗ ∈ Incomp LCDα(X∗) < ecn and A′X∗ = 0

)
.

Lemma 5.4 implies that the first term in the right hand side does not exceed
e−cn. Formally, we have to reprove this lemma for (n−1)×n matrices, instead
of the n× n ones, but the proof extends to this case without any changes.

To bound the second term, we introduce a new decomposition of the sphere.
Recall that by Lemma 6.1, any incompressible vector a satisfies LCDα(a) ≥
λ
√
n. For D > 0, set

SD = {x ∈ Sn−1 | D ≤ LCDα(x) ≤ 2D}.
It is enough to prove that

P(∃x ∈ SD A′x = 0) ≤ e−n.

whenever λ
√
n ≤ D ≤ ecn. Indeed, the statement of the Theorem will then

follow by taking the union bound over D = 2k for k ≤ cn.
To this end, we shall use the ε-net argument to bound ‖A′x‖ below. For

a fixed x ∈ SD, the required estimate follows from substituting the bound
LCDα(x) ≥ D in Lemma 6.6:

(7.3) P
(
‖A′x‖2 < tn1/2

)
≤ (Ct)n−1,

provided t ≥ (4/π)
D
. To estimate the size of the ε-net we use the bound for the

essential least common denominator again. The simple volumetric bound is
not sufficient for our purposes, and this is the crucial step where we explore
the additive structure of SD to construct a smaller net.

Lemma 7.2 (Nets of level sets). There exists a (4α/D)-net in SD of cardinality
at most (CD/

√
n)n.

Proof. We can assume that 4α/D ≤ 1, otherwise the conclusion is trivial. To
shorten the notation, denote for x ∈ SD

D(x) := LCDα(x).

By the definition of SD, we have D ≤ D(x) < 2D. By the definition of the
essential least common denominator, there exists p ∈ Zn such that

(7.4) ‖D(x)x− p‖2 < α.

Therefore ∥∥∥x− p

D(x)

∥∥∥
2
<

α

D(x)
≤ α

D
≤ 1

4
.
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Since ‖x‖2 = 1, it follows that

(7.5)
∥∥∥x− p

‖p‖2

∥∥∥
2
<

2α

D
.

On the other hand, by (7.4) and using ‖x‖2 = 1, D(x) ≤ 2D and 4α/D ≤ 1,
we obtain

(7.6) ‖p‖2 < D(x) + α ≤ 2D + α ≤ 3D.

Inequalities (7.5) and (7.6) show that the set

N :=
{ p

‖p‖2

: p ∈ Zn ∩B(0, 3D)
}

is a (2α/D)-net of SD. Recall that, by a known volumetric argument, the
number of integer points in B(0, 3D) is at most (1 + 9D/

√
n)n ≤ (CD/

√
n)n

(where in the last inequality we used that by the definition of the level set,
D > c0

√
n for all incompressible vectors). Finally, we can find a (4α/D)-net

of the same cardinality, which lies in SD. �

Now we can complete the ε-argument. Recall that by Proposition 4.4,

P(s1(A′) ≥ C0

√
n) ≤ e−cn.

Therefore, in order to complete the proof, it is enough to show that the event

E :=
{
∃x ∈ SD A′x = 0 and ‖A′‖ ≤ C0

√
n
}

has probability at most e−n.
Assume that E occurs, and let x ∈ SD be such that A′x = 0. Let N be the

(4α/D)-net constructed in Lemma 7.2. Choose y ∈ N such that ‖x− y‖ <
4α/D. Then by the triangle inequality,

‖A′y‖2 ≤ ‖A′‖ · ‖x− y‖2 < C0

√
n · 4α

D
= 4C0β

n

D
,

if we recall that α = β
√
n. Set t = 4C0β

√
n/D. Combining the estimate (7.3)

for this t with the union bound, we obtain

P(E) ≤ P(∃y ∈ N ‖A′y‖2 ≤ t
√
n) ≤ |N | · (Ct)n−1 ≤

(
CD√
n

)n
· (Ct)n−1

≤
(
CD√
n

)
· (4CC0β)n−1 .

Since D ≤ ecn, we can choose the constant β so that the right hand side of
the previous inequality will be less than e−n. The proof of Theorem 5.2 is
complete.

�
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8. Short Khinchin inequality

Let 1 ≤ p <∞. Recall that ‖·‖p denotes the standard `p norm, and Bn
p its

unit ball.
Let X ∈ Rn be a vector with independent centered random ±1 coordinates,

i.e. a random vertex of the discrete cube {−1, 1}n. The classical Khinchin
inequality, Theorem 3.4, asserts that for any p ≥ 1 and for any vector a ∈ Rn,(
E|〈a,X〉|p

)1/p ∼p ‖a‖2. This equivalence can be obtained if one averages not
over the whole discrete cube, but over some small part of it. The problem how
small should this set be was around since mid-seventies. More precisely,

Let p ≥ 1. Find constants αp, βp and a set V ⊂ {−1, 1} of a
small cardinality such that

αp ‖a‖2 ≤
(

1

|V |
∑
x∈V

|〈a, x〉|p
)1/p

≤ βp ‖a‖2

for any a ∈ Rn.

Deterministic constructions of sets V of reasonably small cardinality are un-
known. Therefore, we shall construct the set V probabilistically. Namely, we
choose N = N(n, p) and consider N independent copies X1, . . . , XN of the
random vector X. If N � 2n/2, in particular, if N is polynomial in n, all
vectors X1, . . . , XN are distinct with high probability. The problem thus is
reduced to showing that with high probability, any vector a ∈ Rn satisfies

(8.1) αp ‖a‖2 ≤
(

1

N

N∑
j=1

|〈a,Xj〉|p
)1/p

≤ βp ‖a‖2 .

This problem can be recast in the language of random matrices. Let A be the
N × n matrix with rows X1, . . . , XN . Then the inequality above means that
A defines a nice isomorphic embedding of `n2 into `Np .

As in the proof of the original Khinchin inequality, we consider cases p = 1
and p > 2 separately.

8.1. Short Khinchin inequality for p = 1. In this case we derive the in-
equality (8.1) in a more general setup. Assume that the coordinates of the
vector X are i.i.d. centered subgaussian variables. Then Proposition 4.4 com-
bined with the inequality

∥∥A : `n2 → `N1
∥∥ ≤ √N · ∥∥A : `n2 → `N2

∥∥ yields the
following

Proposition 8.1. Let A be an N × n random matrix, N ≥ n, whose entries
are independent copies of a subgaussian random variable. Then

P
( ∥∥A : `n2 → `N1

∥∥ > tN
)
≤ e−c0t

2N for t ≥ C0.
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This implies the second inequality in (8.1) with β1 = C0, so (8.1) is reduced
to the first inequality. To establish it we apply the random matrix machinery
developed in the previous sections. Without loss of generality, we may assume
that n ≤ N ≤ 2n, because we are looking for small values of N . Then the
following Theorem shows that the short Khinchin inequality holds for any
N ≥ n with α1 depending only on the ratio of N/n.

Theorem 8.2. Let n,N be natural numbers such that n ≤ N ≤ 2n. Let τ
be a centered subgaussian random variable of variance 1. Let A be an N × n
matrix, whose entries are independent copies of τ . Set m = N − n+ 1. Then
for any ε > 0

P
(
∃x ∈ Sn−1 ‖Ax‖1 < εm

)
≤
(
CN

m
· ε
)m

+ C exp(−cn).

Proof. Adding to the entries of A a small multiples of independent N(0, 1)
variables, we may assume that the entries of A are absolutely continuous, so
the matrix A is of a full rank almost surely.

We start with an elementary lemma from linear algebra.

Lemma 8.3. Let N > n and let A : Rn → RN be a random matrix with
absolutely continuous entries. Let x ∈ Sn−1 be a vector for which ‖Ax‖1 attains
the minimal value. Then

| supp(Ax)| = N − n+ 1

almost surely.

Proof. Let E = ARn and let K = BN
1 ∩ E. Set y = Ax/ ‖Ax‖1. Since the

function g : Sn−1 → (0,∞), g(u) = ‖Au‖1 attains the minimum at u = x,
the function f : K → (0,∞), f(z) = ‖A−1|E z‖2 attains the maximum over
K at z = y. The convexity of ‖·‖2 implies that y is an extreme point of
K. Since K is the intersection of the octahedron BN

1 with an n-dimensional
subspace, this means that |supp y| ≤ N − n + 1. Finally, since the entries
of A are absolutely continuous, any coordinate subspace F ⊂ RN , whose
dimension does not exceed N − n, satisfies E ∩ F = {0} a.s. Therefore,
|supp y| = N − n+ 1. �

This Lemma allows us to reduce the minimum of ‖Ax‖1 over the whole
sphere Sn−1 to a certain finite subset of it. To each subset J ⊂ {1, . . . , N}
of cardinality m = N − n+ 1 corresponds a unique pair of extreme points xJ
and −xJ of K such that

∑
j∈J |xJ(j)| = 1 and xJ(j) = 0 whenever j /∈ J .

Let AJ ′ be the matrix consisting of the rows of A, whose numbers belong to
J ′ = {1, . . . , N}\J . The vector yJ ∈ Sn−1 such that AyJ = txJ for some t > 0
is uniquely defined by the matrix AJ ′ via the condition AJ ′yJ = 0. By Lemma
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8.3,

min{‖Ay‖1 | y ∈ Sn−1} = min{‖AyJ‖1 | J ⊂ {1, . . . , N}, |J | = m}.
To finish the proof, we estimate each ‖AyJ‖1 below and apply the union bound.
Fix a set J ⊂ {1, . . . , N} of cardinality m. Denote the rows of the matrix
AJ ′ by XT

1 , . . . , X
T
n−1. Applying Theorem 7.1 to the vectors X1, . . . , Xn−1, we

conclude that

(8.2) P
(

LCDα(yJ) < ecn
)
≤ e−c

′n.

Conditioning on the matrix AJ ′ , we may regard the vector yJ as fixed. Denote
a row of the matrix AJ by Y T , so the coordinates of AJyJ are distributed like
〈Y, yJ〉. If LCDα(yJ) ≥ ecn, then by Theorem 6.2

P(|〈Y, yJ〉| ≤ ε | AJ ′) ≤ Cε,

whenever ε > Ce−cn. Then taking expectation over AJ ′ and using (8.2) yields

P(|〈Y, yJ〉| ≤ ε) ≤ Cε+ Ce−cn + e−c
′n

for any ε > 0. Coordinates ζj, j ∈ J of the vector AJyJ are i.i.d. random
variables. Tensorization Lemma 6.5 can be easily reproved for

∑ |ζj| instead
of
∑
ζ2
j . In this form it implies

P(‖AyJ‖1 ≤ εm) = P(‖AJyJ‖1 ≤ εm) ≤
(
Cε+ Ce−cn

)m
for any ε > 0. Finally, taking the union bound over all sets J , we obtain

P(∃J |J | = m, ‖AyJ‖1 ≤ εm) ≤
(
N

m

)
·
(
Cε+ Ce−cn

)m
≤
(
CN

m
· ε
)m

+ Ce−c
′′n. �

Assume now that N is in a fixed proportion to n, and define δ by N =
(1 + δ)n. Then Theorem 8.2 implies that, with high probability, the short
Khinchin inequality holds forN independent subgaussian vectors with constant
α1 = cδ2. To see this, set ε = m

2CN
to make the right-hand side of the inequality

in Theorem 8.2 non-trivial.
Theorem 8.2 proves more than the short Khinchin inequality. Combining it

with Proposition 4.4, we show that

(8.3) ∀x ∈ Rn εδn ‖x‖2 ≤ ‖Ax‖1 ≤
√
N ‖Ax‖2 ≤ C ′n ‖x‖2 .

with probability greater than 1 − C exp(−cn) − (ε/c̄δ)δn. This immediately
yields a lower bound for the smallest singular value of a rectangular random
matrix.
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Corollary 8.4. Let n,N, δ, A, ε be as above. Then the smallest singular value
of A is bounded below by εδ · √n with probability at least 1 − C exp(−cn) −
(ε/c̄δ)δn.

This bound is not sharp for small δ. The optimal estimate, valid for all n,N
and ε, was recently obtained in [25].

A celebrated theorem of Kashin [12] states that a random n-dimensional
section of the standard octahedron BN

1 of dimension N = b(1 + δ)nc is close

to the section of the inscribed ball (1/
√
N)BN

2 . The optimal estimates for the
diameter of a random section of the octahedron were obtained by Garnaev and
Gluskin [7]. Recently the attention was attracted to the question whether the
almost spherical sections of the octahedron can be generated by simple random
matrices, in particular by a random ±1 matrix. A general result proved in [18]
implies that if N = b(1 + δ)nc with δ ≥ c/ log n, then a random N × n matrix
with independent subgaussian entries generates a section of the octahedron
BN

1 which is not far from the ball with probability exponentially close to 1.
For random ±1 matrices this result was improved by Artstein-Avidan at al.
[2], who proved a polynomial type estimate for the diameter of a section for
δ ≥ Cn−1/10. Using (8.3) we obtain a polynomial estimate for the diameter of
sections for smaller values of δ.

Corollary 8.5. Let n,N be natural numbers such that n < N < 2n. Denote
δ = (N − n)/n. Let ξ be a centered subgaussian random variable. Let A be
an N × n matrix, whose entries are independent copies of ξ and let E = ARn.
Then for any ε > 0

P
(
∀y ∈ E, ‖y‖1 ≤

√
N ‖y‖2 ≤

c

εδ
‖y‖1

)
≥ 1− C exp(−cn)− (ε/c̄δ)δn.

Note that to make the probability bound non-trivial, we have to assume that
ε = c′δ for some 0 < c′ < c̄. In this case the corollary means that a random
n-dimensional subspace E satisfies

1√
N
BN

2 ∩ E ⊂ BN
1 ∩ E ⊂

( c
δ2

)
· 1√

N
BN

2 .

This inclusion remains non-trivial as long as
(
c
δ2

)
<
√
N , i.e., as long as

δ > cN−1/4.

8.2. Short Khinchin inequality for p > 2. The case p > 2 requires a com-
pletely different approach. In this case the assumption that the coordinates of
the random vector X are independent becomes unnecessary. We shall assume
instead that X is isotropic and subgaussian. The first property means that for
any y ∈ Sn−1

E〈X, y〉2 = 1,
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while the second means that for any y ∈ Sn−1 the random variable 〈X, y〉 is
centered subgaussian. By Theorem 3.3, any random vector with independent
centered subgaussian coordinates of variance 1 is isotropic subgaussian. This
includes, in particular, an appropriately scaled random vertex of the discrete
cube {−1, 1}n.

We prove the following Theorem [10].

Theorem 8.6. Let X be an isotropic subgaussian vector in Rn. Let X1, . . . , XN

be independent copies of X. Then for any p > 2 and any N ≥ np/2, the in-
equality

c ‖y‖2 ≤
(

1

N

N∑
j=1

|〈y,Xj〉|p
)1/p

≤ C
√
p ‖y‖2

holds with high probability for all y ∈ Rn.

Proof. As in the classical Khinchin inequality, the first inequality in Theo-
rem 8.6 is easy. Denote, as before, by A theN×nmatrix with rowsX1, . . . , XN .
Assume that n is large enough, so that N ≥ np/2 ≥ δ−1

0 n, where δ0 is the con-
stant from Proposition 4.7. Combining this Proposition with the inequality
‖y‖2 ≤ N1/2−1/p · ‖y‖p, valid for all y ∈ RN , we obtain

P
(

min
x∈Sn−1

‖Ax‖p ≤ c1N
1/p
)
≤ e−c2N ,

which establishes the left inequality with probability exponentially close to 1.
To prove the second inequality, we use the method of majorizing measures,

or generic chaining, developed by Talagrand [32]. Let {Xt}t∈T be a real-valued
random process, i.e., a collection of interdependent random variables, indexed
by some set T . In the setup below, we can assume that T is finite or countable,
eliminating the question of measurability of supt∈T Xt. We shall call the process
{Xt}t∈T centered if EXt = 0 for all t ∈ T .

Definition 8.7. Let (T, d) be a metric space. A random process {Xt}t∈T is
called subgaussian with respect to the metric d if for any t, s ∈ T, t 6= s the
random variable (Xt −Xs)/d(t, s) is subgaussian. A random process {Gt}t∈T
is called Gaussian with respect to the metric d if for any finite set F ⊂ T
the joint distribution of {Gt}t∈F is Gaussian, and for any t, s ∈ T, t 6= s
(Gt −Gs)/d(t, s) is N(0, 1) random variable.

We use the following fundamental result due to Talagrand.

Theorem 8.8 (Majorizing Measure Theorem). Let (T, d) be a metric space,
and let {Gt}t∈T be a Gaussian random process with respect to the metric d.
For any centered random process {Xt}t∈T , which is subgaussian with respect to
the same metric,

E sup
t∈T

Xt ≤ C E sup
t∈T

Gt.
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For (s, y) ∈ RN × Rn define the random variable Xs,y by

Xs,y =
N∑
j=1

sj〈Xj, y〉.

Then for any T ⊂ BN
2 × Bn

2 , the random process {Xs,y}(s,y)∈T is subgaussian
with respect to the Euclidean metric. Indeed, for any (s, y), (s′, y′) ∈ T ,

Xs,y −Xs′,y′ =
N∑
j=1

(
(sj − s′j)〈Xj, y〉+ s′j〈Xj, y − y′〉

)
.

Let λ ∈ R. Since the vector X is centered subgaussian, for any z ∈ RN

exp(λ〈X, z〉) ≤ exp(Cλ2 ‖z‖2
2). Hence, using independence of Xj and applying

Cauchy–Schwartz inequality, we get

E exp
(
λ(Xs,y −Xs′,y′)

)
=

N∏
j=1

E
[

exp
(
λ(sj − s′j)〈Xj, y〉

)
· exp

(
λs′j〈Xj, y − y′〉

)]

≤
N∏
j=1

exp
(
2Cλ2((sj − s′j)2 ‖y‖2

2)
)
·
N∏
j=1

exp
(
2Cλ2(s′2j ‖y − y′‖2

2)
)

≤ exp
(
2Cλ2(‖s− s′‖2

2 + ‖y − y′‖2
2)
)
.

By Theorem 3.2 this means that the random variable

Xs,y −Xs′,y′

‖(s, y)− (s′, y′)‖2

is subgaussian.
Let Y and Z be independent standard Gaussian vectors in Rn and RN

respectively. Set

Gs,y = 〈s, Z〉+ 〈y, Y 〉.

Then for any T ⊂ RN ×Rn, {Gs,y}(s,y)∈T is a Gaussian process with respect to
the Euclidean metric. Let 1/p+ 1/p∗ = 1, and set T = BN

p∗ ×Bn
2 ⊂ BN

2 ×Bn
2 .

By the Majorizing Measure Theorem

E sup
(s,y)∈T

Xs,y ≤ C E sup
(s,y)∈T

Gs,y.
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Therefore,

E sup
y∈Bn

2

(
1

N

N∑
j=1

|〈Xj, y〉|p
)1/p

=
1

N1/p
E sup
s∈BN

p∗

sup
y∈Bn

2

N∑
j=1

sj〈Xj, y〉

≤ C

N1/p
E sup
s∈BN

p∗

sup
y∈Bn

2

Gs,y =
C

N1/p

(
E ‖Z‖p + E ‖Y ‖2

)
≤ C

(√
p+

√
n

N1/p

)
.

Since N ≥ np/2, the last expression does not exceed C ′
√
p. To complete the

proof we combine this estimate of the expectation with Chebyshev’s inequality.
�

Note that Theorem 8.6 implies that the matrix A formed by the vectors
X1, . . . , XN defines a subspace of `Np which is close to Euclidean. This, in

particular, means that the bound N ≥ np/2 is optimal (see e.g., [8] for details).

9. Random unitary and orthogonal perturbations

The need for probabilistic bounds for the smallest singular value of a random
matrix from a certain class arises in many intrinsic problems of the random
matrix theory. Such bounds are the standard step in many proofs based on the
convergence of Stieltjes transforms of the empirical measures to the Stieltjes
transform of the limit measure. One of the examples, where such bounds
become necessary is the Circular Law. The proof of this law requires the
lower bound on the smallest singular value of a random matrix with i.i.d.
entries, which was obtained above. Another setup, where such bounds become
necessary, is provided by the Single Ring Theorem of Guionnet, Krishnapur
and Zeitouni [11]. The proof of this theorem deals with another natural class
of random matrices, namely random unitary or orthogonal perturbations of a
fixed matrix.

Let us consider the complex case first. Let D be a fixed n×n matrix, and let
U be a random matrix uniformly distributed over the unitary group U(n). In
this case the solution of the qualitative invertibility problem is trivial, since the
matrix D+U is non-singular with probability 1. This can be easily concluded
by considering the determinant of D+U . The determinant, however, provides
a poor tool for studying the quantitative invertibility problem. In regard to
this problem we will prove the following theorem.

Theorem 9.1. Let D be an arbitrary n×n matrix, n ≥ 2. Let U be a random
matrix uniformly distributed over the unitary group U(n). Then

P(sn(D + U) ≤ t) ≤ tcnC for all t > 0.
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Here C and c are absolute constants.

An important feature of Theorem 9.1 is its independence of the matrix D.
This independence is essential for the Single Ring Theorem.

The statement similar to Theorem 9.1 fails in the real case, i.e., for random
matrices distributed over the orthogonal group. Indeed, suppose that n is odd.
If −D,U ∈ SO(n), then −D−1U ∈ SO(n) has the eigenvalue 1, and the matrix
D + U = D(D−1U + In) is singular. Therefore, if U is uniformly distributed
over O(n), then sn(D + U) = 0 with probability at least 1/2. Nevertheless, it
turns out that this is essentially the only obstacle to the extension of Theorem
9.1 to the orthogonal case.

Theorem 9.2 (Orthogonal perturbations). Let D be a fixed n×n real matrix,
n ≥ 2. Assume that

(9.1) ‖D‖ ≤ K, inf
V ∈O(n)

‖D − V ‖ ≥ δ

for some K ≥ 1, δ ∈ (0, 1). Let U be a random matrix uniformly distributed
over the orthogonal group O(n). Then

P(sn(D + U) ≤ t) ≤ tc(Kn/δ)C , t > 0.

Similarly to the complex case, this bound is uniform over all matrices D
satisfying (9.1). This condition is relatively mild: in the case when K = nC1

and δ = n−C2 for some constants C1, C2 > 0, we have

P(sn(D + U) ≤ t) ≤ tcnC , t > 0,

as in the complex case. It is possible that the condition ‖D‖ ≤ K can be
eliminated from the Theorem 9.2. However, this is not crucial because such
condition already appears in the Single Ring Theorem.

The problems we face in the proofs of Theorems 9.1 and 9.2 are significantly
different from those appearing in Sections 5, 7. In the case of the independent
entries the argument was based on the analysis of the small ball probability
P(‖Ax‖2 < t) or P(‖Ax‖1) < t for a fixed vector x. As shown in Section 6, the
decay of this probability as t → 0 is determined by the arithmetic structure
of the coordinates of x. In contrast to this, the arithmetic structure plays no
role in Theorems 9.1 and 9.2. The difficulty lies elsewhere, namely in the lack
of independence of the entries of the matrix. We will have to introduce a set
of the independent random variables artificially. These variables have to be
chosen in a way that allows one to express tractably the smallest singular value
in terms of them. To illustrate this approach, we present the proof of Theorem
9.1 below. The proof of Theorem 9.2 starts with the similar ideas, but requires
new and significantly more delicate arguments. We refer the reader to [28] for
the details.
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Proof of Theorem 9.1. Throughout the proof we fix t > 0 and introduce several
small and large parameters depending on t. The values of such parameters will
be chosen of orders ta, where 0 < a < 1 for the small parameters, and t−b,
0 < b < 1 for the large ones. This would allow us to introduce an hierarchy of
parameters, and disregard the terms corresponding to the smaller ones. Also,
note that we have to prove Theorem 9.1 only for t < n−C

′
for a given constant

C ′, because for larger values of t its statement can be made vacuous by choosing
a large constant C. This observation would allow us to use bounds of the type√
nta ≤ ta

′
whenever a < a′ are constants.

For convenience of a reader, we include a special paragraph entitled “Choice of the

parameters” in the analysis of each case. In these paragraphs we list the constraints that

the small and large parameters must satisfy, as well as the admissible numerical values

of those parameters. These paragraphs will be printed in sans-serif and can be omitted

on the first reading.

To simplify the argument, we will also assume that ‖D‖ ≤ K, as in Theorem
9.2. The proof of Theorem 9.1 without this assumption can be found in [28].

9.1. Decomposition of the sphere and introduction of local and global
perturbations. We have to bound sn(U + D), which is the minimum of
‖(D + U)x‖2 over the unit sphere. For every x ∈ Sn−1, there is a coordinate
xj with |xj| ≥ 1/

√
n. Hence, the union bound yields

P(sn(D + U) ≤ t) ≤
n∑
j=1

P
(

inf
x∈Sj

‖(U +D)x‖2 ≤ t

)
,

where

Sj =
{
x ∈ Sn−1 | |xj| ≥ 1/

√
n
}
.

All terms on the right hand side of the inequality above can be estimated in the
same way. So, without loss of generality we will consider the case j = 1. Note
that the application of the crude union bound here may have increased the
probability estimate of Theorem 9.1 n times. This, however, is unimportant,
since we allow the coefficient nC anyway.

The proof of the theorem reduces to the estimate of

(9.2) P
(

inf
x∈S1

‖(U +D)x‖2 ≤ t

)
.

The structure of the set S1 gives a special role to the first coordinate. This will
be reflected in our choice of independent random variables. If R,W ∈ U(n)
are any matrices, and V is uniformly distributed over U(n), then the matrix
U = V −1R−1W is uniformly distributed over U(n) as well. Hence, if we
assume that the matrices R and W are random and independent of V , then
this property would remain valid for U . The choice of the distributions of R
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and W is in our hands. Set

R = diag(r, 1, . . . , 1),

where r is a random variable uniformly distributed over {z ∈ C | |z| = 1}.
This is a “global” perturbation, since we will need the values of r, which are
far from 1. The matrix W will be “local”, i.e., it will be a small perturbation of
the identity matrix. Let ε > 0 be a “small” parameter, and set W = exp(εS),
where S is an n×n skew-symmetric matrix, i.e. S∗ = −S. Although he matrix
W is unitary, the dependence of its entries on the entries of S is hard to trace.
To simplify the structure, we consider the linearization of W ,

W0 = I + εS.

The matrix W0 is not unitary, but its distance to the group U(n) is at most
‖W −W0‖ ≤ ε2 ‖S‖2. Thus, for any x ∈ S1,

‖(D + U)x‖2 = ‖(D + V −1R−1W )x‖2 = ‖(RVD +W )x‖2

≥ ‖(RVD +W0)x‖2 − ‖W −W0‖
≥ ‖(RVD + I + εS)x‖2 − ε2‖S‖2.

We will use S to introduce a collection of independent random variables. Set

(9.3) S =

[√
−1 s −ZT

Z 0

]
where s ∼ NR(0, 1) and Z ∼ NR(0, In−1) are independent real-valued standard
normal random variable and vector respectively. Clearly, S is skew-Hermitian.
If K0 is a “large” parameter, K0 = t−b0 , then by Proposition 4.4,

P(‖Z‖2 ≥ K0

√
n) ≤ exp(−c0K

2
0n) ≤ t

for all sufficiently small t > 0. This means that ‖S‖2 ≤ K2
0n with probability

close to 1. Disregarding an event of a small probability, we reduce the problem
to obtaining a lower bound for

inf
x∈S1

‖(RVD + I + εS)x‖2 ,

provided that the bound we obtain is of order at least ε. Indeed, we may
assume that K2

0nε
2 � ε, if ε is chosen small enough.

Choice of the parameters. The second order term 2ε2‖S2‖ should not affect the
estimate of P(infx∈S1 ‖Ax‖ ≤ t). To guarantee it, we require that

K2
0nε

2 ≤ t/2.
Also, to bound the probability by a power of t, we have to assume that

exp(−c0K
2
0n) ≤ tc

for some c > 0. Both inequalities are satisfied for small t if ε = t0.6 and K0 = t−0.05.
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Starting from this moment we will condition on the matrix V and evaluate
the conditional probability with respect to the random matrices R and S. The
original random structure will be lost after this conditioning. However, we
introduced a new independent structure in the form of the matrices R and S,
and it will be easier to manipulate. Each of the matrices R and S alone is
insufficient to obtain any meaningful estimate. Nevertheless, the combination
of these two sources of randomness, a local perturbation S and a global pertur-
bation R, produces enough power to conclude that RVD+ I + εS is typically
well invertible, and this leads to the proof of Theorem 9.1.

Summarizing the previous argument, we conclude that our goal is to bound

P( inf
x∈S1

‖Ax‖2 ≤ t),

where

(9.4) A = RVD + I + εS =:

[
A11 Y T

X BT

]
,

X, Y ∈ Cn−1, B is an (n−1)×(n−1) matrix, and ε = ta. Here we decomposed
the matrix A separating the first coordinate to emphasize its special role. For
future reference we write A in terms of the components of the matrix V D,
and random variables r, s, and Z exposing the dependence on these random
parameters:

(9.5) A =

[
A11 Y T

X BT

]
=

[
ra+ 1 +

√
−1 εs (rv − εZ)T

u+ εZ BT

]
.

Here a ∈ C, u, v ∈ Cn−1, and the matrix B are independent of r, s, and Z.
After conditioning on V , we can treat them as constants.

The further strategy takes into account the properties of the matrix B.
Depending on the invertibility properties of this matrix, we condition on some
of the random variables r, s, and Z, and use the other ones to show that A is
well-invertible with high probability.

9.2. Case 1: B is poorly invertible. Assume that sn(B) ≤ λ1ε, where λ1

is another “small” parameter (λ1 = ta1 for 0 < a1 < 1). In this case we will
condition on r and s, and rely on Z to obtain the probability bound. We know
that there exists a vector w̃ ∈ Sn−2 such that ‖Bw̃‖2 ≤ λ1ε. Let x ∈ S1 be
arbitrary. We can express it as

x =

[
x1

x̃

]
, where |x1| ≥

1√
n
.

Set

w =

[
0
w̃

]
∈ Cn.
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Using the decomposition of A given in (9.4), we obtain

‖Ax‖2 ≥ |wTAx| =
∣∣∣∣[0 w̃T

] [A11 Y T

X BT

] [
x1

x̃

]∣∣∣∣
= |x1 · w̃TX + w̃TBT x̃|
≥ |x1| · |w̃TX| − ‖Bw̃‖2 (by the triangle inequality)

≥ 1√
n
|w̃TX| − λ1ε (using |x1| ≥ 1/

√
n).

By the representation (9.5), X = u+ εZ, where u ∈ Cn−1 is a vector indepen-
dent of Z. Taking the infimum over x ∈ S1, we obtain

inf
x∈S1

‖Ax‖2 ≥
1√
n
|w̃Tu+ εw̃TZ| − λ1ε.

Recall that w̃, u are fixed vectors, ‖w̃‖2 = 1, and Z ∼ NR(0, In−1). Then
w̃TZ = γ is a complex normal random variable of variance 1: E|γ|2 = 1. This

means that E
(
Re(γ)

)2 ≥ 1/2 or E
(
Im(γ)

)2 ≥ 1/2. A quick density calculation
yields the following bound on the conditional probability:

PZ
{
|w̃Tu+ εw̃TZ| ≤ 2λ1ε

√
n
}
≤ Cλ1

√
n.

Therefore, a similar bound holds unconditionally. Thus, combining the previ-
ous estimates, we conclude that in case when sn(B) ≤ λ1ε, and if ε and λ1 are
chosen so that λ1ε ≥ t, we have

P( inf
x∈S1

‖Ax‖2 ≤ t) ≤ P(
1√
n
|w̃TX| − λ1ε ≤ t)

P
{
|w̃Tu+ εw̃TZ| ≤ 2λ1ε

√
n
}
≤ Cλ1

√
n = C

√
n · ta1 .

Choice of the parameters. The constraint

λ1ε ≥ t,
appearing in this case, holds if we take λ1 = t0.1.

9.3. Case 2: B is nicely invertible. Assume that sn(B) ≥ λ2, where
λ2 = ta2 is a “small” parameter. In this case, we will also use only the local
perturbation, however the crucial random variable will be different. We will
condition on r and Z, and use the dependence on s to derive the conclusion
of the theorem.

Set

M =

[
1 0
0 (BT )−1

]
,

then ‖M‖ ≤ λ−1
2 . Therefore,

inf
x∈S1

‖Ax‖2 ≥ λ2 inf
x∈S1

‖MAx‖2 .
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The matrix MA has the following block representation:

MA =

[
A11 Y T

(BT )−1X In−1

]
.

Recall that we assumed that ‖D‖ ≤ K where K is a constant. Combining this
with the already used inequality ‖Z‖2 ≤ K0

√
n, which holds outside of the

event of exponentially small probability, we conclude that

‖Y ‖2 ≤ ‖v‖2 + ε ‖Z‖2 ≤ 2K

if εK0

√
n ≤ K. To bound infx∈S1 ‖Ax‖2, we use an observation that[

1 −Y T
]
·
[
Y T

In−1

]
= 0.

This implies that for every x ∈ S1,

‖MAx‖2 ≥
1

‖[1 − Y T ]‖2

·
∣∣∣∣[1 −Y T

]
MA

[
x1

x̃

]∣∣∣∣
≥ 1

2K
· |A11 − Y T (BT )−1X| · |x1|

≥ 1

2K
√
n
· |A11 − Y T (BT )−1X|.

The right hand side of this inequality does not depend on x, so we can take
the infimum over x ∈ S1 in the left hand side. Combination of the previous
two inequalities reads

inf
x∈S1

‖Ax‖2 ≥
λ2

2K
√
n
· |A11 − Y T (BT )−1X|

Recall that according to (9.5), A11 =
√
−1εs + d, where s is a real N(0, 1)

random variable, and d is independent of s. Conditioning on everything, but
s, we can treat d and Y T (BT )−1X as constants. An elementary estimate using
the normal density yields

Ps(|A11 − Y T (BT )−1X| ≤ µ) ≤ C
µ

ε
for all µ > 0.

Applying this estimate with µ = 2K
√
n

λ2
·t and integrating over the other random

variables, we obtain

P( inf
x∈S1

‖Ax‖2 ≤ t) ≤ C
2K
√
n

λ2ε
· t ≤ C ′

√
n · tc

for some c > 0 if λ2 is chosen appropriately.

Choice of the parameters. The inequality

1

λ2ε
· t ≤ tc, c > 0



NON-ASYMPTOTIC THEORY 39

holds with c = 0.2 if we set λ2 = t0.2. The constraint

εK0

√
n ≤ K,

appearing above, is satisfied since we have chosen ε = t0.6 and K0 = t−0.05.
One can try to tweak the parameters λ1, λ2, and ε to cover all possible scenarios.

This attempt, however, is doomed to fail since the system of the constraints becomes
inconsistent. Indeed, to include all matrices B in Cases 1 and 2, we have to choose
λ2 ≤ λ1ε. With this choice,

t

λ2ε
≥ t

λ1ε2
> 1,

because of the constraint K2
0nε

2 ≤ t/2. This forces us to consider the intermediate

case.

9.4. Case 3, intermediate: B is invertible, but not nicely invertible.
Assume that λ1ε ≤ sn(B) ≤ λ2 with λ2, λ1 defined in Cases 1 and 2. This
is the most delicate case. Here we will have to rely on both local and global
perturbations. We proceed like in Case 2 by multiplying Ax from the left by
a vector which eliminates the dependence on all coordinates of x, except the
first one. To this end, note that[

1 −Y T (BT )−1
]
·
[
Y T

BT

]
= 0.

Hence, for any x ∈ S1,

‖Ax‖2 ≥
1∥∥[1 −Y T (BT )−1

]∥∥
2

∣∣∣∣[1 −Y T (BT )−1
]
·
[
A11 Y T

X BT

]
·
[
x1

x̃

]∣∣∣∣
≥ 1

1 + ‖Y T (BT )−1‖2

∣∣(A11 − Y T (BT )−1X)x1

∣∣
≥ 1

1 + ‖Y T (BT )−1‖2

|A11 − Y T (BT )−1X| · 1√
n
.

Since the right hand side is independent of x, we can take the infimum over
x ∈ S1.

Note that Y T (BT )−1 is independent of s, see (9.5). We consider two sub-
cases. If

∥∥Y T (BT )−1
∥∥

2
≤ λ−1

2 , then

inf
x∈S1

‖Ax‖2 ≥
λ2

2
√
n
|A11 − Y T (BT )−1X|,

and we can finish the proof exactly like in Case 2, by conditioning on everything
except s, and estimating the probability with respect to s.

The second subcase requires more work. Assume that
∥∥Y T (BT )−1

∥∥
2
≥ λ−1

2 .
Then the inequality above yields

inf
x∈S1

‖Ax‖2 ≥
1

2
√
n ‖Y T (BT )−1‖2

|A11 − Y T (BT )−1X|.
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Since we do not have a satisfactory upper bound for
∥∥Y T (BT )−1

∥∥
2
, we cannot

rely on A11 to estimate the small ball probability. The second term in the nu-
merator looks more promising, because it contains the same vector Y T (BT )−1.
This term, however, is difficult to analyze, since the random vectors X and
Y are dependent. A simplification of both numerator and denominator would
allow us to get rid of this dependence.

We start with analyzing the denominator. By (9.5), Y = rv − εZ, so∥∥Y T (BT )−1
∥∥

2
≤
∥∥vT (BT )−1

∥∥
2

+ ε
∥∥ZT (BT )−1

∥∥
2
.

As in the previous cases, disregarding an event of a small probability, we can
assume that ‖Z‖2 ≤ K0

√
n. Then by the assumption on sn(B),

ε
∥∥ZT (BT )−1

∥∥
2
≤ εK0

√
n

sn(B)
≤ K0

√
n

λ1

.

The parameters K0, λ1, and λ2 can be chosen so that K0
√
n

λ1
≤ λ−1

2 /2. Then,

since
∥∥Y T (BT )−1

∥∥
2
≥ λ−1

2 , we conclude that∥∥Y T (BT )−1
∥∥

2
≤ 2

∥∥vT (BT )−1
∥∥

2

and

inf
x∈S1

‖Ax‖2 ≥
1

4
√
n ‖vT (BT )−1‖2

· |A11 − Y T (BT )−1X|.

The denominator here is independent of our random parameters.
Now we pass to the analysis of the numerator. From (9.5) follows that

A11−Y T (BT )−1X = αr+β is a linear function of r with coefficients α and β,
which depend on other random parameters. This representation would allow
us to filter out several complicated terms in A11 − Y T (BT )−1X by using the
global perturbation r.

Let λ3 > 0 be a “small” parameter: λ3 = ta3 . Condition on everything,
except r. Since r is uniformly distributed over the unit circle in C, an easy
density calculation yields

(9.6) Pr(|αr + b| ≥ λ3|α|) ≥ 1− Cλ3.

Taking the expectation with respect to the other random variables shows that
the same bound holds unconditionally. Thus, disregarding the event of a small
probability Cλ3, we obtain that |A11 − Y T (BT )−1X| ≥ λ3|α|. The coefficient
α in turn can be represented as follows: α = α′ − εvT (BT )−1Z, where a′ ∈ C
is independent of Z. Incorporating this into the bound above, we obtain

inf
x∈S1

‖Ax‖2 ≥
λ3

4
√
n ‖vT (BT )−1‖2

|α′ − εvT (BT )−1Z|.
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Using the global perturbation allowed us to simplify the numerator and expose
its dependence on the local perturbation variable Z. We will finish the proof
using this local perturbation.

Set hT = vT (BT )−1/
∥∥vT (BT )−1

∥∥
2

and recall that h ∈ Cn−1 is independent
of Z. Conditioning on everything except Z, we see that

g :=
α′

‖vT (BT )−1‖2

− εhTZ = const + εγ′,

where γ′ is a complex normal random variable of unit variance: E|γ′|2 = 1.
Hence, as before, for any µ > 0

PZ(|g| ≤ µ) ≤ Cµ/ε,

and integrating over other random variables, we conclude that the same esti-
mate holds unconditionally. Combining this inequality with the previous one
and recalling that we dropped an event of probability Cλ3 while using (9.6),
we obtain

P( inf
x∈S1

‖Ax‖2 ≤ t) ≤ P
(
|g| ≤ 4

√
n

λ3

t

)
+ Cλ3 ≤ C

4
√
n

λ3ε
t+ Cλ3 ≤ C ′

√
ntc

′

for some c′ > 0. Choosing appropriate constants a and a3 in ε = ta and
λ3 = ta3 finishes the proof in this case and completes the proof of Theorem
9.1.

Choice of the parameters. The analysis of this case requires the following two
constraints:

K0
√
n

λ1
≤ λ−1

2

2
and

t

λ3ε
+ λ3 ≤ tc

′
, c > 0.

The first one is satisfied with the choice K0 = t−0.05, λ1 = t0.1, λ2 = t0.2 that we made

above. To satisfy the second one, set λ3 = t0.2. �

We made no effort to optimize the dependence on t and n in the proof above.
It would be interesting to find the optimal bound here. Another interesting
question, suggested by Djalil Chafai, is to analyze the behavior of the smallest
singular value of the matrix D + U where U is uniformly distributed over a
discrete subgroup of the unitary group. The case of the permutation group
may be of special interest, because of its relevance for random graph theory.
This question may require a combination of tools from Sections 5–9, since
both obstacles, the arithmetic structure and the lack of independence, make
an appearance here.
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